AR E (B 3-F)

Lee Jun Hyeok (wnsx0000@Qgmail.com)

December 12, 2025

23}

1 DP
1.1 SOLID o e
1.1.1 SOLID o o e
1.1.2 SRP . . . e
1.1.3 OCP . . o e
1.1.4 LSP . o e
115 ISP . e
1.1.6 DIP . . . o e
1.2 Class Relationship 0 e
1.2.1 Class Diagram Relationship o o
1.3 DP oo e

2 Creational DP
2.1 Singleton Pattern L
2.1.1 Singleton Pattern
2.1.2 Singleton Pattern®] =&
2.2 Factory Method Pattern e
2.2.1 Factory Method Pattern
2.2.2 Factory Method Pattern®] 5@
2.3 Enum Factory Method Pattern
2.3.1 Enum Factory Method Pattern o
2.3.2 Enum Factory Method®] =&
2.4 Abstract Factory Pattern
2.4.1 Abstract Factory Pattern
2.4.2 Abstract Factory Pattern®] S2&
2.5 Builder Pattern e e
2.5.1 Builder Pattern e e
2.5.2 Builder Pattern®] =& e
2.6 Prototype Pattern e
2.6.1 Prototype Pattern
2.6.2 Prototype Pattern®] ZL&

3 Structural DP
3.1 Adapter Pattern
3.1.1 Adapter Pattern
3.1.2 Adapter Pattern®] JL&
3.2 Bridge Pattern
3.2.1 Bridge Pattern L
3.2.2 Bridge Pattern®] G538 L

3.3 Composite Pattern oL 20
3.3.1 Composite Pattern 20
3.3.2 Composite Pattern®] =& 21

3.4 Decorator Pattern e 22
3.4.1 Decorator Pattern e 22
3.4.2 Decorator Pattern®] JL& L 23

3.5 Facade Pattern e e 24
3.5.1 Facade Pattern L 24
3.5.2 TFacade Pattern®] JL& 25

3.6 Flyweight Pattern e 26
3.6.1 Flyweight Pattern 26
3.6.2 Flyweight Pattern®] GL& 26

3.7 Proxy Pattern oL e 27
3.7.1 Proxy Pattern 27
3.7.2 Proxy Pattern®] & L 28

Behavior DP 29

4.1 Chain of Responsibility Pattern 29
4.1.1 Chain of Responsibility Pattern oL 29
4.1.2 Chain of Responsibility Pattern®] =2 29

4.2 Command Pattern 30
4.2.1 Command Pattern 30
4.2.2 Command Pattern®] L& 31

4.3 Imterpreter Pattern L L 32
4.3.1 Interpreter Pattern L 32
4.3.2 Interpreter Pattern®] =& 33

4.4 Tterator Pattern e e e e 34
4.4.1 Tterator Pattern e 34
4.4.2 Tterator Pattern®] JL® 35

4.5 State Pattern L e e e e e 35
4.5.1 State Pattern e e 35
4.5.2 State Pattern®] JE& L L L 36

4.6 Strategy Pattern L 37
4.6.1 Strategy Pattern L 37
4.6.2 Strategy Pattern®] 75@ 38

4.7 Mediator Pattern L e e e e e 39
4.7.1 Mediator Pattern e 39
4.7.2 Mediator Pattern®] S2& L L 40

4.8 Memento Pattern e e e 41
4.8.1 Memento Pattern e e 41
4.8.2 Memento Pattern®] =& L 42

4.9 Observer Pattern L e e 43
4.9.1 Observer Pattern e 43
4.9.2 Observer Pattern®] L& L 44

4.10 Template Method Pattern 44
4.10.1 Template Method Pattern 44
4.10.2 Template Method Pattern®] =& 45

4.11 Visitor Pattern e e e 46
4.11.1 Visitor Pattern e 46
4.11.2 Visitor Pattern®] JL& L 47

1. DP

1.1. SOLID

1.1.1. SOLID

(oW
wn
E
i
i
Rl
ot
/)
kl
o
o3l

SOLIDE 2000¥9]] Rober C. Martino]] 2J3}] A 2]% design Y& © 2 object-oriente
T8 designdt 2= QE = 3= 5714] 7|2 92](SRP, OCP, LSP, ISP, DIP)2:

