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1. Introduction to Vectors

o] o= AF45HS 7[Hte 2 ML/DL & 1g]|&S o] )2t} ML/DL data science S| A= H|o|HE
WEl2 bl dlebii, 52oke Holel S vhebal b ela 1A clolsh g thastols] tolry.

1.1. Understanding of Multiplication

matrix-vector multiplication Ax=b, Z12] 11 matrix-matrix multiplication AB=Co] 3} ¢ o]sfjsl] B2} iz
vectorgl oFH 7] E2 0 2 column vectorg o|u|gtct.

1.1.1. Linear Combination of Colums

A A2 A Ao A F2 == Ax=b E 2] matrix-vector multiplicatione U= HH.C o}z o} ZHo]
-
= A

1. Row-wise way(dot product)

Row-wise way= Ax=b& 424 T2 coefficient matrix A%} variable vector x2| T4 F(dot
L upajolct 2, A9 2t rowsh WPAA] 5hb] coefficentS LR L, 2} M Al S o] o

DIt} S4 02 e Bdai AL ofzlel 2.

J15kA 0 2 A7k w7 Aol dhS e A Ei W 52 SEAC] 121, HEAGIH YA s Hiol

xl Aoz olag % 9l

roduct) © 2

il

_r;

a1 a2 a13| (71 by
a21 Q22 a23 za| = | b2
as1 asz asz| |3 b3

2. Column-wise way
Column-wise way~= Ax=b& A9] columns°f gt linear combination(FxAg) 2 E‘— wkA o]t (linear

combination of columns of A). =41 ¢ 2 YA o<}t Aot ML/DL Wy oA = Ax=bE 0]?& HEAl O 2
eI 2101 intuition 7] 27]o] £, ai Tl R0l A4 SAAE o] W45 22 Agg.
AebEo = 2ks) W 2t column veetorS-& HTAS] Lk 1, o] A5-& 28] scalart] 514 bE PEL

ZEERE LR

ai a2 a3 by
1 |G21| + T2 |G22| +x3 |a23| = |bo
asy a3 ass b3

column-wise way S AF85HH Ax=bZ bo] |3t linear combination© 2 ]3] 4= 311’4'% AAE 93, Ax=b

o] Htlo] Febalt 52 Wob} AAS T vector ST Zoha] FR H|BE $X212] olalo}

folsitt= 7\1'735 011:]— T3 ZF column vectors: j_a 7|%k 0]'”4 HER —4‘374] °f 14"5]'1":-3 = |5k
=

s I18AY ]OH 0}71 01@"4'- ]Oﬂ U}E’r = —’T—‘?Q Oﬂfﬂ Vector‘/‘r glolgAl 5 L‘rﬂ'%‘ o column-wise
ways ALEEIC,

column-wise way S AHYA A Az = bo]] AL BH, A9 vector bo| th3] Ax=b9] 3|7} ZAsl=A]+=
7} column Vector =9 linear combination® & b& 14-15]-”‘ T Q=R 2 A 4 Qltt. thA] ), b7t 49l
nX]-OJ vectord ] column vectorg9] F-EAHT 0] T vector space] basisglH 422 bof WA 7+
ZA3et.

1.1.2. Linear Combination of Rows
07'01] A A5k 218 AxE linear combination of columns of Ao|th Q3 HhAl 0 2 o Az}l HH 27T A =
b7 linear combination of rows of A¢l Z1 0 &2 o|g|g &= gith & o bt ATz = ho|B 2 Az = bo]|A] 9]
bol the grolk




ail a2 Qi3
[551 T2 xs] a1 azz2 Q23 :[bl be 53]
as1r asz2 as3

T1 [a12 a12 6113] + T [a21 a22 a23] + T [6131 a32 a33] = [bl ba bs]

EE2 GASHE 2T A =0T= ATz = b} 2.4, o] T3] AS transposedt Z10] B2 linear combination
of rows of A2 ©]|5|& 4= 9J

Z, A5 AxZL A9 column vectorE2 linear combination® &, xA &2 A2] row vectorE9]
linear combination® & o|3|& 4= QIc}.

1.2. Matrix Multiplication

1.2.1. Matrix Multiplication

column vector, row vector®] t§t linear combination®] ZHo]| 4] matrix multiplication< ©|3}|s| E2}. 4
7122 0 2 matrix A, B, Cof| t$F matrix multipliaction AB=C+= A, B, C2] ZF ¥4 a,b, co H5lA] O}Eﬂﬂ-
Zol vepd 4 9let.

Ci; = Z Air By
k=1

ol C9] Zt row®} columne A9} BE &85t linear combination® 2% YERH 4 QI ©H5A & matrix
multiplication2 AJZ}S| EHH C2] Z} row= U-&]= A_,] row2} Bof djjst mul‘mphcamon col z+ column—
A2} J-¢5]= B columno] oSt multlphcatlono]l:’r , Aol A rowE af, BO] iHA]| column2 b5, Co
A row E+= column cf, cjol2} St ofef o] 4=2] O] J gt

1971

Ab =¢f, a]B=c]

7 K3

Al &, AB=CoA C2 Z} column& A9 column vector?] linear combinationo]|1, C2] Z} row
L B9 row vector?] linear combination©o]|t}.

Ax7} A column®] linear combination© 2 UEd 4= 9Jth= 7.8 Ax7F A9Q] column spaceo] ZSHEITH= 7o,
o] & 410 7 YeERH Az € C(A)°|th. TS multiplication2 AgH 210] AR 2 FASIA L ABCx € C(A)
olt}. @8] BCz — /08 = 0% S5,

1.2.2. Matrix Multiplication tt24] Jeh] 7]

1. Column¥ Row?] Fo2 yeh)r]

oFoll A AFTt AA™H n x m matrix A2} m x k matrix BS] multiplication AB = C+= of&fje} Zro] Yerd
2 oJt}

o R

Cz] = Z Aszkj
k=1

o AS] iHA columng af, BO] iHA] rows bl 2tal olH ofge}l Zo] Yetd $ Qltt. FAHoZ =
o WAo]H B4 A4E Lot ANS e EA 91o] A3 23, APHORE 2t 79 B
ooz o) BT cobyl ABS .

AB = iazb;




o7l 410] HAE A% 7t A T Be] 74 9]
Jbsa17] gt
2. Submatrix?] Fo & ehj7

matrix2 o]g] submatrix = Ego 2 x11, 7 B9
s ol o
T |-

Qeof utet A4t At A jEY HleS B EE o AL E

olN

—~

tlo

AR O 72 FF3l matrix multiplicationg A4+

AB — [an 4112] ) [bu b12:| _ [(lnbn + a12b21  anbi; +1112522]

a2 Q2 bar b a21b11 + ageby1  azobis + axnbs:
AB — An | Aip By | By _ Ay By + A1z Bn | Ay By + A1 By
Ay | A By | By, A2 By + Ay By | A Biy + Ay Bo,

2. Linear Equation

2.1. Elimination

2.1.1. Elimination

1. Elimination
Elimination(£:71 )& A th4stelq APAAA A 18 Tk ba 71EA el el @A, el o
et £442 oldfiot= dlof E-85= 71

Gaussian Elimination(7}-3-2 A7 H)2 matrix©] elementary operation2 2]-8-3] Row Echelon Form(3§ A}
tt2] &) 0 2 == elimination©] 11, Gauss-Jordan Elimination(7}$-A-Z ¢ A7 H)-& 5 U35} elementary
operation Z]-83]] RREF (Reduced Row Echelon Form, 7]2Fs§Attt 2] &) 2 W= = elimination©]|t}.

row echelon form-& ofg|e] A £ 1, 2W ZZﬂE‘l‘ HFZEA] 7] = matrixo]3, RREFE ofgf|o] A8 2% ot
ZA)7]= matrixo|t}. o] Plvot(lll‘:ﬂ)l_ T rowofl A A0 2 00] otd YAo|tt. FHASH| L matrix AS
row echelon form© 2 M-S o pivot2] 7H<,‘—% A9] ranke} Zth.

1. 00] ofd HE-E 7}2]= rows BE ARo] 091 SR} %o 9]x]ghc}.

2. 00] opd AEE 712+ row?] pivot-e 9% row] pivotHt} © EZo] $J2]Fict.

3. pivoto] EAISH= columnof| A pivota A| 2Rt the K= d4-9] gh2 0olth
(pivot 2] fJotafi7} =% 0oltt.).

4. 2= privot9] gk 10t}

2. Elementary Operation and Elementary Matrix
matrix®] row[column]of gt ot o] Al A4S Elementary Row[Column] Operation(7]|23][&g]d4r) o] 2}
3t} 3t rowe columne] 3t o] GAFE-2 F5o0] Elementary Operationo]2} 3},

1. A9] & row[column]& W gs}= A.

2. A9 3t row[column]of 00] o} scalarg H5h= ZA.

3. A9 3t row[column]of] TH2 row|column] 9] scalar Hj-E Hol= Z.
Elementary Matrix(7]28 2 )< identity matrix I,°] elementary operation< ¢t ¥ #-835}o] A& matrix
o]t}t. elementary operatlon— 285t= AL 1 matrixo]| t-25+= elementary matrix(-g Q43S elementary

operation 1,0] 44 )% BoH= A7} 2L, olo] u}2} clementary operation A8} A& 5450
2 b 5 )

o|tf| elementary row operatlon— Z-25= AL elementary matrixE HJZof Fol= A3} 211, elementary
column operationg #-835H= 7212 elementary matrixs @ EZo| E5t= A At

A A elementary operation®] t$t matrix& Elemination Marix(A7#HE) =2, A WA elementary opera-
tiono] thet matrixE Permutation Matrix(2|2to )2 B2 7]k Jtct.




elementary row operation row spaceS HE3F2| W, column space= B E35}A] gF=t}. TS 0] elementary
matrixs YZof Hot= A1} Z o1 2 null spaces HESH} HHH elementary column operation column
space= HZS}2] Tl row space ¥ null space= HE5}2] ¢F=c}. 52 F operation =5 rank= HZ3gtc}

3. AP LALF 49 Fol
Ax=b EO] AYAAHAAL Augmented Matrix(ZH715E) (Al|b)o]] 3l eliminationS Z-§3] RREFZ
MG AoR & 4 9

1. matrix®] ZF rowo] i3l YollA] otg|2 W271HA] elementary row operation2 Z-83f pivot 2] Zko] 1
o], pivot¥} F AT column o] JEE F offj&e] ¢l AES 002 FHEL

2. o1F ool A 912 2ebHaA privotd FLF colimn®] HEES F 9% 9l AL 002 e

1. AYAAPRA d A A% W
AY AT Az = be] s} Qele] bl thaf EAREAE ofdle] Y % s we

A7} invertibleo]H Sf|7} gt Tt o] A9 = A O 2 S|E AL & Qlrt.

rank(A) = rank(Alb)o]H |7} ZAstct. o] B2 A column®] linear combination® 2 b& W&
.

3. (A& RREF2 Uebie o] m4e) 400] Gt ol 9Lom st 24164 st

st
-

[e}] E]—

—
—

N

I
-
sk

A AxHFA Al-S- &2 1, elimination T4l Z#2A © 2 column®] linear combination© 2 e 4= 91=2]
I =g, oA A 7R Eobal gt

2.2. Rank

2.2.1. Rank

1. Rank
Matrix9] Rank: S| matrix®] column space®] dimension®|t}. 2, linear independent3t column®] 7J4>

o]tk

0] 9] 9] matrix A2] rank= AT 9] ranke}t Zth =, rank: o matrix2] row space?] dimension©]1l, linear
independent$t row 2] 7|42 18 £ 9t} A 5tH rank: linear independent?dl row E= column
9] &= AL 4 k. olof 5Ft2] matrixo]] H3fA] independentdt column®] 742} independent$t row
O] /N7t FYSHE R, rowe} column F B 42 ZH o @4 rankz} 2t

elementary operation-2 rankg HEgtet. ofof whe} 9] 9] 2] matrixe]| elemination-& 2-8-5f pivoto] EAst=
column®] /|42 ranks 3 4= Q.

2. Full Column/Row Rank
2199l m x n matrix Ao dJ3 column/row?} rank7} -2 42-E Full Column/Row Rankz}al 3t}

1) Full Column Rank
BE columnE©] independent3t 73-9-0|t}h =, pivoto] E columnof £A sttt

o] AL Ax = bo]|A] pivot variableo] G2] J|4=<} 711, free variableo] Qit}. free variableo] ¢17]& S},
dimension theorm®]| ]3] N(A)&= FF7FOIth. Zeomplete = Zparticular ©]EF. b7} A 9] linear combination$l
2% TSk n < mel AS G4 A7k ZAGE AL oI, n = mel Aol invertibleo] 12 7}
EAgt

2) Full Row Rank

BE rowE9| independent$t 7-2-o]tt. =, pivoto] BE rowo] xSttt

o] A2 Az = bol| A BE bo]| tf3l si7F Attt n > mQl -9 rank(column space®] dimension)7} mo] il
column2 Zo] m9] vector¢]| 22 colum space= R™o|t}. o]of wat 92]9] Zo] m vector bE column?]
linear combination© 2 TH= 4= Q1 © B 2 A} 57} EAY ). n = mQl -3 invertibleo]| B & f| 7} £ 4] gt

2.2.2. Singular Matrix



1. Singular Matrix
column T+ row”} independentstA] ¢ matrixE n X n Singular Matrix(£©] 9§ &)2tal 5}al, dependent
$F matrixE Non-singular Matrix2}1!l gy,

rank”} no| o} ™ singular, n®] ™ non-singular®|th. =, singular matrix+= non-invertible®] 11, non-singular
matrix= invertibleo]t}. invertible¥} determinant”} 00] ofd A& TWQ=Ho|B 2 determinant”’} 00]H
singular matrix, determinant”} 0¢] ¢}Y ™ non-singular matrix©|ct.

A 2]5}H, singulargl A3} non-invertiblel A3} determinant”} 091 A& FX] WAo|th

2. Singular®} Non-singluar®] &
n X n singular matrix A9} n x n non-singular matrix Be] ¥ AB = C-& 34 singular matrixo|tt. o2}
2ol ofe 714 B o= o] Psat.

—_

determinant= PE HF& BESIER, & 5 SIHY determinant”’} 00]H det(AB) = det(A) det(B) =0

)
|
2) PP Aoz Azs) HH, & Fofl shpete dojdd-go] ofy™ ABE drjdd]-go] oty A Hrt.
) C9 Z} columne A9 columno] thgt linear combination®] 22 independentdr 4= QIth. rank(AB) =
min(ran (A),rank(B))%] Ao 2% o|gf& 4 QL
4) Ho g HLo] 7155ttt C7} non-singulargbal SFH 2FAA o) s Cx=021 00] ot x7} &)
S}4] O*Ll'% A7} singularo]| B2 Ay = 0¢1 00] o}d y7} ZA5}1, B non-singularo] 22 y = Bx¢l 00]
ot x7} EA|gtt}. ABx = Ay = 0 = Cxo| B2 R<olth

2.3. Invertibility

2.3.1. Invertibility

1. Invertibility
nxn PP Ao tsfA AB = BA =12 n xn P& BE A9 Inverse Matrix(P&)oleta 5la1, A~1=2
7]t EGF o] matrix”} inverse matrixZ} ZAY|5HA Invertible(714)o]=tal it

n X n matrix?] invertibility+= ofg|e} Z-& 7|F o2 Trto] 715§
1. rank”} no|¥ invertible®.
2. determinant”} 0°] o} invertible.
3. Ax=0& W=EA]7|= 00] opd #HE x7} 2A5}H non-invertibled].

n x n matrix A7} invertibles}7] €5t W Q=B 2742 A9] rank”} nQl A%, =, non-singular matrixQl A}
invertible, rank7} nQl A& 5] YA Y.

n x n matrix A7} invertibleo]® rank7} no|1 nullity7} 00|22, A AP A] Ax=bt G235 o] A b
2 71A. ot AF A A 9] 7} 8- LS nullity 7} 091 Ao = E A% invertible .

2. Inverse Matrix F-5}7]
invertible®l matrix A®] inverse matrix+= (A|I)°] elementary row operationg 2-83f
fFots HES F5PEE W= A2 4o = (I1B)oA B7F A9 inverse matrix©]tt.

o]t elementary row operatione A-83l= AL ofgje} Zo] elementary matrixS Joh= Ay gonz
EA =1, E = Bo|t} & E ZA|7} AQ] inverse matrix©]|th.

& 4 e A9

Fu -+ BaFu(AIT) = B(AIT) = (EAIE) = (1|B)
3. Inverse Matrix2] A&
inverse matrix®] A2 2= otgf¢t T2 ZA=0| Ut
1. Folof e} AA™ = A1 A = [7F A St
2. (AB)~! = B~tA~1o] A3t




2.4. Transpose2} Permutation

2.4.1. Transpose

1. Transpose
n x m matrix Ao]] tfgt Transpose(d])= AQ] rowe} columng FHI = AAito g AT o} Zro] H7|gltt.
——H (AT) j — A‘]Zolq

transpose= ofgfje} e AJA-S 7).
1. (A+ B)T = AT + BTo|t}.
2. (AB)T = BT ATolt}. s & (ABC)T = CTBT AT o]t
3. (AT)™L = (A HTo|th. AT(AT)™1 = I}, AA~! = = transposedtal H| W ZHS 4= o).

2. Symmetric Matrix
Symmetric Matrix(tf 34 &)= A&
o)™ symmetric matrix©]t}.

oz 7+ JH o] Zro| thA 2l square matrixo|th &, A = AT

filo

7]

MN

St transposes AF&-3]| inner product?} outer productE& A 2] 4= ¢t nx 1 vector x2} yol] t3f| inner product
y=aTy2 A= (AT}= 1 x 1), outer product= xyTi Aol=tH( A= n X n).

x -
AsHA T AT A9} LDLT Z9] matrix’= symmetric matrixo|th.

T
-
R
&

2.4.2. Permutation Matrix

Permutation Matrix:= identity matrix®] row& £A|qF HFE matrixo]th. =, identitiy matrixo]] & row&

H}L= elementary operation< $F B oA} 831 matrixo|t}. o]o] Wt n x n identity matrix®] 3% n!
719 permutation matrixE-o] £ gt}

n x n permutation matrix P ofgjo] A& 712t}
1. P~! = pTojt}.
9. PTP = Jo|t}.

FASH] T permutation matrixS o]® PH 9] ZEo| Fdl= AL g permutation matrixo] FSH=
elementary operationE2 Z-85l= A1} 7

Diagonal matrix—= JZHJE-2 A gt B E AH o] 02l square matrix©|t}.

2.5. Decomposition

Decomposition(&£3]]) T Factorization(Q4E3l)= 512 matrixE o 7HdstAU EA A2 9] matrixE=2
R 7o)ttt o8] 7FA] decompositionS0] £A|5H=1], o] 7]l A= CR decomposition, LU decomposition®]|
sl GotE 2} F2 0 eigen decomposition, spectral decomposition, SVDIE. THET}.

2.5.1. CR Decomposition

CR(Colum-Row) Decomposition 9]0 m x n matrix AS F 48 C2} REZ Y= decompositiono]|t}.
Z A=CRZEZ &zth o]t C9 column2 A2] column space/] basis©] 11 (basis of C(A)), RE] row= A2
row space?] basiso]th(basis of C'(AT)). Z, CR Decomposition-2 column space®} row space?] basis
£ FohfE E3fo|t.

CR decomposition®] #}-74-& ofzfjo} Zct.

1. A @ZKH matrix C& FA3th AHA] columnE A2l AHA columnS 14 di=th
92 AN column® 2 BHE 5 QA WAL, WE 4 glow 1 Pl 7
%‘:‘h

HA] matrix RS FASH) WA matrix®] columns2 283 7] matrixe AT & A==

Jt.

o
HHt &2 Fl
o,




ol A9] ZF column©| C2] linear combination®] 2 1 #5HH RS A7) 4t =, tF2 columnE=
= 4= & columno] ofY ™ SRt 10]1 Y 2= 021 columno] So|7HA| 1L, thE columns
TS 4 UTHH S linear combinationo]] tf-3-5+= ghEe] S17HA Hot

Example A — 1 2 4 Columns 1 and 2 of A go directly into C'

P |1 3 5 Column 3 = 2 (Column 1) + 1 (Column 2)
4
1 2 4 1 2 1 0 2 2 columns in C
A= 135]:[1 3“011}103 2 rows in R

E ofgst 2ol & o WEg s AR
1. elimination© 2 Aof tjgt RREFE Sttt
2. A A matrix C& Tt} A9] column & RREFOA privoto] Q= 91219 252 7H4 et At =
cg TAT
3. % W) matrix RS FHETE RREFe]A 00 21t o] 2ol rows B A4 & R @,

1 2 3 1 01 1 2
A=12 4 6| —-1|0 1 1|, A=CR=12 4
3 7 10 0 0 O 3 7

2.5.2. LU Decomposition

1. LU Decomposition
LU Decomposition-& m x n matrix AE lower triangle?l m x m matrix LY} upper triangle®l m x n matrix
U2 U= decompositiono|th. &, A = LU E2 U=t}

3t rowo] scalardl] 3jA th2 rowo] F5}= elementary operationS AFRSHH AE row echelon form © 2 JHE
2= 9lg], o|A Uo|tt. 181 % eliminationo]] AFEH elementary matrix_Q] inverse matrixg H5F 53t
0] Lol ek 2, (Ey- - EN)A = U, A= (Eg-+By) U, L= (B~ Ei) ' = By L. - B toltt,

-

row®]| scalardl] SjjA ﬂ-— rowo] &5}= elementary matrix®] inverse matrixt=, row o] &= scalar?l
Multiplier(5<) 9] B3 & v A 2ot GASHAE 5 LS rowo] multlpher_J 35,—3 =35l tisfioF Yo
Zrol yr-2tt. o]uj ehmlnatlonO AZE rowEHH 41}14 OE $E 3, L =FE] EtAE 1 d%or

TYEER ol E rowsHE A4tEo] A=mo] Aitel] djFE FA ‘E(Tt‘:} = LJ H‘j o2 tH =
elementary operationso]| EH St multipier®] 239 vt AES 14 dolF %1’4—

100 1 00

E=12 1 0|, E'=(-2 1 0

00 1 0 0 1
1001 001 00 1 0 0
EsBEyE; =10 1 0f |0 1 0||-2 1 0|, L=E'E;'E;'=12 1 0
03 1/|-2 0 1]][0 0 1 2 -3 1

I~

Z, LU decomposition2 o}gf|o} Z+He "It o 2 15} 2= Qltt
1. Aof rowo]| scalartl] 34 T2 rowo] 55h= elementary operation& -85} UE TH=tt.

It
2. elementary operation®]] AF-&% multiplier®] 255 v tj$&]= 9x]of o] L& TH=th

2. PA=LU

invertible matrixo]] t3j] LU decomposition-2 7§. —%—@' o) S} 3t row 9] scalartf] & thE rowo] B SF= elemen-
tary operation© 2 decomposition®] 7}t AL ot} E3] pivoto] sigst= €2 2] AHo] 02 <9
= rowE HHLE= elementary operation= @%OHO]Z gt 4~ 9] =1, permutation matrixS Fol= ZAOFE o]&




1.
2.

[o) KX

EH H=
2 otk

3. Ax=b

oI},

F3F Ax=boll A bel chs]
vl SfA] 71 ofe %i—‘é—oﬂ s
ojo] e AHgal A%
n2o|t}.

Lo, A-E P

01‘?’3

3. LU Decomposition?] #3
LU decomposition® 2 matrix AS L3} UZ UHx
W= Z]9t lower /upper triangle matrlxol o2 A} A9

Ao) PFAL 7hhs] 78 5
A A HA A Ax = bE ¢
Ul tisiA= 5 il siA]

b ¢14to] eliminationg A}

n x n matrix Ao] o3t elimination cost
&0 ;qu 002 gt oiLe

T —1

14316]—131 A2} b ZHzbof| gt eliminationo] $n3¥} n?o] A
dlol= 2n? 9
K% 294 B TEHol

NG rows A<

225} £~ 9lt}. permutation matrix5-2 % elimination £7tof| F8 £~ @111, elimination A|Z} Hof R %
A S5 v FAPAE FA H 2ok
2, ofels} Zol 24 5 9

P,---PPPA=PA=LU

= e ofefe] gHo) £

St storages AHRE

i

>

] O
A
o]

o =2

ﬁ

Al

&

=
=

*}%kol g aslth Ax=b=zx = AR L 1T S

oJ AtgFo , elimination-g &-835}= LU decomposition

JELISM) al

E LR

Lower Triangle Matrix (542}
Matrixi= tJZAJE o} & A
L nE gz Zhe T 7

LU A UE diagonal matrix D
decomposition. ZA3tct. =

6(1)7{ ﬂ)

=0|
’6‘

Ol &

=

& A BEo] glo] B% 02l n x n matrixo] 1, Upper Triangle
Zrol 25 091 n x n matrix©]t}. lower /upper triangle matrix2] determinant
S qlr
2 L B ofyjet U] otaRE 12 B
_ LDU= Bast}.

+ LDU Decomposition®] 2=

3. Vector Space

3.1. Vector Space

3.1.1. Vector Space

1. Vector Space

Vector Space(HE]3-7H = scalar

UZA 7= 7 dite] Ao %

1. BEz eV, ye Vo sl x +y € VoIt

2. BE scalar a9 R E
gojel ofsff et

2. Subspace

o] vector space©] gt Subspace(H-5
ool 28] Sl FEAR eI =, ol

T3} vector o] tisll &8 9 vectore] Agtolth =, o] AL
43gF V= vector space©]|T}.
x € Vol &l ax € Vo|t}.
A vector space©]il, ©]& zero vector space( GHEZ7t, JF 7 oletal

EAshe %

St} zero vector space?] dimension-&

0o]ch.

T7H 2 S vector spaceof| 4] A 2]5}+= scalar 3} vector space©]|
Z71-& FF=EA] 7]+ vector space?] E-EF S Wi 3ot vector space




9] subspace©]|t}.
L. BEzeW,yeWo tis] z +y € Woltt.
2. BE scalar a9} RE x € Wof tjdf] axr € Wo|tt.
3. W Vel 593t 0 vectorE ZeFgiet.

matrix A9l columng spand]] AAH vector spacer= Column Space(€-57F) el stal, C(A)2 E7|gH}
k72 2 row2S spandl] A4 E vector spacet= Row Space(3§-37H et stal, R(A) = C(AT)& #E7|35tc}

A olof 2]} 0 vectorFt EAY|5}= vector spacet= H-= vector space?] subspace©|T}.
vector spacee] TEF AEF 17 ZASHIIE ShAl, o] I o] HEut Helgict
a2, R n7fj9 A 7k £A4 0 2 sh= vector£2] gt vector SpaceO]E]-.

matrix Aol tho]l Az = by, Ax = by 37} ZALTL Az = by s)7F ZA6kA] Lo W, AT by T} by
9] column spaceo] ZX5}1L by= ZA|5HA] o™ =it 71 4-& A= A_J 7_] o] by, byol A0, byl b1
T} by 9] linear combination© 2 W& 4= gl Aot}

Zk11 2 P2} Lo vector space V| subspaced W], G S & "PULLE subspace©|th+= AAlo| 11, "PNL-E subspace
o tP #o|th. vector B 2 ZFo] s ote).

matrixE°] tf$t vector space= F2 MO 2 HE7|Stct. upper triangle matrixo] oSt vector space P, symmetric
matrixe] o3t vector space S, P N Sl diagonal matrixo] T3t vector space 5 M2] subspace©]|tt.

3.1.2. Column Space and Null Space

1. Column Space
m X n matrix A9] Column Space(C(A))= Ay = 25 WEA]7]= vector x| g2l vector spaceo|t}h. &, A
9] column®] linear combination © 2 AJA E]= vector space=, R™2] subspace©]|t}.

column space”} subspace®-2 vector $11} scalar Jof sl 29 Y= Ao 2 £A FHET 4 ok
FASHAE Ax=b7} & 7}A]2H b= A9] column spaceo] E|fof gty
A 9] column space®] dimension2 A2] rank®} Zt}. =, dim(C(A)) = rank(A)o]tt.

2. Null Space
m X n matrix A2] Null Space(N(A))
null space’= R™2] subspace©]T}.

rr
N
&
[
o
filo
=
B

= A 7)== vector x2] F 9l vector spaceo|t}. o|uf] AQ]

null space”} subspace®-2 vector ¢} scalar Fof o] @& = Ao 2 LA ZHT 4~ ot o] x=nx1
vector©o] 22 null space= R™2] subspace©]t}.
Ax=0g TZsl= x(x # 0)7F £A5HH A= non-invertibleo]t}. ., null space”} zero vector spaceZ} ofL™H

A= non-invertibleo|t}. o]= A column®] linear combination® 2 (0] FF5o]2 4= 9Jti= Zo|1l, linear
independents}z] ko m g tfdsirt.

m x n matrix A7} 7}A]+= null space®] dimension2 A 9] n-rank®} Zt}. &, dim(N(A)) = n—rank(A)o]tt.