SRPS} ISP object7} W51 AZA] A oA @ 7159 WAol HAE GFe ALshe = A%
WS olst o

LSP2} DIPE OCPE FLHSHEE 2. LSPE polymorphism-S, DIPE= abstraction2 §311% 0 2 &-851%
= 5k
= -

design patterns-2 SOLIDo] ¥ZF5[A] designk]o] Q)&

1.1.2. SRP

SRP(Single Responsibility Principle, @¢ ¢ ¥Z)= RE classe © spte] AAakS 74 of Shoh=
A7),
ol ML 7'5o 7 o]gfT & QL. =, 5t classE 51t9] 7150 JFola, $HMEE BE S A
g Student class= 7 28 715t Z3)5H= At 5
st Ades 5o Ade 7 BaE e
319] class7} o2 AL 7AH S class Yol A A2 th2 7150 gt F=7F A7 35 AatE o
9oz s 9loma WA SdsH A 5}7] o]l o= S0, oA A o)A HH designE 2 chA o] €]
Hlo]A =2 o] 9l-& o Student classE 7 sfjoF 3t

fin}
o
a,
)
5}
>
o 1>
0. %8
S,
5 2
Q -
ont, ook
T g
i m
N
=
X o

ofof w2t 5hte] classoll o= 2 o] Ut A Z2E5 Fof o2 class® Lpofof 2.
opy D9 lorer Lo DB ciatet o
h Student StudentDAO (Data access object)
\\\\‘\‘\\
Transcript Attandance

1.1.3. OCP

OCP(Open-Closed Principle, 7]-H4] ¥2])&= &4 o= g8 Qlojof 5111
229, 2, W7 Aol hE L Lolslof slAw, oju) 7= TEof 53
<]

P

o -
L interface &

[¢]

inheritance ¥ polymorphism& Z435] &85 o]& 4 S
abstract class2, Hdl= AL o]& LA S}= subclass® designdfjof g

o 2E
<<interface>>
SomeClient — 1 Printable Student

BookLoan
Ledger

A2 E 715 3712 wopo]
ohs W2 £A S T
e Feay

‘ Transcript ‘ ‘ Attandance

1.1.4. LSP

LSP(Liskov Substitution Principle, 8]lAF I 2|3} A 21)= A EFQI Q] objectE 5H9] EFY 2] object 2 2|2
St 32 T3l0] GAFH 0 2 Easjof Aehs BH 9. 2, 214 class7h R1 class®] B Tk 7] Aok ghri

w

al

A

classo| A} B 1 class®] Ok Ei= A} th =2 eHeto|gstA L, A5 inheritance TAE /ol
o] o =
BAT =

55

R
=-

A4

=9 methodel 4 <2 g St designobs A9 ol LSP7H AAXA e & & 4+ A8

ohg

o
List<Speakable> animals = new ArraylList<>();

5 animals.add(new Cat());
@ * Animal animals.add(new Dog());
A H ul Al Cichl

for(Speakable animal : animals)
animal.speak();

1.1.5. ISP

ISP(Interface Segregation Principle, QIE|H|o] 2 £2] H2])= A|2RlS ARESh= SOl AETT AFESHA] &F
+ methodo] &JE3F2] ¢otof ttt= Y29l =, interfaceo] SeO]AET}F AFRSH= methodFt 9= o]

S1010F SF, interface® A0l B 2/5} interfacer} £ AL Tk B
SRP7]- class®] T 2 of st Ao]tiH, ISPE interface?] @A Ao tist A<l. o|uf] interface?] £2]
ZefolAE S| 202 2AEolof B, AS Lelzt ZHo| A SRPS ISP7F - ATHA HO| AR, class Wi
SLe Wl ZeolAE He shfe] clussr} 7P 715 5 AU FEE 4 98-

r— =

mterface—— TH=9)