HAE, Ax=bs T=EA|7]= x0] o] 4 subspaceo|th= AR oIt FloflA] A HE ZAAH subspace)] 73-¢-1=
01_1_1 j_aq;q _%7(_;] 5_011;]-

3.2. Complete Solution

3.2.1. Special/Particular Solution of Ax=b

Ax=b2] complete solution& Zro}H 2}

1. Pivot Variable vs. Free Variable
elimination2 A-83-8 w] row echelon formof| 4] pivoto] £A|5}= column Pivot Column, pivoto] E2|5}
2] 9F= column Free Columno]gtyl sttt G HSHA T pivot columny} SASH £]2] 2] columns2] HAgHe

11



column space?] basis©]|t}.
olof whe} Ax=bof|A] x° sfFot= 2t YAE thadt Zo| 12 4 ot
e pivot columno] -2 5= x9] YA L Pivot Variableo]gtal gtct.

matrix A2] rank:= row echelon form 2 2 H W& ] pivot2] 7j4=e} ZHo B 2 pivot variable?] 74=
rank®} 7t}

o free columnof t-g-%]+= x 9] % + Free Variableo|2}3l 9ttt o] free variable oA thF= A Y
A= 18 uf ol grol= = 2= 97| w20 freeo|t}.

oA o+E AAH, matrix AQ] nullity= 71 basis?l special solution®] 74~} 211, speical solution
9] /4= free variableQ] 7|49} Z 0P 2 free variable?] 7|4~= nullity 2} ZTh.

pivot variable®] 7|42} free variable?] 745 dimension theorm 0. 2 o]|&|g 4= 9]

2. Special/Particular Solution

Oqa]mi]-‘ﬂ'@é] Ax=bo]| |34 Ax=bE T=A]7]= EA3St & Particular Solution, Ax=02 WEZA|7]=
E 3t & Special Solutiono|2tal Sttt o]uj spec1al solution2 free variableJH= }—ZH st 11 Hde A
null space?] basis”7} F T}

elimination®] elementary operationg-2 null spaces HFLZ] QF=tH(F 112, column space= HFEL}E). =,
special solution elimination2 -85t Foj| LT 4= 9t} o]of what AFHFA Al Ax=00] T3} special
solutiong: 5% & H3& AN 71 2 ek

1. Ao eliminationg #8353 RREF = row echelon form¢l matrix R=2 H3 gttt

2. Rz = 0°]|A] free variables & aljroﬂ?l L, UM A= 02 ol 2 7ol that x& 5k 17 special
solution®]|t}. free variableo]| s}t}el A 12 tYsHH =t pivot column®] linear combination © 2
free columne W= 4= QYO B2 free varlableoﬂ 0] 0] 9] 7F& doj&k Rx=02 WEA]7|= x5 AT 22

A 011—4-'
o]of wtz} free variable 7]|4=%H29] speical solution®] £A|5}7] Hct.

o|] RREF= H 0™ 12 t)5}= free variableo] T)-2&] = free column®] QAo A ESut HF L H
special solutlonolEE o 7tes)ct.

o]ZA| LSt special solutionS-& free variable —r]Z]OH q%oﬁ SR 10]31 Y ZJ= 00|22, A2 linear
indepedento|tt. ESH Az’ = 0‘2_ TFZE A ]L 2] 9] 9] 2'-& special solution?] linear combination© 2 1}e}H
4= 9] 0B 2 gpecial solution §He] span-2 null space®|t}. ©]= pivot variable®] ZF-< free variable?] ZFEof
ol&f] 8-A5HA ZAE B R, 2’ 9] free variable 7 Z T & special solutionS-2] linear combmatlon FA5HH
pivot variableQ] Zf TSt 8-U351A AAE]7] jEo|tt. =, special solution?] F -2 null space?] basis
o,

[‘

\o

p f 1 0a 0 c o 5
R_|0 1 b 0d S R
0001 ef M7 o *7|
00000 0 )

Ax=Dbof tj3t particular solution2 Axr = b = Rz = VoA free variable Z{o] 0& ¢35t
AgA RS ZEolA L& 4 Q). pivot variableQ] linear combination® 2 HE free columng THs 4
Qo Ax=b9] F7} EASttHH HE free variableo] 02 4 A2 o] particular solution= 22 4= 9t}

E35] RREFZ eliminationg thH pivot variable ko] bQ] Zk} Zopx| 22 uf| ¢ w3}t

3. Rank®}9] 374

mxn matrix Ao tfsf] rank7} rd ], n, m, ro| tfaPA o w2} Ax=b2| 57} o B A EAI=AF A Et.
ol o AR gl ofst sy,

o r=m=n0%l AS Ax=b: A} 53 = 7}A T}

e r=n<m?l Z-¢(full column rank), Ax=b+= 3|7} AU, FLT HE 717 .
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(full row rank), Ax=b+ &4} 731t S|E 7H7

o n>m=r¢l F¢
1 A9 Ax=b: |7} YA, 3kt 1= 7FA.

o T<m, r<n?l!

L

T M= Ax=00fA4 0] 7| 2P E2 Fole 00|22 eliminations 2-85 &= null space?} BFZ] QF=t}
=l

7} elementary operationo] o3}] null spaceZ} B} 2] gt=tt= Ao 7 =sh 4% Q)th

3.2.2. Complete Solution of Ax=b

1. Complete Solution
Ax=bo]| tfgt Complete Solution(z.)> Ax=bE WZA7]= e o] Hgte=, b5t o] s5hte] par-
ticular solution(xz,)%} special solution(sy, s - --)2] linear combination(z,,. null space®] ¢12]9] vector) &2

vhehd 4 gl

Te=1Tp + Tn =Tp+ (C151 + 282+ +)
o]+ particular solution z,°] thall Az, = b7} AdHst, special solution®] linear combination z, ] T3}
Az, = 00] AHstE=, o] & AHM A(zp +2,) = b= B 4 7] ol

FHE 7} ofd bl s Ax=b9] complete solutione FHEF EFFe}2] oFo v 2 A} subspace”} ot}
FHlE|7F ZAE T A0=bo]H & H=olrt

2. Complete Solution 5}7]
Ax=bo]| Tt complete solutione ¢robA thE AR th&3t Zo] & & ot 22 7t gle F-Fole
@ % gl

1. Ax=bo] st augmented matrix [A|b]o]| eliminatione Z-83] RREF T row echelon form RZ
Hg ot}

2. free variableE & slutofgt 1, UM A|= 02 US| Rz = 094 ZF o] )3} special solution2
St

3. ILE free variable] 02 Y3 Rz = b/ o] A] particular solutione L3tct.

4. special solution®] linear combination¥} particular solution T3} complete solutionS A=t}
ELmelse 1 ARshold ohlE A4E 0e T e PHoRE 78 4 9k

1. Ax=bo] th$t augmented matrix [A|b]ef eliminationS %83 RREF £+ row echelon form© 2

Z} pivot variableo] Hj 7|45 Fojgict.
Z} free variable52 g w742 Ve
i 7 ol ti3f A 2]3H complete solution2 H=tt.

A2 TZ5 complete solutionof| A 7N 47 Z6A AA] & vector= particular solution©]| 17,
w7 47 554 9= vector+= special solution©]Tt.

T —2t1 4+ 2t + 3 3 -2 2
X2 t1 —to+1 1 1 -1
xr3 | = tq =10 +t; 1 + to 0
T4 2t2 + 2 2 0 2
5 to 0 0 1

3.3. Basis&Dimension

3.3.1. Linaer Independence

od vectorg2] HE {v1,v2, -, vp}ol oA th& 412 TEEA] 7= 00] obd scalar ¢, ¢, - -+, ¢, ©] £



A ¢¥o ™ o] H3H2 Linear Independentd}ttil Sttt =, it vectorE 2] linear combination© 2 W EE
S 4 9129 linear independents}ct.

c1vy +cova + -+ cpv, =0

AU & THE £ Qb= AL Fid A Yol LE vectorE-2] linear combination® 2 TFE vectors W=
% QIO Aoltk. Al W, linear independentalthe AL o A ol BERE vector} ZAH
LTS Ao 2 olsfE & gt

vector vy, - -+, v, 2.2 columne {45t m x n matrix AS Y2514} S vector o] linear indepedentgt
Z(rank”7} n)3} N(A)7} zero vector space@l Z (nullity7} 0)-2 = Q ZHo|c}. o]of utz}t Aof th3f elimination
<& -89l rankE Al4tsto] independent o F-E QI 4 it

3.3.2. Span

oJH® vectorg2] FE {v1,ve, - ,vn ol WA G vectorE2] linear combination© 2 vector space S&
A3 4= Ql}. olnf S vectorg2] HE-E spanste] SE AL oFal, o]nff Q] vector spaceE Span(Ad
Ag7oleta .

o™ vector A SE spanF-2 T vector space V7} AL E=X]+=, 11 vector spaced] &6t= ¢Jo]o] HIE v
£ (49 linear combination®© & YEtd &= ¢J-8-9 Ho|H H}. o]uff eliminationg -85 RREFZ e H

o] vector HT-E spandf Al AJASt He-E 3HAF vector space©|Th.

o & E9], matrix A columnEs2] H3-E spanstH A2 column space’} THEo] Xt

3.3.3. Basis&Dimension

oJH vectorg2] g B = {v1,v2, -+ ,v,}°] 1) linear indepedent©|HA] 2) spanF]-& Wl vector space V&
A4S, ol f= VO Basis(7]A]) 2kl i

o] AL WEA7]E vector AT oy MY & Joerz AT o]H vector spaceo] Tt basis:=
Frdota] g2l FLRE vector spaceo]] thoAH K= basise 1 949 7|47t HE Zrt

2. Dimension
vector space V9] basis7} n7] 9] vectorz2 o]Zo]d wf] n& V9] Dimension(x}-Q)o|2tal Stct.

3.4. Four Fundamental Spaces

3.4.1. Four Fundamental Spaces

AH A A A Ax=bE AYZ5}A}, rank?} 19l m x n matrix A= the 133} Zo] 4714 fundamental
subspace® O] & 4= U}, orthogonalityof Tt U-8-2 Fol|A otz thEtt-.
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dim r dim r
column

space

b

nullspace
of AT

nullspace dimm —r

of A

dimn-r

1. Column Space (C(A))

Column Space= &rof| A th& Z A& o] m vector?l columns-2] linear combination © 2 A A] &)= subspace
o|t}. o|uf] Zo] m¢Q! vector—O] B2 R™9] subspace©]|t}.

column space+= pivot variabled]] tf-8-& = ¢z 9] ¢l+= column(RREF 9] pivot columnit= th&.) 59 A&
basisZ 7} t}t. dimension< ro|tt.

2. Null Space (N(A))

Null Space= oA & AAH Ax=02 W=ZA]7]= Z9| n vectorEZR FA = subspaceZ, o]o] wat R”
9] subspace©]|t}.

null space= special solutions-2] Z -2 basis2 7}2It}t. dimension& n-ro|tt.

3. Row Space (C(AT))

Row Space= Z o] n vector?l row=2] linear combination © 2 A &)= subspace©|t}. o]uj] o] nel vector
Eo|B 2 R"9] subspace©|T}.

row space= A¢]] TSt elimination2 £33 A& RoJA] AR 00] otd row?] T2 basisZ 7}t dimension
2 ro|th(column space2}t Ztt.).

4. Null Space of AT (N(AT))

AT 9] Null Space = Left Null Space= ATz = 08 WEA]7]= Zo] m vectorE=2 FAE subspaceZR,
olof e} R™ 2] subspace®]th. AT 9] null space= ATy =0, y7 A = 0L TF=EA] 7] yo] Asto| B2 left null
spaceg}l HEt},

left null space?] basis= TF23} -2 HIHH 0 &2 18 4= Qlt}. dimension& m-ro|th.

o [A|I]°] eliminationS &3] [R|E|Z HIAT FH(EA=R AH), RoJA BE AEo] 02l rowe} 5U5H
1Al = EQ] rows2] JeS Aot 17 baSEO]E‘r

oltf Ex invertible] 22 7} row independentstil, HE 0] row= m-r7jo]| B2 o] 7| H-L row

S basis7} H T}
4 20 (2 3 ~ [ o (1
t A 0‘1 C ¢ 2 - O (e
..,( /YD I L 1_; L OO £

2

bnaw Sov ledt nul gpee-
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4. Orthogonality

4.1. Orthogonality

4.1.1. Orthogonality

1. Orthogonality of Vector

= vector x, yol 84| inner product x -y = 27y7} 0 = 10]W o] T vector= Orthogonal(Z]1)3}chal
3t

Totx = y7F I E Q] F 2o % inner product”} 0914, o] 72| & orthogoanlslttil gtc}. =, e =
B E vector?} orthogonals}ct.

olu] A& orthogonaldFHA] normo] 2% 10| Orthonormald}it}al Stct.
JHE] 7} obd T vectorZ} orthogonald} linear independent o] th.

2. Orthogoanlity of Vector Space
= vector space S, To]| t|d] & v € S7} w € Tof ti3} orthogonals}H S9} T+ orthogonalstthal St
o)== X vector space?] basis”|2] orthogonal$tz] H| W= Ao &2 medsh 4~ Qith

FASHA E zero vector space= 2] 9] vector space?} orthogonals}tt.

o

3. Row Space and Null Space
A 9] row space= A 2] null space?} orthogonalS}tt. null spaceo] &5h= Y 2] 9] vector= Ax=02 TFZA]7] 11,
olof] wtz} A9l BE row2}9] inner product’} 00|22 g5}t

o|w| o] & subspace= R"°| T3] Orthogonal Complement(Z] i o]-57}) A of| Qlrt. =, row space?} null
space= A 27} 241 9] HE vector?} orthogonal$t HE vectorE X §H6}+= subspace©|T}.

T 3F row space®] dimension< n-ro|il null space®] dimension2 ro]2 g o] & subspacex= R"Z $415}
Al 7T =, A9 vector @ € R'E @ = Tyow + Tnan ¥ ZO] 2 £ QlHh. 0|5 Ao YO Az =
A(xrow + l‘null) = AZ‘rOW = bO]]:]—

null space?] intersection© 2= JHlg|gE Qo B g Lo|tt,

4. Column Space and Left Null Space
A 9] column space= A9] left null space?} orthogonals}tt.

column space?] 929 vector z19] A= Ay = z,0] A3}, left null space?] U2]9] vector x50
el A 23 A = 00] JHPth 25 A = 09] Gl y& FohH 23 Ay = 221 = 00|tk

Norm& vectore] 27] Ei Zo]E ojujal Adolth. Tl WAle] et o2 717 normo] EAgHt. 717
ot AHgH T, AAAYE dehlE L2 norm (ol = /Y0, 22 AREY. Z, 2 A2 AFS AR
g4 5 2EE 4¢ Aol

orthogonalslthz AL A2 4Asjet ofujolet, mMetwatas Halg Az AztslRA. thg 12} 2ol xo} y
7k Z=olah ([l + [yl = |l + y|P7F BT x9Fy ZH7h] ARL @y, an, pr, -+ yeOl2F T WL T,
2] = a2 + - + a2 = aTwo] BTt olo] et WEtaatA Aeli o 54w} o] A Hrt.

de+y’y=(+y)(@+y) =a"z+2Ty+y 2z +y"y

gelotd 2Ty +yTx = 00] APt ALIEE o] £ ) P2 z1y + -+ 2y 02 Z2 A
=, A & vector x, yoll tisiA o'y = 00] P gk

o
e

39,
+

2~
s
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Zlasxe A
2+ (0% = gl troe
o} ks @_,J__/ (‘%C ,113-4’3)

T ASHA = intersection( g o] £ASH= T vector space= orthogonals}A] 9Fct.

4.1.2. Orthogonal Matrix

1. Orthogonal Matrix

Orthogonal Matrix+= orthonormal vector&=& columng 4§t matrixo]t}. =, orthogonal matrix Q2] Zf
columnr g1, -+, ¢, 01 2FaL SFH o 42 o] At o]uf €] vectorE©] orthonormale]7]= kA9t ¥52]
© 2 orthogonal matrixgtal H2ctal gt

0 ifi#£y
945 = o .

1 ifi=j

orthogonal matrix% rotation matrix©|t}. orthogonal matrix Q= AZtstH, (Qr)T(Qr) = 27 QT Qr = 27x
o|ER QX normS HES, (Q2)T(Qy) = 27QTQy =« yO]EE Q+ Zt= (inner product)E HZESH}.
=, 20]9} 4 sk BEHE Wgo| B2 ol o]t

2. Orthogonal Matrix2] A2
orthogonal matrixo]] tsl t}& A& So] At}

o m x n matrix QOJ Thsl} n x n matrix¢l QT Q% identity matrixo]|cth. FojHH FAsich
+ Q7} square matrixo]H, QT = Q'o|th. QTQ = [7} APt R FAsi}.

o & £, permutation matrix®} 71 transposeE H5}H identity matrix7} &=4], ©]= permutation
matrix7} orthogonal matrixQl 20 2% Argo] 7}-55}ct.

e Q9] column space® projectionsl= projection matrix P= QQ7 ot} A e|sf A galsiet. Tt qhek
Q7} square matrix©]H P = [o|t}.

Q7} nxn square matrix©] ™ 4] orthogonal matrix©]™ R™o]|A] R™* S 2 H U= matrix©] 22, projection
ST oju] ZATE Z7F ¢tofl 911, o]of wha} projection matrix7} 191 Ao 2 & o]sfgt 4= 9tk

orthogonal matrix7} —7—7\1]14 oz o 22717 gt A2, orthogonal matrix2] A& of wat FHol|A AHE least
square problem2 © 417 & 4= 9t} least square problem2 projection® 2 & 1w Ax=bZE ATAz = ATh=2
HP5}=t], A7} orthogonal matrixe}™ AT Az = & = ATho|t}. =, QLS A9t 51H =t

4.1.3. Gram Schmidt Process

Gram Schmidt Process(T1H 70 E I4)= 429 matrix W] columng-S ZA35] 24 35| 4] orthogonal
matrix Q= HE5HE o ot kA thE A A Y matrix”} orthogonalo|H ¢ £& 797} Wt

gram schmidt processo]| A= projectione 23| orthogonality”7} FA|HES vectorE sl F71gHct.
vector a, bo]] A& o] a2 bE projection$t vector= po]l, a(p)oﬂ orthogonal?Ql vector:= error?l e = b—p
o} 2. Holl A o2 A ¥ projection matrix2 AASHH p = LLgo|RZ e = b — J ao|t}.

olof w2} matrix W = [vy,ve, v, - - - | orthogonal matrix Q = [q1,q2,q3, - - |2 HE5}= gram schmidt
process= Th&a} ZFo 7k o 72 =3},

. & o= St

2.4 > 19 W ¢;= q1, -+, 1= 25 orthogonal?l vectoro]o]of SFE 2, projection®] 2|3t errorg
HHESl ok Ao® 42 5 Aok =, F @1, , 61 22l projection®t vectorE pi, -, pio12t
o}-‘{ﬂ qi =V —pP1 — " — pz—lo]‘:]'~

& Sol, g5 ThT} ol 1 4 et

30
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43 = V3 — wa - q2Tv3 q2
Q%th QQTCIz

ol @7} scalar®]| 22 g1, ,gne vy, -+, 0,9 linear combination® 2 EH L1, o]of w2t W Q9]
column spaceb z

4.2. Projection

4.2.1. ATA &83}7]

o
o
[o
ok
1%
)
[ o}

m xn Aof| tisf AA| = Ax=b% F= 2 A7 B, columne TAE T o7 7o) dHAG
m >

= 1l
=2
=
o

So] 7} rowol 5012 7] At} Z, m > nd ook ah ot 0 At S griel ol A
Ar = b AT A7 = ATh Ma] BAIS FL 0] felebt. Hel A AEE A d, o= A®] column space
ofl bE projectionsh1L, ol wiet sl7k EA5H) gk Aol FAlol sl HE L 2AE FF 4 Ak
TG ATAE T3 2 4 1A S8 A A 470] FR_s)t.

o AT AX square matrixo|t}.
o AT AX symmetric matrixo|th.

o AT AS}F A9] null space= Zt}. o]o] mat A7} full column rankE 7FATHH nullity7} 00]21, AT A9
nullity &= 00] o] 1nvert1b1e0]11]-.

S| 2 A7} full column ranks 7F2] x| =thA AT A= non-invertibleo]th.

2 JAL 1. N(AT A)9) ouq vector7} N (A)o] &aF=7}, 18] 1 2. N(A)9] 2 2l9] vector7} N (AT A)
o Heo1E 1ol S0 4 )

=
1.8 o o] QZof ;T2 F5t1 AsHH (Ax)T Ar = ul'u = 00] 1, inner product7]— 00] == vector=
91o] §loDE Av — 00] Aol SR S & 9tk 2L Av = 0% xB AT A0 Fol 4

4.2.2. Projection

Ax=b9] 37} JIttH, bE C(A)Z projectionsto] Az = p& & 4= Qth.

1. /g o] ¢t projection

HE a2t b7} £ o], bof| - &= projection matrixE &9l b& aZ projection@ 4= $Jt}. projection
matrix= O}EHQ} Zt}. o)== scalar xof tafl p = zaztal S}, ao] orthogonalo] vector errE b- pi A o5
a’(b—p) = 0% g ste] 7 & Stk Aejal] Y alas AFolBR o = &4 a,p =za = ax = alr? b = Z%Zb
olct.

projection matrix Pof| thsff off ] Jdo] EAettt. 3t HAH 02 BHS wf bE scalardl|sHH pke F U
THE scalardl] E]X|9F, al= scalarH]] oHE p= HSHA] =

e rank(P) = 10]t}. al'a= scalaro] 1 aa’ = n x n matrix7} &4, ZE column©| a2] linear combi-
nation© 2 gHEo|2| B & ofedsirt.

o C(P)x= a2 spano|t}. o] TSt POl HE column©] a2 linear combination© 2 QHE0] 2] 2 2 ©F¢i5}ct.

« PT = PO]Q'.
« P?= Poth. ol 4402 o] 51, projection Pt E S AL W} glon gl
st
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o]® matrix7} projection matrix¢l2]= P? = P, PT = P7} AH5=22 B 4 Qi)

2. ¥ gt projection

g ol et projection®™ Z]4e] iRt projection¥} FAFSHA A4t 4= 1t

of1 R s 177} far,02)01 0, 7142 DS Y WY AT} e o AR M pE Y
HWHO| 7| A2 BRASHH, p = z1a1 + 290 = Az} Zro] Urehd &= k. of af (b — Azx) = af (b — Az) =0
o2, AshH AT (b — Ax) = 00|t} o] A 2|5} projection matrixi= ofefe} .

P=A(ATA) AT p= A(ATA)"1A b,

A7) P? = P, PT = P7} 23t}

3. Subspace®9] Projection
o]& ¢ AFsle] ¢ 2]9] subspace(E= vector space)o] tfgt projectiong AYZF5] H 2}

o]™ subspace©]| vector bE projection$t vector”} pEtal SHH, p= subspace?] basis2 WEFH 4> it ESH
3 subspace?] basis7} a1, - -, a,°]2t1 5FH o] AR columng LAt matrix AS AYz+Sk 4= 9ith

= Az2 Yepd 4= 913, a0 ol a; - (b— Ax) = 00] Jstnz AT(b — Az) = 02 Ve 4= 9lr}.
ASHE e = (b — Azx)E= fundamental space = N(AT)o]| ZGHETH =, C(A)2} orthogonalo]t}.

[e]

AT(b— Az) = 02 Hesha AT Ax = ATho|t}. o]u] AE basis® LA CEZ AT A= invertibleo|t}.
= (ATA)"1AThE A2 4 ot gheF AS LAIE 0 basis?} ofy &} linear dependent3t o] vector
o= AR xof oisf Zéﬂ@ o glon= g Aol AxE Aot

5t p = Az = A(AT A)~tATpolt}. =, subspaceR 2] projection matrix Pi= B H © 2 ] projection
ot FUSHA P = A(ATA)" T ATolt}. = ol P = A(ATA) 1ATol 5= 23 HA AZFAE A
invertibled}th= HAFo] ¢ O H 2 (A X]0] square matrix/} obd 4= Qlt}.) E7155).

’B

7

£

A

==

]

)

o lo NS O\
g

é_

A

)

7

—!—‘

FASHAIE bE Aol tf projectiond o, b € C(A)o]H I & bo|rt. gt b7} Aof] A wotH FHE 7} Hrt. T
gigloz 47 2 2= 9} b e C(A)o|d Ac = babal 51b. Pb = A(ATA)"LAT Ac = A(ATA)~1(AT A)c =
Ac = bo|th. T3t b7} Aol A wsPH AS] RE basis®} AWk, b e N(AT)o]|mg ATh = go|t}. o] A% 5|
HH Pb= A(ATA)1ATh = 00]B2 FHE Q] A& & & ok

projectiono]| A e = b—pRAt}. =, b —p+60]11]- fundamental spaceo| A HH C(A)2] p} N(AT)2] e} s A
27} 910.0] bB W= A oF & I} 3, projection matrix PE E61A 215:€] boll A p7h Gk, ofu] bef o
matrix Q5 F3fl e € N(AT)ZX projectiond 4= St} &, e = Qbo|th. H2|stH b= Pb+Qb, Q =1 —P
oltl. &, Q& identity matrixof| 4] P& #l Zlojt}. 7F2 o]H Q& projection matrix®] L2 QFojlA] t}E AJ A o]
/ﬂa]o]-t}-
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Z312 projection matrix@] eigen values= 0 ==

U= vectorsof tholjA= 1o]th

4.2.3. Least Square Problem

o} 217
[6)

2

1. Least Square Problem

Least Sqaure Problem-2
= Zgdf ol AL = 3

QAR errorz T 4 9
f(t)E Ax=bEE YERHEZ}. 7

22 o|u b€ C(A)o]? |7t EAHA T A2
o tel At 7t ZAFT. =, Ar = b2 ER

2T % sk

(C+2D—2)2+(C+3D
27 27 o] Aol

3. Projection® & E7|
Ax=bE AT A% =
Srofl A or2 A A7} full column ranks 7}A|H
AT Az = ATho]) o] o2 Zto ™A

AN—

oA o Haol HsliM L2E 24asste 2

oldl A9 AHZ f(x)=haL kA 7} tofl tisf f(t) =

—
[N

1 3

€ = ‘f(%) -

uf err] 2t RS
(o]
AN

-

N T D

1 C’+2D+6172 C+3D+e =201 L = — 1)+
9L OL 71 (o] Tl C9} DE oW

olof tisf| Hu]Es

aC> 8D

ATh2 W5 A2] column space b projectiondt E4|5

AT A invertiblest1, 34}

C9} DE o 2= 9t}

ylolEh Z L=+

§=C+ Dty @ % 913, 7 Ao ygtate] Aol e

7} AL o YSHE O+ Dy =1, -+ C+ Dy = 3,3 2T, O DE W4E
She o] AYAANHAE ThT 2o Ax—bEE e 4 Stk

6H7} GP= A7t 2y, 280 err = b— Az, Az +err = b
2 uf Axs} boll HTha M= ok x
= C2} Do Eﬂﬁ_ TS A4S 5 HolZsA err0r7} Fa7h H=5 ks C9F D g2 7“74 L, projection

= e 2Aolo

(C+D-1)?

;3
)

2L

Nrr
r m&

r&"Hﬂ

H}%

XH o

i
ol

)
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5. Determinant

5.1. Determinant

5.1.1. Determinant

1. Determinant
n x n matrix A2 Determinant(3§&A])= det( ) = |A|R2 B7|5}aL, o33 Zo] Aot

e A7} 1 x 1 matrixQl %, det(A) = A11©
(A) = A11 Aoz — A Agi 01t} (ad — be)

o A7Fn > 291 nofl A n x n matrixQl 7%, determinant= €] 2]2] row E= columno] tgt cofactor
formula® & 4~ 9t

B2E o gIahA] row o] T3t cofactor formulas 5HH determinant= o<} Zh.

o A7} 2 x 2 matrix®l A%, det

n

det(A) = Z(—l)i-"—injdet(Mij)

j=1
T 1L jof gishA] row jof oSt cofactor formulas SFH determinant= ofgfje} Zct.

n

det(A) = Z(—l)i+injdet<Mij>

i=1

determinantZ} 00]'H Z1 matrix®= singular/non-invertible matrix©|t}. determinant:= singularity &
D& 7 olgo] 2.