Ya Zefoipe | | = el |

EXZESES

1 l l

<<interface>> <<interface>> <<interface>>
=Z2Ig] A A7
+print() +fax() +copy()

QE{T|o] A0 SE0|UE7F AHEOH
£ HIMELr ZHobH & => ISP

Y7

+copy()
+fax()
+print() implements

1.1.6. DIP

DIP(Dependency Inversion Principle, 9]& 94 QA& o& WA= HASISH| AP AL, HE7T £A51A]
OF classol o3 Wolof gtk 9719). % ol TAE B W FAH4e] e classirhe, #4440 e
abstract classt} interfaceS A€l 5]joF %1'

DIPE & Z]7|" dependency injectione E3f Ao &olsteE FEE FAY 4 912, Dependency
Injection(2}4 %41)2 o8 objectol BRE sfi= S1E object 1ol A] FUSHE A%, Z, FAHAO]

=2 el 4_0}‘3 g = FAselE i RFE FAEE 5 e
7|Eels F74790] T2 class7F 34/ 0] W2 classof] A A o= ofEsh= 497 @ikt DIPA = ol &
clﬂ.@(mverblon) shof Fat4o] ‘7’37& F/370] T2 classol] SJEsjof ekl £ A4

DIO7} TS AT i AE

Soas

Hat7| o3 E
<<abstract>>
otol bt
28 Ul XpEA 2|2

HE ZERR b FHEHY FHUE
agoi otet Hotz| 412

1.2. Class Relationship

1.2.1. Class Diagram Relationship

class diagramol| A class/object 7k9] Thofat P12 BT wlie Tho T} 2o 5714 BRs ALgE

Weaker Class relationship Stronger (lass relationship

Dependency Association Aggregation Composition Inheritance
D G — | o— | — | <—
Dashed Arrow Simple Connecting Line | Empty Diamond Arrow | Filled Diamond Arrow Empty Arrow

When objects of one | When objects of one | When one class owns but When one class When one classis a
class work briefly with class work with shares a reference to contains objectsof | type of another class
objects of another class | objects of another class| objects of another dass another class
for some prolonged

amount of time

. Dependency(J—E— WA= st 1a554 objecto| A THE class®] objectE YA A O =2 (temporarily) A+
St= AR, A @

o Association(Q TA)-2 ¢t class®] object”} Th2 class®] object@t 7| 7F AT E o] 525}
Aoz .u.7] [

o Aggregation(F g HA)S FEo] HA o eFotA(use) &ot= TA Y. hollow diamond(H] Tho]ol=E)

rr

tA=,

st E=E #7)sk=t], AAo] siF st classo] hollow diamondE 19, oju F2-2> A<} AHglo]
=g702 EAG & 9. 5, B4 object7} ARHAE B objecti= £AIG 4 Pl T, WA}
so] A7)} o
o Composition(gA BA)2 FEo| Ao 73517 (own) Z551= TA Y. filled diamond (2} Q1 tho]opR
T) M uE B7]6h=d|, AAo] gtz classo] filled diamondE 19, o] F&-2 414101] T o
Eddor EAT 4 gle. 5, WA object7t AFRFAIH F4E object & ARFA]AL, A} £ _4 A
717F &

o Inheritance(4F<4; BA|, AHIS} TA)) = subclassg 2] 3-5H EAS super classZ AHISIgH WA 2, SHaF
F =2 Z7|3h subclass= privateQl 7 A 2]5}3L super class®] RE A& ﬂéﬂggu%, subclass H &2
|

=0
=22
Z=7}A el £48 71 4= 1L o]of ulg} subclass?] instance= super classoﬂ ojst 7+ 2] Q1 instance
o]
=1}

1.3. DP

1.3.1. DP

1. DP
DP(Design Pattern)+= AT E o] design U 7N dpg o A ApF A

MRS AP A 02 AF8-3) 2 312 W (best practice)= HHE']ﬂ-
ofoltjol2, F£2 UML=Z ®7|g

DP= ZF=toll it W=kl Context, A 4%<{] Problem, A of tigt sf22<] Solution© 2 o A old

OI‘ O:lj

21 245 Y, 137
A9, ol B4 317} ofjet 227

ol

& 9e.