2. Cofactor

n x n matrix AS AZ}5HA}. scalar (—1)det(M;;)= A2 i3] j4 ARl tigt Cofactor(odol4) 2t gt
cofactors ¢;; = (—1)"det(M;;) 2 E7|3-2 o], determinantS T} 0] cofactorE 2] linear combination
o 2 yehd 4= gt} o] & i A rowe]| th$t Cofactor Formula(Cofactor Expansion, ¢]Q14> A 7l) = Laplace
expansion(2t&atA~ A7l)2tar gt

i
ox

ol
o

det(A) = Aincin + Aiscio + - + Aincin

A9] iR row?} A columne A YA L2 (n—1) x (n—1) matrixs A9 (i,5) Minor(A3§E)2tal 513,
M;; 2 3713

determinant= 1 % 94} square matrix®]| oAt SL3tct.

5.1.2. Determinant®] A&

determinanti= The T} 28 4L FHAE olu) 1NN E 387k AU UeA] HAES feg 4 ok
1. identity matrix Iof] o3} det I = 1o]t}.
2. matrix A2] T row?] QX & B matrix B 34l det B = — det A7} A 2t}
=, A W rowE WSt Fo7 Odi2, 24 ¥ rowE WSt RO} BHAH.
3. a. matrix A2] gt rowo] scalar ¢& F3$tF matrix Bof| tjdl] det B = cdet A7} A gith
olof gt A7} n x n matrixQl 7% scalar cof] o3} det cA = ™ det Ao|t}.

b. matrix A2] determinant= St row?] Ztol whal Bast F ZFzho] ot determinantS A A A}
2} 2, thgol 4T,
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a+a VV+b |a b n a b
c d | |lec d c d
4. matrix A7} L35 rows 7FA]H, det A = 00|t}

rowS BFIA determinante] 257} MHFlo] i SR 2 geistey. olu) EAT rowsh Arke A
full rank”} oty gt= Zoal, o]of et non-invertibleo] A] Ht}.

5. o]J® row?] scalari & th= rowo]| B 5} row elementary operation< determinantg HZ3tcH(HFLA]
ge=tt). =, eleminationS S|k determinant”} 2 ZH .

S operation©] 285 matrixi= T3} 2ol 3 A A8 T matrixs U 4 913, scalart]
3t AL matrix Hro 2 # 2= ol o]|ZA A HH F row’} OB =2 determinant7} 00] =t

_la 0] 1le bl _|a b
c— la d c d a bl |c d
o)A uj-& A AJZF5f Hlx woF determinant’} HE EJZ] OFQITtHY elemination © 2 invertible o5
E wdd 4 QS Zo]al, complete soluationg & 4 QIS Aot ESH o] RS o] &3 A
operationg -85 HH 2 x 2 matrix2] determinant”} ﬂ] ad-becZ AAIE] =2 T 47 £ 01 4= 9t
6. A7} 022 o]Fo]Z rowE 7}FA ™ AQ] determinant= 0°]c}.
full rank”} o}y P2 g5}l i rowo] scalar 00] FaA = Ao 2 W FAs|ct TSt cofactor
formulaZ 3 BElx st}
7. upper diagonal matrix2] determinant+= tfZFJE 9]
9] determinant® thZtA4H o] F3} Zt.
St row 9] scalartf] & thE rowo] §35}= row elementary operation2 7-&3}] diagonal matrix= ¥ S}
1, 3 A &of o5 ZF row?] scalarS of 0 2 ] H tfeds)ct.
8. det A = 021 A} A7} singularQl Z, 12811 det A # 021 A3} A7} non-singular?l A2 Q=
9. det AB = det A - det Bo|t}.

A7} invertible©] ™ elementary matrix2] 502 YEFH 4= Q1 17, elementary matrix2}2] Fof tisjA=
det EA = det E det A7} A3 Al AR E (operation EREE £ 7Hsdltt) FHE 4= ot
A7} invertibleo] oY ™ ABE invertibleo] oft] B2 A5t}

olof wkzt A7} invertibleQl 7% det A=t = 10|tk EQF det A" = (det A)" o]},

10. det A = det AT o]t} = kA o A A EL rowo] U5t Ao]2=H], o] columno] tisiA = A Hgich
Aol tall LUESIZ a4 B, det UT det LT = det Ldet U2 Ho|ul 5oz craisit,
IR s e FHe A ererl.
old determinant_J A2 0] 835} cofactor formulaZ} 9 AH5t=%] 24 74]/&1—5]] 2 £tk oE E0],3x3
matrix A2] Z} JA7]- a;j —|— ool 2 3 AL AHLsHA, ZF rowd] 0}14-_4 A4 ]ﬂ 5t 2% 021 matrix
E(Z 2T7) 2 B 4 ot olg st columnO] n= Oo] matrix-< determmantﬂ- 0o]22 row®} columno|

SHbel QAT ZASHE matrixSe] e doterminantS A418) HotA ek, =, oljel e matrixSe] chat
determinantE ©5}H Hct.

Mo

I

3} Zreh. TS up7EA] 2 lower diagonal matrix

o]

o

M

oll

ail 0 0 ail 0 0 0 ai12 0
0 a2 0 s 0 0 ass | , 0 0 a23
L 0 0 ass L 0 as9 0 i _a31 0 0 i
[ 0 a2 0 i [ 0 0 Cl13- [ 0 0 Cl13_
ao1 0 0 , | a21 0 0 5 0 a9 0
L 0 0 (133_ L 0 as2 0 ] _(131 0 0 ]
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o] matrix&-> rowg HHE Zlo| B2 00] opd ZF & AR 5% 5| Fovt 9339 Hot =, det A = ay1a20a33—
(11032623 + 21012033 — 421612033 + 210432013 — 431022013 = a11C11 + a12C12 + a130137]- %q

n X n matrix®]| A= o|ZA t¥ matrix7} F nl7] 0|22 BEXE T T nlojtt. ESF ZF rowo] A column
o] AX|A L&A 00] ofd AEE sh}X 11231, diagoanl matrlx—g TE7] 45 rowE HHLE 347 HSE
A= Ao 2k determinantE L8 £ 92 & 4 At} =, &7 -2 matrix B2 determinant= Z} row
o] t3 column 4, 3, 2, 1 == column 3, 2, 1, 42] A E-& A]-—Q-o]-_T'_, 7y7% f%it +, -0]B2. 2 determinant”} 00]1"4-.
o]|=E 7 invertibility S WA £ QJrt.

det B = det(

== O O
O = = O
OO ==

5.2. Determinant 9] 3-&

5.2.1. Inverse Matrix9} Determinant

1. Cofactor Matrix®} Adjoint Matrix
n X n matrix Ao]| tf$t Cofactor Matrix C= th-21} ZHo] Aof gt cofactor® FA % matrixo|th.

Cii Cia Cis
C=|Cyn Cy Coa
C31 C3p Cs3

Adjoint Matrix(sHt 8 &)= cofactor matrixE transposeqt matrix©]c}.

adj(A) =T

2. Inverse Matrix?} Determinant
invertible matrix Ao Tt inverse matrix+= T3} 20| determinant®} cofactor(adjoint) matrix 2 & %

% glet

o det AT = ACT7F HYTFE Hol B 4 r. Y] cofactor formula® A7 7
it 24 519 AR5el fel AL Bele 790l matrixg AZ4s] £9E 4 oI5t BL As) 5olg
ABS 7R E=nxn matmx‘ﬂ o], kHA rowTt o H (i # k)HA rowe} Eo] 5Lt marixo]|t}. kEHZZH row

o
fn)
N
N
ox,
2l
=
fn)
%
3 X
rlr
O

of t3f cofactor formulas 283l BQ] determinantE 5 EH det B = ;L: a;jCr;°lth. 13 H] B F+
row’} Zr-& matrix©| 22 determiant”?} 00|11, o]o] u}&}t ijl a;jCrj = 00]th. &, A& tHE row?] % —‘%1]-
cofactorE ARESl A4t gk 4 00] %E’r-

5.2.2. Cramer’s Rule

Cramer’s Rule2 A7} invertibled @ Ax=b2] & determinantE A3} FL5}= 2 oltt. vector xo] Z}
ABS x, -+, 2,°|8} S}, matrix B;= iHA] column-g vector b2 W A|$F matrixg} 5}

2ol 71¢ % ik

= det B,L

" detA
ol 75| SEE 5= k. AV} invertibleo] B2 z = A~ = L CThE T 5 9lonR 1 <k <nQl
kel ool S0, Couy ©f 1S SHeIoHA Tk B, 1917 cobunns 4915k 1 ASH AR 2002 det BE
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iHA columnof tisf] F+ot= A2 AZtstH, det B; = b1C11 + b2Co1 + -+ - + b,Chp, = Z;;l Cjrbjolth. &, x
o 7} 4% 0,8 duBin 2y & gt
x| AR doterminant® F9I0F L2 HAEo} £ W EEHolo]A] AAZE T AEA i

o
st

5.2.3. Volumed} Determinant

matrix A9] determinant®] AHZ} | det Al A9 rowE0](F¢5] columno]o] = 7}Hs5)t}.) FLASHE =3 9
Volume(£-1] ) o]t}

ol A BHE determinant] o2 & AHEY Q?l@ T Utk A vector (1,0), (0,1)°f tHalA A
HHEH |det A7} o] & vectorZ} TFE = FAFZ 9] volumed 2 25, ©] vector ZHZ-S scalardl o=
Aregslet. £ Aelel % vector (a, b). (c, )7} BEL BAIAR] volumes 75 95 4Gt

@ row o] scalart S 2 rowel Elokt A€ oY £ YL WYl Fo A5 Yk Yolo] Aue] St =
ol Soh A U0 2 o] FAZIE ARS HEH Pt Z, o rows] scalard & TF2 rowe] ok A
volumeS HZESIH 2 elemination2 -3 & determinantE 735 volumes 38 4 t}.

el
=
Kol
-

a2 32 vector 3771 o] F = AFZHES] HulL Ft vectorE 2 A E matrix?] determinant® volume-g
1o matm =t
6 =] 1l .

6. Eigen value and Eigen Vector

6.1. Eigen value and Eigen Vector

6.1.1. Eigen value and Eigen Vector

1. Eigen value and Eigen Vector

o]® n x n matrix Aol A Av = Ml scalar A7} ZA5F= G E]7} o} vector A2] Eigen Vector(il
SHlE])2kal 511, o]u o] scalar A& eigen vector vo] T-2&= A9 Eigen Value(11-2-7h)2h gt} = eigen
valuer= AE ol 11 WeFo] Febx]A] = 5E e vectoro|th.

T3t o]\ eigen valueo] 5l EAok= BE eigen vectorgxt G E o Tt Yot-S Eigen Space(2l-F-371)
gt1l st} o]l G ASHAIE WolA TR AX ™ A — A129] null spaceo]t}.

X]'Eli nxn matrlx A7} dlagonahzable T A7} A_/] elgen space_J dlrect sum(Z] 01') o] R"Ql AL g g =xHo]

)
oF 4= 9ttt ¢ A H o 2L, 912]9] vector x7} eigen vector2 A E R™ 9] basis vy, -+, v, 2
o} FAla) o] eigen valueQHE2 0] 7+ eigen vectoro] 53] Zct.

Az = A(a1v1 + agve + - -+ + anvy,) = A1a1v1 + A2agvg + -+ - + Apanvn,

e Aol 21 efm|7t ddt

=

i

A Ts}

S

Flofl A thF= A9 eigen value®} eigen vector®] &-8-2 A&
2. Eigen value/vector 45}7]

Av = wE AE5HH (A — M)v = 00]E & eigen vector vi= A — AT9] null spaceo] £A5}= vectoro]il,
CHAES] A — AT9] special solutiong F-5FH 17| eigen vectoro]tt.

o] eigen vector= GHE] 7} of L E & eigen vectorZ7} A5} A null space”} &-37to] ojr] oo} 6111, THA|
25} det(A — AT) = 07 4ok et olo] e} det(A - 1) = 02 BHEA| 7] (2 20| 17 Ao|c}. old]
matrix Aol tiahA FFA] f(t) = det(A — t1)S A2] Characteristic Equation(Characteristic Polynomial,
EAThgrAl)ol g} shet.

Aefohd, 2 22 Y-S AA eigen value/vectorsE & 4 Ut
1. characteristic equation®]| 00] =7 }+= scalarE GL5}H 17 eigen valueo]|tt.
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2. eigen valueEs A — M of Y3 ¥-& matrix2] null space?] vectors +6FH 14 eigen vectoro]|th.

ol= A — A9 tgt special solution& Fol= AL R L o|a|e 4= Qitt. =, A — A 9] elimination&
245t 5 free variable & s 9F 1, Y] ol 02 Y3l A null space(eigen space) 2] basisE
ot 72 % 9o,
3. Q53] FELS 7|61y FEL
characteristic equationo] f(¢)Q] A AARH(ELE &) Q] 127k Aol TishA], (t—N)*7} f(1)2] 157} =]
S 7P 2 A4 kS AC) FEE (multiplicity) Ei= g4 FHED Sk 2, ABaARS o] o
o] 2k5 ou|gtt}. diagonalization3-& o Aol ZF M= ti4-4 FEENHE vehdth

o™ Aol Tt eigen space®] dimensiong i Aof| thet 7|6}y FE L2t gttt =, 7|5H FE L= eigen
space©]| 4] independant$t eigen vector52] 7|42, A — AI9] nullityo]tt.

n X n matrix A9] BE eigen value?] t=2 ZE L 5 61 noltt. TS 919]9] eigen valueo] tf3 7|54
ZHETE 42 SFE TR} 200, Z) eigen valueo] U-2E] = eigen vectorE-2] H§ro] Z+Z} independentSHH
0] &g I N T independentSteh( A7} ThHE T eigen vector= A & independents}tt.). &, 2= eigen value
of thsl -2 SEETF] YAaE 7HA]+= eigen space] basis7} EASHA diagonalizationo] 7Ha6kaL, o]
basisE 5 x| H R"o tj|$t basiso|t}.