DPE Ahgaid AuAs 7he] AEo] Qe dig o] A@A o HAsH YAlolne ABze
£ 59 918 S YeshE DPE Ry st AL AUs g, AAH9| Fas S 3
ejs) A A Gollob & DPE 27 ¢k BAIS 7heke] o) AT 4 ATk AFES o] 471 Ghe (o e WEy)

W& oA AWt DPo a4, Client: sl DPE A1-85H= FE Ei A4824¢]. DP7} SOLID

% } B, =3

2+ 5
= = 1j
2 & 7)1 9 ALk, cliento] A objectZ AF-&aF wli= 1A 40 classE-S AJR5H= A0
Zast ObJect% ZA5IAL sl S0 FETT AFRE 4= 9l
2.

%7] DP+= smalltalk, c++ 52 2 A Et}7}, GoF(Gang of Four)o] 9]3}] &7H "Design Patterns: Elements
of Reusable Object-Oriented Software"o||A] A sl= 23712 B&57) 7P A8 2. g Mo A= o7t

ZHo] DPE BEHJ1, B $doA L o] BE7E AFRS| DPE A (237 + enum factory pattern).

1) Creational DP : object A§Ad]| thgt DP. object AAdojut Hi7go] =2 73l Lo &S F2| G & Sh
2) Structural DP : classt} objectE& %35 o & 2 & WE= DP.

3) Behavior DP : classl} object Ao]9] &ri1g|Zolut F2F, 2 Eujjof thgt DP. St objectTF o 2 43 4~
A= e, AT E HasFelHA o2 objectEolA w857 g B Y.

A gHE IxE e W o
iy Iy
i i GEHDE@D Y &]
= o[s
=it == ce=a [EE =
Factory Method Abstract Adapter Bridge Chain of Command Iterator Mediator
Factory Responsibility

£ T8 BB 6

Builder Prototype Composite Decorator Memento QObserver

%I%%I @ Dﬁ; EE@ R

Singleton Facade Flyweight Template Visitor
Method

g
o’
W By W]
il

Dc>@

Proxy

2. Creational DP

2.1. Singleton Pattern

2.1.1. Singleton Pattern

1. Singleton Pattern
Singleton Pattern sh9] classZ7} @2 3149 instanceRt 718 4~ Q= E SH= DP%. o] singleton&
shel 914w 7HE AEe

o
%2 ol @ objecto] thet AAo] 242 wol AL 1202 shutat Aok S objecto] the)
AF. 2, Shube] objecty BHE3 2 oA S5 objectE AT} AL,

DB 924 (connection pool), I+Q 2], thread pool, logging 50| AF-&3F AA| 2 java.lang. Runtimed} java.util.logging
£ singleton pattern® 2 F&AE] o] 9)

2. Singleton Pattern®] JL%

singleton pattern< 7|22z 0 2 t}2 3} o] AAAE private static . 2 5111, Y class2] objectS W35}
static H|AEE 7H &= +2E 7H.

1o
=

rr

Singleton %'
- instance: Singleton
- Singleton()

m + getinstance(): Singleton 1

if (instance == null) {

// place a thread lock here
instance = new Singleton()

}

return instance

3. Singleton Pattern_J g

singleton patterna AH-8-5HH ObJect* Sttt g dAor &goto] Bl-g3t 2lasg dofsial, A
20 2 objectE 48 4~ QS

11— = = = AT

SFA| T singleton pattern®] AF8-2 SRP(class AHA| Q] Y, object Ao thgh MY &A]), OCP(FA &
object¥t-& AAJstaL A< E71), DIP (interface”} of 2t object ZHA| 9t]E5HA H)E e £ 2&
OlE/do] Eokx|a, o]of whef ©9] HIAEZ} o 3.
singleton pattern< olg] 8842 FHIIE= Ho &
QI GAX o] HojH. singleton patterne 'F-85H=
459 vt Fhe st wad

2ol @ 4 A%, SOLIDE 243 25511 28 4
£ anti pattern©] B 4 9111, o] utet g DPE

2.1.2. Singleton Pattern®] &

singleton pattern2 th-2-1t Zro] Z+zt A& 71X = ‘;]'03:61' o] HFAlo] 225t E75] single thread 2] 7-¢
F@o| BAs| the=slA gk, multi-thread S 128l of2] o] A8t 2.
Qi 02 PRTE AL, 450] FRT BANAE lasy holder A8}, o
e method AL 51 A4, B2 A5l wret 447 WHe AeshE .

°
)
o,

ol T8

sk

ol M=

1. Lazy Initialization
singleton pattern®] EH2 TItfg @S HA]Ql. getlnstance()o] gt A §& A|o|| object7} AT 22
lazy initializationo]t}.

single thread A&oA= EA7F ¢LAT, multi thread 4ol A= synchronizationo] A-8F|Z] ¢Fo} o7
e}

i
object7} A/4dE ¢l At
e \

1 public class Settings {
2 private static Settings instance;
3 private Settings();
4 public static Settings getInstance {
5 if (instance == null) {
6
7
8
9

return new Settings();
}

return instance;

10 }

11

12 Settings settings = Settings.getInstance();
\ J

2. Thread-safe Initialization
lazy initializationo]| 4] getInstance() M|AE9] synchronized& &0+ HH414.

A1
S WA= tigt synchronization2 Z-&8}] multi-thread SN A = EA7F IA9F, synchronization
overhead7} A&

3. Eager Initialization
Iz A5E final® 24 A Ale] objectE Aot WA,

javao] A final2 A AL T

T=A o]| multi-thread
of| A& thead-safedt. S} qt H% obJectOH o

l__
=5=1 H] x401

public class Settings {
private static final Settings instance = new Settings();
private Settings();
public static Settings getInstance {
return instance;
}
}

© W N e oA W N e

Settings settings = Settings.getInstance();
\ J

4. Double-checked Locking

getInstance() H|AE7} ofyz} instance’} nullel ZAE YE o9 synchronized & AF&3) synchronization
overheadE &< HHAQl. o]uf] HPZZE null ZAEL o] thread’7} B3-S 4~ QI © 2 2| synchronization©]
. RO A E milldl 2] HAE,

oluf] ZZ Hof volatile2 XA 3foF $F. multi threadQl 73-$ thE thread 2] cacheof|= ZZ H4=9] ZFo] null
2 gol9lS 4908 2 volatile2 B0 Fof cachingel] AR Y& A2 1| 4= 9)-L. E 5t synchronized
blocko]] XA 5}H= object(statico] 22 this7} §lo]A] Settings.class2 2| A §HE g 58 A|=g clabsfﬂ ol
synchronized block-2 AF85}HH 7} threadi= 3| objecto]l Tt 2 852 A|Z5}, AFA19] 217} b4 =
215519 o block Qtell 014 4 -

thread-safes}H A & synchronlzatlon overheadE Zo0]11, lazysHA A w22 §&A02 AFL3TH 4
9. shAat ;1 Ao BHELL olals} olel . VM L5 e EA5

r N

1 public class Settings {

2 private static volatile Settings instance;
3 private Settings();

4 public static Settings getInstance {

5 if (instance == null) {

6 synchronized (Settings.class) {
7 if (instance == null) {

8 return new Settings();
9 }

10 }

11 }

12 return instance;

13 }

}

[
'S

=
o

Settings settings = Settings.getInstance();
\ J

5. Lazy Holder(Bill Pugh’s Solution)

nested static classS A 2]5}11, instances static final2 A 2|8} AF-&5}= HHAL. ST nested class= 2] class
9] object7} A/dE o Z7]5}=]2] ¢Fa1, ST classo] H w] Z7]3HEth EF nested classO] HH 4=
statico]o}] 2 AL Aol g 18 AR

-
=N

lazy initialization©] 1, thread—safeOI-Uil synchronization overhead”} §111, =7} 7HA35) SFA|RE 20|
HEZ} 2183}t/ 4AE3l 52 AHESHH Aol= singletong mhe 4 ot of7|oA 1 HH7EA] ohe3l
orL
B

public class Settings {
private static class SettingsHolder {

1
2
3 private static final Settings instance = new Settings();
4 }
5 public static Settings getInstance {
6 return SettingsHolder.instance;
7 }
8 }
9
L Settings settings = Settings.getInstance(); y