A2 thE eigen valueSof st eigen vectorE52 A2 independents}tt. o]= 47 Z=He 4 ot Avy =
A1, Avg = Awe0]al Ay # Ao T scalar a0l H|}] vy = avo B2l 7FASEAL. advy = adjvg, Avg = Mg =
/\QUQO]_D_E )\1 = AQE_E E_—/IEO]E]'

projection matrix P& F5) b& ol® F74e] projectiondt PhE AZks}at. FSHE oluf b7t sfgt F7tef eh
SUZAEFE b eigen vectoro] 3, a5 F7kol el 914 eFkehA b eigen vector7h op ek,

eigen vector= 71 A 04 GHE| 7} oft}. whoF eigen vector7t GHE| Y 4= QUTHH eigen valueZ} F-3t5] E251HA]

=,

eigen vector= FHIE|7} o} vector AT, eigen value= 04 4= At A7} singular matrix@HH 02 eigen valuez

712t

6.1.2. Eigen Value/Vector &3 AZE

o)

=
eigen value/vector & A5 -

ot
o matrix A9 eigen value?] T2 A9 trace(thZg, AL
nant@} Zrct.

o matrix AQ] ZHAE 9| scalar aTrE2] ZF2 Hoh= 7S, eigen vector= FX| E] 11 eigen valuet= alh-&
gt ol "ot &, 225 ofE % eigen value/vectori= gF HTE Lo H T}

ol FASHAE B =(A+al)z =Az+arx =X z+ar = A+ a)zd AoE B & QT
o matrix Aof tdf], A"9] eigen value= \"0| 1l eigen vector= AL} Zrct.

x7} A9] eigen vectorgbal SFA Mof] s A0z = \100zo|m & ST}
o invertible matrix Aof Thal], A~19] eigen value:= %0]37_7 eigen vector= A9} Ztt,

x7} A9] eigen vectorgt HH Az = Azo| B2 FHo] ATIE FohH A7 le = o202 HYT 5 ot

ot

)@} B, eigen value?] #-2 determi-

 upper/lower trianlge matrix?] eigen value:= thZtAJE 1} Zct.

matrix A7} upper/lower triangle matrix©]®H A— A& upper/lower triangle matrix®] 22 determinant
7} SR o] o] B, ofo] whet FeASHAE R o] cigen valuer} Fick.

o climination& eigen valueS HZ35}2] o=

o} matrixt} eliminationd| A 7Fgs] B 4~ Qo

d & Eof, ot} 28 2 x 2 matrix AQ] characteristic equation-2 (3 — \)?2 —1 = A2 — 6\ + 8 = 0°] 2 &, eigen
value@] g}o| trace, 39| determinant?l 72 &Q1gk 4= Qict.
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=

Aot} AA| 2 tFE 2] -9 eigen vector?} XA =il qiet

o83t -8 matrix Q2 A ZH5HA}. o] vectorE 90k =] rotation matrixo]t}. 7|5tH 02 A7 uff o]H
rotation matrix:= vectorg &8 22 (WFo] v R 2) A2l eigen valueZ} ZAE 4= §l11, eigen vector+= A4}
P
AT .

6.1.3. Similarity

n x n matrix A, Bo]] thafjA] o] ® matrix Mo|| ths] B = M~ AMo] J&stH At BE Similar(5-S)stct 1l
Stct. o] ZQI8t linear transform& A& Th2 basis® HfghE 712 o]u|sic}.

similargt matrix 52 eigen value®] 7i=¢} o] A2 a1, o]of wa} trace?} determinant’} 5 ok EE
53t linear transform-& YEF 22 rank?} nullity = Zrct.

o] uj cigen vectors TS 4= Q. wHeF B = M~ AMo|atd, A\ = v, Bv = M~ AMv = \v, AMv = AMv
olth. =, A9 eigen valuew= A2 2 F UG} eigen vector= Mvo|Tt.

diagonalizabledt matrix Ao s S~'AS = Ao]B & Aft A= similarstil, eigen valueZ} Tt

SHAITE eigen valueZ} Zthal WHEA] similargt 22 ofUth. eigen valueZ} Zot dj42] FELQF 7|51
ZE L7} A 2]6H7] &= matrix= eigen decomposition©] B71551th JASHA L BE eigen value®] T2
FEEI} 191 AgolE 4 similarsirt.

6.2. Eigen Value/Vector?] &

6.2.1. Diagonalization

1. Diagonalization

Diagonalization(t] 25} 2 o] n x n matrix2] eigen value®} eigen vectorg AF&-3) diagonal matrix2 3}
5= "I o]t A 2 independent$t A 9] eigen vector n7l| 2 column2 +A St matrix S9}, S©] eigen vector2]
=49} -5 &= eigen valueE 2/ 0 & 7HA] = diagonal matrix AE 215t} o -4 o] A -ljitt. &,
eigen vector /valueg AI-&-3f] diagonalization©] 7155ttt TSt o]H A AE U= Z-2 Eigen Decomposition

olat 1 s}

AS =S\, ST'AS=A, A=SAS!

A0 0
AS = [)\11'1 )\2(E2 cee )\nxn] = [.’El o v ZL’n] . . . . = SA
SAST'g AGAFNEH A" = SA"S~1Id], Mol &2 AAY AS ASAFA eigen vectort= 12 0]

jm
1, cigen valuel 1517 AGABo] HE A SHIg 4 Qo
qtoF Akof tisiA] k — ooo|H EE eigen valueZ} |\;| < 191 A A — 0o]t}. o] A
wlzsm Aol So|A ghEol oftle] FaskEA] o 4 Sk an.

fle

ol g5t




2. Diagonalizable T3

o]o] n x n matrix Ao t3f] diagonalizationo] AJHs}= 72 oty i, tf-2 7S W= w7t diagonal-
ization©| 7}55}th =, characteristic equation2 Q148 3[6}1, L& 7}A]+= eigen valueo] 3] 44
FEL} 75ty FELEIE A2 gl oF gt

1. T SAckgAlo] A Sl 5] A5RaE. A5 A9 A4 Wlo|4 5Eahe|ofof gt

2. TO] 7} gkl tisiA tio2] SEEt 715k SR 2o 5, A9 FEET} nullity(T — M) =
n — rank(T — AI)o|t}.
SA o2 AAE EE eigen valued] thol] th-2 SELETHEO] YAE 7HA] = eigen space?] basis7} &2 5HH
diagonalization®] 755}, ©]¢ basisE 2% x| R"0] tf3l basis¢]t}t. o]= eigen vector=® R™o] o3t
basis® P & YEAS HE ALRE ofsfet 5 st

6.2.2. Fibonacci Sequence

Fibonacci Sequence(T H 12| £~4)E diagonalizationS A3l o] Bt

ZAE E7] dofl &4, ug, -+, u, ©] n2FY vectoro]| 11, nxn matrix A= n7l| 9] E¥ 3t eigen vector x1, -+ , T,
E 7T SRR ASH w1 = Aup S ABZHS|EH, ZF eigen vector5©] R 9] basisO| B2 ug = c1x1 +
ot epz, O & UERE 4 911, AV} diagonalizableSt 2 &2 k¥ HHESHA wy = AFug = ey A\Fry +- -+ e My,
o2 hebd % 9]

ofA] MEUA] £AS Eoldth. MEUA] £AL Fipo = Fip + Fro| B2 weE 53 2ol 425k}

I3 AF BAE uppr = Aup FEHE Z AolBR2 As o3t Zo] AHojHrt. (YA 9O upqq2
Fito, Frp1 2 74%9)

F; Frpi1+ F 1 1) |F 11
e[ - Pl

o]¢l Ao] tff3f eigen vector, valueE F3f& 4= QAth. eigen valueZ} Ai, A28t S}, characteristic equation&
det(A—AX) =X - XA—1=00|B&2(F3 $£AH), eigen vector x1, ro= TF23} Zro] I8k 4= Qitt.

=i -]

up (F1 =1,Fy =0 7FY)E ool g AAE up = 121 + coxo BE YEPPH ASFE 7T 5 St

P 1 _IL‘1—$2
o7 0] T N =

)\kxl — )\ka'Q
— Aky, = 21T T A2T2

o o A1 — A2

A7 up O] F WA 7ol FrolB=, HFAH 0 R [+ thavt &

_ AN
A=A

Fy,

ol k7} AW ddigho] 1Ht} 2 eigen value(\; ~ 1.618, FgH])of oJsf gto] 24 o] ZAFE 4= At
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6.3. Spectral Decomposition

6.3.1. Symmetric Matrix

Symmetric Matrix(t)A &)= A = AT¢l matrixo|th. Y47} A4=¢l n x n symmetric matrix= th--7}
7?3 /H;q O E‘ﬂﬂ'

o cigen valueZ} A4=o]t}. =, characteristic equation®] n7}|¢] <& 7}Ath

Ar = M7} S off, o]:% of| conjugate(Z @) S F5HH Az = Az = Azo|t}. transposedtyl xS F

Aef W \zTz = \zTzo]lB2 \ = \o|th

=& old 57 r # 092 Hojof ehsitt. ofiE inner product gl Aot thxh gt ofuf A&
259k Fe 7wy = (a+ bi)(a — bi) = a® + b?*o] P& x7} G E ] ATt zx = 07} AH5H=H],

eigen vector= GHE 7} ol B2 21 # 00|t}

[¢]

141

_T _ _ _
T =211 +ToZo+ -+ TpT,

A7 Ao Y47 BasolW i 2A0] AslA| 9F=t}.
A
o

0|

gt

o symmetric matrix®] eigen vectorE= AT R™9] basist= orthogonald}th. =, Z} columnS eigen
vector5 2 FA3 basis2 5h= matrixE Q& 514, QT AQ = AV} A H3H.

5}t9] eigen spaceo]| A= gram schmidt processE AFR5}o] orthogonal§lt basiss2 42 4 At
A2 thE eigen space?] basis7|2]= At orthogonalslth. o= 7hds|] ZWa 4~ Qlt}. A2 th
eigen value )\1, )\Qoﬂ EHE—H A’Ul = )\1’01, A’UQ = )\Qvgﬂ' oﬂ—— IIH )\11)1 Vg = (A’Ul) Vg = ’UlA’UQ = )\Q’U
O]_U__F:_ (Al - )\2)’(){’020117 )\1 7é )\QO]EE U{'UQ = 00]1”4-

0] schur decomposition®|gt= HH o 2 Zo| 71535tk

T

>
A ek

=

=
=2
=
T
1

V2

o symmetric matrix A9] pivot®] B35 7|4 eigen valuel] 535 7fj4=9F . =, F49] Jf4, £549]
7H—,—, 02] 7H—,—7]— L% Zrok T35t o]of wht determinant 7} 9F4 /2421 2] of] Wt eigen valueo]| A 9F4=/
_4 7H OT— P O]]:}-

symmtric matrix AX elimination® 83| A = LDLT Z2 decompostiondt 4= 9}, o|nf D
A £ 0] pivotQl diagonal matrix©]il, A} D= congruent(@-5)©|t}. Sylvester’s Law of Inertia (4
w261 9] 7h W 2))ol) SJ5HH congruent@ matrix7] 2] cigen valued] 2.5 47k -2, D o]
diagonal matrix0] 22 A 9] pivotd} eigen value= B35 7|47} At

o]o]] wat symmetric matrixo]] A= positive definiteQ1 2] S THEHE ff eigen valued 2|4 Foh=
A1, eliminationdA] pivote] B9t HH Fc}.

6.3.2. Spectral Decomposition

1. Spectral Decomposition

Spectral Decomposition< symmetric matrix AZ A4 = QAQTEZ U+ decompositiono|th. oFA Th=
A A4 symmetric matrixo] i3t diagonalizatione AL 71561, QTAQ = AZ=2 Yefo] A} =,
eigen decompositiong symmetric matrixgt+= E4= 70| Ao Z-25F Aot}

A=QAQT

2. Rank-1 Matrix2 A&

Rank-1 matrix= 25 column F= row”’} sh}2] vectore] A48l Ql matrix2, B33t matrixs E35hH=
712 @92 F2 AFEELE matrixo|th o= oA @ H OE AAH F vector?] outer product FE| =
B Rl g

olof whe} A = QAQT = th3t Zo] Yebd &= 9tk o|wf ¢i¢f = n x n matrix®, ©]4= 1. rank-1 matrixo] i

2. projection matrix©]| 1l 3. symmetric matrix©|t}. =, symmetric matrix+= symmetricQ] projection matrix
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o& e 4 9lrt.

ft

_(_)4

o

a1
A=QAQ" =M1 Xogz -+ Angn) q2 = Mq1q] + Xe@2@s + -+ Andnd,,
dn
N7t 58% +o & FYPEo] Jlal, dF N Qlojk: FES o] rank-1 matrix52 YIS o 5
LE7 e FE AE2 13 HE 5 Uk o7 Aog ‘3]‘43% A=5IAY S8 AET FE5k= 20|

Shselet
5 Q7 orthogonal matrix©] 22 o] 7| rank-1 matrix2 7 2]3F £ Q2] columng JF5HH ¢ 7H3]
Hele & 9t 2 Sel, Sq et 2ol et s et

Sq1 = (M@ +Xog2qa + -+ Mgl = Migidl g =

7. SVD

7.1. Positive Definite Matrix

7.1.1. Positive Definite Matrix

1. Positive Definite Matrix
Positive Definite Matrix(2] AHS FH)= z # 021 A 9] vector xof] thajA] 27 Ax > 00] HHs=

symmetric matrix©]t}.
positive definite matrixo]] taj A= ct21} -2 A2 o] A= St E6F o] matrix”} positive definite matrix
*1Z)+= o] Al 7FA] 5 sttt A’iste ZS Ho|H Ha1, ojuf shuprt AHsk U2k -t &, o] Al
742 & st A-sIA @ # 091 xof] tisliA] 27 Az > 0o}t
o ILE cigen valueZ} oF=o|tt.
Ao tIgr Av = Mgl eigen vector vE AJZ45HAE. vT Av = AwTv > 0 o]o]of 5H=1), eigen vectori=
G} ohI R X > 00] ARt FAsk] 1 @k JRigh
. BE pivoto] o]t
symmetric matrixoj| A= eigen value®] B3 749} pivot2] B& /47 o ur toisict.
o S| matrix2] A& ¢ E9] YAE EZI6t= sub-matrix®] determinant’} 2% FS=o|t}t.
St row 2] scalartf]E ThE rowo] Fol= A4S determinantS HESEE 2, o]& sub-matrix?] deter-
minant® 218 ZRe 524202 5] W pivote] 250 wet Bast FHAL 2S o 4 gle
ESH 2T Ax < 00] AH(RE eigen valueZ} 24)5l= matrix= Negative Definite Matrix(-22] AH S 342)
olgtil 3}, 557} B O H(o]H eigen Value7]- 0) Z+Z} Positive Semi-definite Matrix(%2] 48 ,
Negeative Semi-definite Matrix(22] £35S s§& )2kl stot. ESt eigen valueof F2f 2471 4
A= Indefinite Matrix(FA4H2S ) Eﬂ)ﬂ'ﬂ 3t}
2. Positive Definite2] 2]n]
posiive defntes] 915 PR 1 T3} 2911 a0] S0 oA 0] 0 2k s ol
R}, Z, 215e3k0] EAGFE 220l T ou] W a1, -+ 1, 21710]
gelotd, af, -, 29 71"—1—7} pivotT} ZTh(2 x 2 matl"lxoﬂ EHOH AlLksh
& AF8F FRE 4 9k o).
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01171 + @12T2 + -+ - + A1 Ty
(2171 + G22T2 + -+ - + A2p Ty
T 2 2 2
et Ar=[z1 w2 -0 @) = anxi + agr; + -+ appry, + - >0

n1T1 + Ap2T2 + -+ GppTn

0] 2 x 2 matrix Ao]] 5] I E THEH, positive definite(FF 15 ), negative definite(FH Sl §
1% R9F), positive semi-definite(Z#}7] 29F), indefinite(Fd 2oF) ZFzto] tiaf| o7 Az o] Tgjnt o3}
2} 2e) Roo] wet 1eust BRI A olsfe 2 Ant.