6. Enum Method

enum O 2 classE A3 fF classQ] object’} AH5 @ EEE S}= HFA]L

javall A enum-2 classo]1l, enum UjFof] AHALE 2HJ5tH Ao o] 5O & i class] objectE AJ4]
A egst =, o2 FEof A INSTANCE®] Settings object”} 4.

thread-safed}al synchronization overhead”} §l31, I EV} 7FE5I1, Sto|AEVF o2 oadd 4 gl
SHAIR lazys} 4] 918

[1 public enum Settings { A
2 INSTANCE;
3
4 private Settings() {};
5 public static Settings getInstance {
6 return INSTANCE;
7 }
8 }
9

Settings settings = Settings.getInstance();

—
o

2.2. Factory Method Pattern

2.2.1. Factory Method Pattern

1. Factory Method Pattern

Factory Method Pattern object AA W % 7]|3}E subclasso] YUSHEZE 5= DPY. ©]& 93} object
3742 218t interfaceE AHESHAL, FAH O 2 classE AP A] = subclassol| o5 274 H.

object A4S 2elolT S 7154S Eo] OCPE stz ot o) ALSh. woF interface® AH831) 81T
object® LGOI class SFIE AFGTTHE, AL object A4 7158 Foelelnl 7|E TES AoF
stE =2 OCP7}F Yui&E. factory method patternof A= interfaces E3)| factory object?} product object ZF
AgS &5 9

XML document parser(¢]2] mt4 B AlF), spring®] BeanFactory 5©] factory method pattern®.z &
=0l 318

2. Factory Method Pattern®] #%

factory method pattern2 th23} ZHo] object A4 abstract H|AEE 7}2 Creator(factory) interface(TE+=
abstract class)E& A 9Js}al, ZF sub factory classE0] ZFA1o] A S objecto] e} Sid HAEE LSS
Sk ESF Creator= Z}F producto] tfst FA A7} o}y 2t Product interfaceof ©]&3}.

Product p = createProduct() | oyza) gyacE xarst ojoy Me

return new ConcreteProductA()

3. Factory Method Pattern®] At
B4 BE 37 st
object AH/R-I Jo]] W= overheadT ZAS. FH oA TS enum factory method(subclassE Z+2Z¢

enum 0}\4-& Fd¢), dynamic factory method(reflection apiS AFE3l F& o2 A a|gh)
7R DPY.

M SEHAZ OIS THOKH T
Creator JAVAZ U= HiE FUNS Fedot
interface2 S & -
«interface»
_____________________ Product
+ someOperation() >
ME HEE| ZEHANM XHELYL + createProduct(): Product + doStuff()
W] Al 24 DM A T
[| T H
H H
M‘E ';:F" -Eﬁliii?f“; ConcreteCreatorA ConcreteCreatorB Concrete Concrete
A= HE WHIE YHtE S
air A acE me | ProductA ProductB
HIE FTA|
HIZE MH gwﬂ [,” + createProduct(): Product + createProduct(): Product
=t

object AJ/doll ti et interfaceE A-G-SFELE SRP (object /gl Higt A9l £2]), OCP(ZE ®7 glo] M=

SR ZF product 9] &0ttt classE A oA AFRSfoF SR 2 FE BT Holx] 1, factory product

ot Al

Lol T

2.2.2. Factory Method Pattern®] 7@

factory method pattern2 tF23} Zro| L H. o] % A 2L factory class, product class o] 7= & 7| &