positive semi-definite®] 7-¢- o] eigen valueZ} 00]o]A] i ko] 79 o] 5ol e gho] WMotz oA =1,
ZA7] BoFo] 18 a7t 18 At indefinite2] 739 k=2l eigen value2} 2421 eigen valueZ} = tf £ 2] 5 4]
ol Bateh o) Ret| Wiksh At BEela, S BaFe] Tes) ey,

&3 7} column©]| eigen vector?l matrix Qo] thsA x=Quetr 3}, 27 Ax = vTQTQAQT Qu = uTAu =
A2 + Apudh o] 7} vector WE ape] e AelE 4 ek FolH HATRE AL AL 0,
A+ dgu = 19 - A9] 57} 5 o ol Helo] E1, 18] BT % hrh ool A=Al B

Positive definite Negative definite

fix1, X2)

Indefinite

flx1, x2)

positive definite matrixt= 92 vector?t Bl vector®] inner product?} G40 B2 vector®] Hrgko] Wi 2
7o|2] YL 2 Ul matrix2 & o]s|d 4= QlTh

symmetrix matrix+ diagonalizabled}1l, pivot2] 25 7|42} eigen value®] 55 7|47} Zth. TSt symetric
matrixo| A determinant= pivot®] Fo]E =, determinant®] S of| w2} positive definiteQ] 2|7} HHATE.
positive definite¢] 73-¢- determinant7} QF4=1d|, 2 FL-2 S o determinant”} 00] Ei= X of| A]
positive semi-definite®] T]11, 00| 4] 242 Jo]7}H negative definite®] 7|1} indefiniteo] E T},

7.1.2. Positive Definite 3 A&
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positive definite= o231} e FAE-2 717t
e 1 X n matrix A7} positive definiteo]® A~1IE positive definiteo]T}.
inverse matrix:= eigen value’} 940|222 5|t
e 1 X n matrix A, B7} positive definiteo]® A + B positive definite©]T}.

o m x n matrix Ao Thfl n x n matrix AT A= symmetrico] HA] positive semi-definiteo]t}. oju A7}
full column rank?l -9 Azx = 02 WA 7| =z # 091 x7} EA5HA] &2 2 2 positive definiteo] H}.

AT A7} symmetricl A& 2g5}ict 2T AT Az = (Az)T Az > 0 0] 22 34 positive semi-definite©]t}.

7.2. SVD

7.2.1. SVD

1. SVD
SVD(Singular Value Decomposition)+= ¢12]9] m x n matrix ASZ A = ULV? 2 U decomposition
ot} =, eigen decompositiong 2] 2] matrixef | &5t Aot

AV =Ux%, A=UxV7T

matrix A= R"™ 2 row spaceo]| A R™9] column spaceZ vectorg HW Tt o]of wiat U, V, Sof st A 9]
tr2 i} et of 7)o A r = rank(A) = rank(AT A) = rank(AAT)o]th. A, AT A9} AAT O] rank7} e A
column T+ row9] linear combinationg A Z61H Fodstet.
o AT A9] eigen vector2 FAJSF R™ 9] orthonormal eigen basis vy, - - - , v, = B 2SR} Vi 0] vectorE2
column2 G443t n x n orthogonal matrix©]|tc}.

florlr

oluff vy, , v, row space?] basisO| I, v.11,- - , V- null space?] basiso]tt.

o AAT 9] eigen vector2 1A R™9] orthonormal eigen basis ug, -« , u,< JZH5HAE U o] vector
E =2 columng FASF m x m orthogonal matrix©]Tt.
oJml uq, -+, U< column space®] basisO]al, Upy1, -, Um~ left null space?] basiso|t}.

o XX tjZH Bo] Singular Value o1, -+ ,0,2 TAH m x n diagonal matrixo]t}. ojuf] AT AQ] eigen

valueE A2} 5} singular value= th-2-3} ZHo] A o=t} o] whe} r7FA] = singular valueZ} 9F~0] 11,
r+15 €= singular valueZ} 00]t}.

ol Av; = o;u;7F 43} =, singular valuex= R™ 9] orthonormal eigen basisE R™2] orthonormal
eigen basisZ R WS w] G2 scaledl=(FWA W) scalaro|th. basis7]|2] ujo] Zx|sl= 729
= singular valueZ} 9] A7kS 717 H a1, ofj3go] ZA5}A] = 749 (null space?] basis)ofl=
singular valueZ} 00] Et}. o= 9kA ot & four fundamental spaceso]| 4] o]a|& 4~ Ut

SVDo A= A 02 singular values P20 2 A H| et

oltf U2} VE orthonormal matrixo] 1, Y= scalingFHS £35tE 2, Az = UXV 2z x7} Vol 2]&] 3=
11, o]l ofsf scaling®| 1, Uo]| &Jsf thA] A %= ZA o= ofsfet 4 qlrt.
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01 0 0
0 g9 0
A I:fUl Vo e Uy e vn] = [ul o “e Uy e um]
Or
[0 0 0]
2. SVD &9

singular value= AT A, AAT 9] eigen value?] AF23 Zt} &3}t Zo] SVD7} 92]9] matrixo]] s &&
3o w2 oIt}

o= 2 T X1

OFA o2 A 9199 m x n matrix Ao]| Thal] AT AE ABZFs}R}. o] matrix= positive semi-definite®] L2
A; > 07F AR5 singular value o; = VA E 4 14_401' 2= 9t} E35F AT A7} symmetric matrixo] B2
AT A9 eigen vector2 A3t orthonormal eigen basis vy, - - - , v, 0] A =25}

AT A9 eigen valueZ AFL-3)], singular valueZ o = /\; 22 A 2514} singular value= r7] 9] F4=9t n —r
7o) 0oz LA HL)

OlA| o;u; = Av;E WESH= orthonormal eigen basis u, -+, 4, 0] TS Holz}. R"9] basis & null
space®] basis7} obd 1719 vectoro] WsAE o # 0011, u; = 422 HT 5= e} ouff vy, v,
orthonormaldt 2 & v, = 010 vl AT Av; = Aj vij =0o]t}. =, uq, -+, u~= orthogonald}1!, norm O 2

U= orthonormalsith. E3F AA Ty, = %Z_A”/ = )\i%” = \u;0]| B2 AAT 9] eigen vectoro|th. Tt AT A
¢ AAT 9] 0o] o} eigen value= ZF

U1, -+ ,u-©] orthonormal eigen vectorE©|2 =2, m-r7]|2] orthogonal$t vectorE-2 gram schmidt process
=9 O] 8] FL51H R™2] orthonormal eigen basisS 22 4= 9t
3. SVD 3t 7357
SVDE AR S8l7) 919 U, V, B8 okl WL thg 3} 2o oju) Vel US 212t AT A%} AATo] dhet
eigen vectorE ok Ao & AT ke QAT o] FA| o H o7} ghr] o= ﬁo 7t EAStE R & S
sufol ool £ 5 o — Av AL o184 RS 7o A APIth. old 25 B cigen vector
+ Bo7F FHHSE oJ49] eigen vectore] 7] wiof
L ATAS A5 vy, 00 S FoAY, AAT O thall uy, - -+, S FRITH 5, eigen values 73t 5, eigen
vectorE ol norm© 2 W orthonormal eigen basisg 43 gt
2. singular valueZ} 00] opd RE2of disf 9t A uy,--- ,u, E= vl, o2 ottty 87 n e m
of 9 U 7] vectorS-S A A3s| ot AAT, ATAE oA, & Z‘ﬂgi A-¢-Att, gram schmidt
processS Z-83F 4~ 9Tt

3.t gE= U, V, 28 ARt
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E3H SVDO] Ao wret ATA = VSV, AAT = U?UT e} o] Yebd 4= QlEd], o] 2412 spectral
decompositiono] B2 o = /o1, ATA, AAT 9] eigen value7} 2SS 8215t 4= it}

4. Rank-1 Matrix2 A =]
spectral decompositiono]| A ¢} Zro], SVDE th-23} o] rank-1 matrix®] §+o0 2 L}epd 4= Qltt,

A=UxvT = Jlulvir + 02u2v2T 4+ Jnunvg

Z} space@] orthogonal elgn basist= Z} eigen space©] tJ3}] gram schmidt processE 43§35l L& 4 A9, R T}
Rm_J basis7| 2] mjH =& HASHA %Q}E’r SVD-E singular valueE A3 & basiso] gt v -& vtebdich

SVD= o]H featureZ} Q5] Thstr] st 50|t low rank approximation Z-2 ©|of AF&F Tt

ZF11 2 null space?] basisk eigen valueZ} 0¢] eigen vector©|Tt.

7.2.2. Low Rank Approximation

singular valuex= 2 I7|&02 AHSE R, rank-1 matrix2 HESH 5§ =9
S0hg W73 el AE AR G, F8 matrii S F2Y 5 9
Approximationo]g}al Stct.

low rank approximation A]E S}t} HA}. rank”} rQl m x n matrix Aoj] d|&l], rank7} k& < ro|HA] AL}2]
Apo]7h 7H Zh& m x n matrix BE o1 gty &, oy 415 THA7]= BE ZotH At

argmin||A — Bl|r

ol 7] Oﬂ/K-] ||[M||p= Frobenious Norm© 2, element-wisesHA| A| G4 Est H FTEE A& Aot &, 1.2
norm-2 matrixof| Al AAFGE A 0 2 o5k 4= 9Jt}. frobenious norm-2 —,-rbl elg]gr EAL 7HA Ttk & orthog-
onal matrix& H5h= 22 Zo|& HIIA] ] Z] ¢F 6 B & (frobenious norm-S FASIA| 7] Z] ¢F 0B 2) frobenious
norm-g k= 3@‘%% w33 o orthogonal matrix7} Fa4 1o 2|& 4= glct. o]o] w&t B=UCV"
ok bl the 3} 2ol S48 Aele & Sl

1A= Bllp = |lUE-UTBV)VT||p = |2~ Cllr

o] diagonal matrix?l 2} 7} A matrix CE 2= —E.—Zﬂﬂ- Hrt. ol @25 A4 StstE ™ Co] thzt
50| ofd grE2 A3 00]0lof 1L, TZHIRO A I 2 GHRE o1, 0y 5 JhHo} Btk 5, O X
oAtz g2 sigular valueE kZ|7HATE 7FA] 4L, W] R 091 matrixo|ot.

ol

o2/ C7} S OW B = UCVT 2 ASk AV 7Phe BE T8 4 e o] 3ol whet b Fa 3 25

BESHT, AL 5L wealA f

il

8. Linear Transformation

8.1. Linear Transformation

8.1.1. Linear Transformation
Linear Transformation(A@WH3H-& 21} 22 A 27125 WEA|7]= goltt. =, vector &} scalar
F8 BEIE gholn

1. Tlw+w)=T(v) + T (W)

2. T(cv) = cT'(v)

linear transformation& 5 717 THAGIA A7 4 Slet. Shbe space(REA. Bolod, 7o)S 1517
&1, Ax9} Zro] ©@5] gt Hul= Zlo|th. & thE Skt spaceE 1125l 4], oid space®] basisE 7} 4A]
HHSH= Aol T HA %@Oﬂ 9] A]= o™ linear transformationo] o] 42125 ™ Ao 9]
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‘ basis& HUHEH =}

o & 59, projection matrixs 5= Z-2 linear transformation®]t}.

8.2. Pseudo Inverse Matrix

8.2.1. Left /Right Inverse Matrix

o)™ marixo]] 5l Y& F A A identity matrixE WHE'H Left Inverse, @ 2Z-0]| 55} 4 4] identitiy matrix
£ 9HE Right Inverseo]th.

e left inverse’= matrix7} full column rank @} & 4= Qith. (ATA)"1ATA = [o]|B & (ATA)~1AT7}
left inverseo|t}. o]uf AT A9 inverse matrixS AFR8FE 2 full column ranko]of A H3ic}.

left Inverse’= A 2] column space©] 2= vectoro] A= AQ] row space?] UJ-2E= Ztoz2 o=
H=28F01, left null spaced]] = vector= 022 BH WA} (left null space®] vector xof thafjl A L A oo
ofs ATz~ 09) 24€ A7HS FHeisih),

left inverse matrix2 Q@ 2Zo] Jgt A(ATA)"1ATE= A9 column space® 2] projection matrixo|ch.
0] left inverse matrix7} R™of] ZA|5}= 4 2] 9] vectorE A 9] row space® H U371 (A 2] column space
of EA5tA] Y= FE2 YHE=E 7tER glojXith), Bl vectorE AR THA| H U= 23t 2.

least square A& & ©f G5} matrix?} Ao] st left inverse matrix©]tt. left inverse matrix”7} A
o] R™of EA 5= U 2] 9] vectorg column spaceZ HUE= 1S AJztolH o]sl|et 4= Qlct.

« right inverse’=matrix7} full row rank o] & 4= Qlth(r=m<n). AAT(AAT)~! = [o]|B 2 AT(AAT)"!
7} right inverseo|t}. o|of mFR7}R]| 2 AAT 9] inverse matrix2 AFRSIE 2 full row ranko]oF A 5l

right inverses= R™9] vectorES R"™9] row space®2 H UL, S vectors Aof €32 o Y29 vector
2 B0l & E 5}l matrixo]th. o] right inverse:= full row rank¥ wf] EA5}2 2, left null space=
EA5kA] b=t
right inverse matrixS Zof] F3gt AT (AAT)~1AX A 9] row space® 2] projection matrix©]t}. column
spaceZ 9] projection matrixo]|A] transpose o] HF v} Zo| B2 tF S}t
# yo]al, x2} y7} row space?] vectoro|® Ax # Ayo|th. =, row spaceoA EUjE= ojFL A A
2o]a1; o]of Wt m x n matrixo] A& inverse matrix@} AL left /right inverse matrix7} % 2=
ULk o= AFHORE Thds] B 4= Qloh. wheF Az = Ayed A(x — y) = 091H], © — y+= null space®]
Aot} 2 row space®} null space®] W gH2 {0}o]|2 &2 H<Loltt.

left /right inverse matrix+= four fundamental spaces®] tgt diagram-& 124 AZstH o] )7} 4.

oy &

8.2.2. Pseudo Inverse

1. Pseudo Inverse

Pseudo Inverse = Moore-Penrose Inverset= ¢! 2]2] m x n matrixo] ]3]l inverse matrix} 7} -GAF5HA
&2}tol= matrixZ, inverse, left /right inverseE o}-9-2= 71AF ddtste 7gdoltt.

pseudo inverse AT= T2y} ZHo] SVDL} SASHA Aot o]u ¥t SVDO] Yo A singular value 5 0
o] ofd AEL 945 o1, 0% A5 I =E & ¥, transposedt matrixo]th. &, SVDo||A|e} Zro] At=
rank r7}A= Aty = %vi BUYa, r+18EE gule 2 Hlich

At =vxty”

9] 9] 9] matrix= row space?] vectorE column space?] vector2 At w3ttt =, non-invertibleo] o] &
g HE o7 SHASHH drjdd]So]tt. pseudo inverse= o] ujFofA] vectorE w2 HWTh column
space?] vectors row space?] vector®2 At wjHWS}, left null spaced] fFs= FEL 002 Hij=
Ao olafet > gtk

full rank$] square matrix®l A AT = A~lo]1, full column rank$l matrixo]] oAl AT left inverse,
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full row rank¢l matrixo]] A AT right inverseo]|th. = full rank7} obd 7-¢of| & pseudo inverse:=
ZAst2 2, pseudo inverse:x inverse, left /right inverse®] A9} 7i\go]ct.

2. Projection MatrixQl7}?

At A= row space2 2] projection matrix©|Th. ©] - vectoro A row spacee] = FELS S 2%,
null spaceo] sjF5l= BHE L AAEER FAStt) A7} full column rankQl 7-$ null space’} & Z7to|R 2
ATA = I7} E]11, AT= left inverseo]th.

AAT= column space® 2] projection matrix©]t}. o] AL vectoro]| A column spaced] Fsl= FELS &
A E] 31, left null spaced] WFote FE2 AAEER FAsIth A7} full row rankQ] -9 left null space”}
dF7to|BR2 AAT = [7} 5|11, ATE right inverseo|T}.

9. ML

A7 A= HAlEd S FAES Aty oz oo
d g Eo°l, T flojg 9 fxrt Amtold, AQAE PFH|ZHH decision boundaryg o] BA| 27} decision

bowdary {02 BED HolEE T wFSI Yok ol BAE 4grdrooR o Hadl by
5}t}. decision boundaryE H|AE A o2 WhE £~ Qla1, g|o ]E1 = transformationﬁﬁlﬂ linearstA| ¥Hs 4 Q)

EE A SN AL SIe] of#E PoleE RarolA] RIS 5 9]
Aol s PolElS matrixz FAHS ©, 752 rowe] o]z} Hole]o] 7%, column®] Zo]7} feature
o] Fjsolet.

9.1. CNN

9.1.1. Natural Signal®] E3

FC, CNN, RNN, transformer 5 o2 N

N(Neural Network)o] QItt. natural signale tt-21 22 EXAS
7}11_’, NNOﬂ gt 71 S0l A= ol & ol &3ttt

1. Locality of Pixel Dependencies
Locality of Pixel Dependencies= Z} H|o] €
o]

Hlo] Bl AlzbolLt g1)o] ta) A%F d]
FOO| ZRoHL o]el E48 B8] T 9]

L )

CONNe| ZHe| A 2} ®Ao] 17 g B4 o

(o]
N
B
2
©
5
o
=3
=
<
R}
18
o,
o
N
N
R}
v
rr
N
N
o
©
v
I
)

(=)
IS
A4 (weight)TF AMRSF 18 7] ¢k BB A Ag 4 it
ol T£50l E5= ol&dl convolution AHE gt

2. Stationarity of Statistics

Statlonarlty(ﬂ”'/ﬂ) of Statistics= =2 AJ7Fo|u} 9]0 ulZ dlo]g 9] &5 Bxr} dAsit= 7o)
th &, dolHel s A= thE ARty §A]oA FLet HlolE 7t 58S 4 Adohe Aolth A& &
Ao dZ2 LEBZE ol A& = AL, 9F offfof Sl& = OIE}-

FCO| ZHloAL ozl E4L Taa] 5% weightS AAFES 5 olch. CNN| ZRol AL filterS 4§
featureS F=3Sict.

3. Compositionality

compositionality= featureS-0] & A 5}1}2] high-level representatione WEd 4 Q= 714 o]th
FCO] ZHo A& layerS ofd] 7] obA HA featureZ high level 2 ME}sl= A0 2 o|s)d 4= 9lrt. CNN
& low level feature2 5] A|Z}15] high level representatione FZStthe Hoj| A SAUstct.

9.1.2. CNN
channel-& o] i weighto] Tt AR 0] £F(ex, RGB)S ettt

1. 1D Convoluation
1D Convoluation& ]2 d¢|o|g|7} 12} el H-2-9f tj3t convoluation2 &gttt
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x9] feature 7|4E n, filter®] Ao)E k&t 1A} ZF row”} filterE UE = weight= m x k matrixo]t}. o]
filter=2 convolutlon ‘?ﬂ{\l’a 5tH AIHEL filterd 2 n-k+17)|7F L2t

k LS
' —— ."7'
.' (A
— > |4 = |
b
R ST n-k+1
m

Fig 1: lllustration of 1D Convolution

The output is m (thickness) vectors of size n — k + 1.

Result: /
l

n —» n-k+1

m

Fig 2: Result of 1D Convolution

weight matrix W} column vector xof i3] Wx&S AJZrslat. Wxo A £ 5= WO rowe} x Alo]o] HIAF
= WA, A=A @42 ZAR] FAE, projection 5O & FET oFA AL ORIME AAH Wxes W
9] columneo] ojjgt l1near combination® 2 & AJZFst 4= Qlt}, o|u x&= o]m|z]|E WEISH Ao 2 7R
Zp A4t o] 3 o] AME ojn|A| 2 BT 4 olﬂr W—l 7} rowte X9lr Eol%l =719] VectorOlEi o] 2] 2}
Zo)gt H/CI-E__J /\]—7P03 o= WSt & glu}, e q{@,% o2/ W3k W] rows} 918 oJu|z|o] 5t
element -wise O 2L o|5f& 4= Qlt}. =, FC+ o]u]z] Afo]Z2} EOlQ} convg Sh= A} gt

2. 2D Convolutation
2o] |3t convoluatione st Ye]l= 1D} =AUy, filter

9.2. Attention

9.2.1. Attention

Attention-2 o] 2] duo] tiafl AAS 71O contextE Htdsl= olitolth o LA o i‘— A A (ZHS
U= Query, 2 & et = Key, 242 AR 44Ql Valuegt= Al AH|E -2 ARE-SHA], query
<} key O] FAEE A4S 1 H[-&THE valueg 7153 oh= ﬂ/}_ ]I:]— 1 248 et 71-1:]-. oltf Q, K,V
query, key, value gt 2.2 rows T1ASF L x dj matrixo|th(L-2 sequence length dp= Ay Zdol).

KT
Attention(Q, K, V) = softmax( @ )V = attention value
Vdy,
ojwf o]E o) 3l gkv S A2t ¢ = Wy, k = Wy, v = W2 F3Th &, gkveE xof] A9 HES
2§37t Zlolrt. oluf q2F ko EHOH/‘lL innver product— Atsfof stz Zh-2 dimensiong 7HAOF ilﬂr-
2o &t ¢, ki, vie T 5 Atk Xoll tiaf] 12 AHE ZF 9= SHe matrixE Q, K,V € RY'g} gict

olZ 7 shte] A=A sequenceo] tF A AAFS|= attention2 Self Attention©] 11, A& th2 T 12 sequence
of tfj gt attentionS Cross Attention®]T}. cross attentiono| A= St sequence?] query2} T2 sequence?] key,
valueo] t]3}] attention-g 434 Stct. o]of Wz} cross attentionof| A= querye} key= 1 Zo|7} Zrotof 51T
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valuer= &2t Hct

ISt attention2 multi head2 A8 % =], o] A% ZF headd 2 %&£ ZI}E concatdlal, output
weightE 7|4 e dol= Hdgitt.

attention< transformero]| A9 sH= A obyal, A=l A& 7 go]ct.

attentionof|= soft attention¥} hard attention®] QT}. soft attention2 «; Zr=2] $o] 10]E2 3}= attention
o|t}. hard attention2 H-= a; Fol SPHRE 1031 Y X|= 00| =5 S}i= attentiono|t}. =, soft attention2 &
Ao o] vector=2] W82 HH5E, hard attentione &2 Ai}o]| 511t9] vectore] W87 Hhggict &2
transformerof| 4] hard attention2 2 Q2 Tt

9.3. Autoencoder

9.3.1. Autoencoder

1. Autoencoder
Autoencoder= Y8 Hlo|H & 2 Y0 =2 F=(encoding)?t F thA] Yt 2 E-(decoding)st= =
59, die]g o A EALS unsuperv1sed learning © 2 AA R §H&S= NNojth.

2 A notation, x= ©|® image, < output, z= latent variableo]t}. encoder= x& Yo} zz2 HE5I
decodert= zE5 Wrop o' 2 HBRSITE EE ||z — 2/||%9F 2ol 2/9} x Ato]o] 2}o]E loss2 34 encoder2}
decoders dF&5 A 71t} autoencoder= image?] %9} EA-2 vj-A Hrct.

Sk autoencoderof| A= encoder, decoder AHA| S &85} 71}, latent variableSl zgk2 8% 4~ Qth
o] FHUE F4ATIE oL, AU T SA HAG RE ) HuE 2 S| AAF
= o7 skE 4 917 Eﬂ—ﬂ_— 1t}. =, identitiy matix®] & ZZ5}A % Ql=d]|, o] 7% latent variable
o] f-2Jm]5t7] ‘3574] =g

2. Denoising Autoencoder
Denoising Autoencoder+= encodero] d7] Aof xo] noiseE F7}35]
gaussian noises £7}SHct.

O

5H5 Al 7]= autoencodero|t}. oju &2

BERTOA] o}270s kA7l A4 s gk
9.3.2. VAE
VAE(Variational Autoencoder)E 943 Ho|HE FEEX (P B4R encodingdll, g SEE I A

Mze ot ZLe Feo] 2L Hlo]EE YA SH= generative modelo]Th.
VAEE xE encodero] YolA puo} ot ¥ il(encoder? 215 1

= F2of Yol 25 =&34tt sampler= N(p, o)A F2+9] Z Tg__
sal HlBg, st ol Foliz x7} glolE F&o] 15 aict.

t}.), o] & g sampler
9k It samplingTh

ikl
H L
=

Jk&,%

Hu: Fl?

e
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Variational auto-encoder Classic auto-encoder

Decoder

z
Decoder

h E(z)
Encoder

xTr

ol losse= th2 AT Ztt. ol L(z,2) reconsturction term© 2, YB3} of| =7k Afo]Q] Zjololtt.
Lxr(N(p, 0),N(0,1)2 regularization term©.2, o] o &3t SHEHR I} gaussian distributiono] gt
KL distance(& 3 Ato]9] Ag])o]t}.

L= £($75%) + 5£KL(N(/~L7 0)7 N(Ov 1))

reconstruction losso]| thofjAl= ZF tlog o] thet z 237} He] oA Qlar, ZF 7t -3 lojof /e
ST} 2, 7F RO W(RE 7 A2)E B Wolma 51 o(RE 7 SUE)L A4S A fed Agold.
SFA|TF regularization term®] KL divergence 8-S HH p= 0092, o= 19 7MYA EE 122, Bx7}
AFs] ot & WA giet. ofof whet vha T ¥t o] 229 R} RhEolthal jitt

9.4. GAN

9.4.1. GAN

1. GAN
GAN(Generative Adversarial Network)2 H|o|E|& A A5t= generatore}, AA dlo|g et HAAH dlolEH =
5= discriminatorZ} A5 SH55)= generative model©|Th. 2 image generationof| 4] Wo] A&

Hlet.

GANO| A= gaussian distributiono]| 4] samplingsj A z& 411, decodero]] @olA 25 =} 1811, 27} x
Z0o] 7} ground truth?Ql 2] binary classification-2 4> 5}+= discriminator& AF&-$tct. =2, VAES] A encoder
BES glofal, 23} xE FESHE discriminatorg F7FgF 30|t}
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Variational auto-encoder Generative adversarial network

Sampler

GANY9] s+&of AFEEE= loss= T2} 0] generator?} discriminator Z+2ro]| o gt loss=2 FAAH T =, dis-
criminator+= A A 942 12, generator’} AJA st 21l= 00 2 W6l = SH5E| 71, generator= generator
7} AAsH A3FE discriminatorZ} 12 SIS SHGETH H5-2 G= 1A (freeze)stil DE SHEA| 7] 1L
DE 1Astal GE e5A7]= A2 gt

mGin max V(D,G) = ]Eszm(m)[IOg D(z)] + ]Ez~p,(z)[10g(1 - D(G(2)))]

2. GAN 84 £3 WA & 9t B4 43S

TkeF generatoro] H|S|| discriminator7} W5 2 S5 A2 SH5-S Aot SR &b 17 generatorZ}
Q= AlIES W] sl & OL/\Q;{T OPO Zlo|tt. EE_?} dlscrlmmatoroﬂ H| 3} generator7} E Ry

S5 AHE g5 ARt djEAt & generator7]— ojw olu]#] Shbat AL & ukSo] A, s
olu| Xt A4 Al 51H.. dlscrlmlnator7]- A& 9rzz] BelHA SHEER] o8 Alo] q-

mode collapse”} dojd 4~ ¢lt}. Mode Collapse generatorZ} ThFst 29| ¢|o] g & W&o #] &5},
diseriminator® 017] 41¢ B 712 54 Hol Rt B 0 2 A% Aot BHE T

#3112 binary cross entropy~— -2} Zrct.

n

1 . .
Lpcp =—=» (Yi-logYi+ (1-Y) log(1—Yj))
n

i=1
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