I AT HQ glL. Eot client 2o A& ShipFactoryl} Ship2 ZF W42 A ZEE ¢ 7HESH]
498,
r N\
1 public interface ShipFactory {
2 default Ship orderShip(String name) {
3 Ship ship = createShip(name) ;
4 return ship;
5 }
6 Ship createShip(String name);
7 }
8
B public interface Ship {
10 void setName(String name);
11 T
12
13 public class WhiteShip implements Ship {
14 private String name = "WhiteShip";
15 public void setName(String name) {
16 this.name = name;
17 }
18 }
19
20 public class WhiteShipFactory implements ShipFactory {
21 public Ship createShip(String name) {
22 WhiteShip whiteShip = new WhiteShip();
23 whiteShip.setName (name) ;
24 return whiteShip;
25 }
26 }
27 oo
2 Ship whiteShip = new WhiteShipFactory().orderShip("myWhiteShip") ;)

10

2.3. Enum Factory Method Pattern

2.3.1. Enum Factory Method Pattern

1. Enum Factory Method Pattern

Enum Factory Emthod Pattern-& o2 7] 9] factory classE A 25}l Ztztof o3t object& A SH= factory
method pattern?] H| €82 s1-45}17] ¢5l, enum-S AF&3] factory classS A 2|5l= PDY.

enum-2 A28 singleton objectE AJAINE AAH, o] 7fo] HHE ZHAJ 5] o] 7] 2] instanceS e st=
classQ]l Multiton2 A2l 4= 9)-&. 0] A FLASHH ZF factoryo] tisl] fE A 02 classE ZHAI5)AL object
£ AAste diAl, she Clabbi FolA St HTl objectE AT AL SIEE & 4 98-

2. Enum Factory Method Pattern?] A3

enum factory method pattern& Zt factory classE HIEE A 9|5} objectE 7HA o ZE A= Al
SIL}9] factory classE A 9J5}al, | objectE singleton 0.2 A5 E-8olE S}

oluf M 2-& factory/products F7}5H= 79 enum factory classE 23 $=AdfjoF & =, OCP
ol 9] T/ }e] tradeoffd].

E3L javaol A enum-2 AF&0] E7HESHER factory7b SR A L2 E 7T B3 of §HA7F A3

o

fj
do
=
ol
S5
rr
:(T‘_,l

2.3.2. Enum Factory Method9] L&

1. javaQ] enum

javaoll Al enum2 T Al BEEo0] ofyE} classY. enum classE A Ol5HH AAZ = tr27F Zo] Enum
classE AF&HEE class2 ‘ﬂigﬂ, Zr Ae= SlY classof] tst % W4Tt H.
r N
1 enum Season {
s SPRING ("= "),
3 SUMMER("C|E") ;
4 /..
5 }
N J
AA == o33 Zo] Hgh.
r N

class Season extends java.lang.Enum {
public static final Season SPRING = new Season("&");
public static final Season SUMMER = new Season("O{&");

S

}

-
&

(

H
ol

TS enum class= 7] 22 0 2 abstract classo] 1, Y5o]] abstract methodS ZHA] 5}

=2 Aol g

1)
i
o
i
rr
:‘OL_I‘
ot
=,
>

N
J

enum Calculator {

1

2 PLUS {

3 @0verride

4 double apply(double x, double y) { return x + y; }
5 Yo

6 MINUS {

7 @0verride

8 double apply(double x, double y) { return x - y; }
9 };

-
[S)

/) FY HME A
abstract double apply(double x, double y);

=
[

-
w

}

o 7

E3SF enum2 THE classE ASES 4 9l (0]0] Enume AE5E-S), 7|22 0 2 final classoﬂ A o= class7}
=

2
enum2 Ar&EHRS 4 glo Al interfaceS

(‘D
=
o
B
oM
o
el
_O|L
I_H
Ju
_O|L
rlr 4%
s,
rlo
N
o{r
ol

2. Enum Factory Method?9] L&

11

enum factory method= T2 o] enum © 2 A3t

7

1 enum EnumShapeFactory {

2 RECTANGLE {

3 public Shape createShape() {
4 return new Rectangle();
5 }

6 },

7 CIRCLE {

s public Shape createShape() {
9 return new Circle();

10 }

11 };

12

13 public Shape create(String color) {
14 Shape shape = createShape();

-
o

return shape;

}
abstract protected Shape createShape();

o
o

-
<

}

[
o

=
©

EnumShapeFactory enumShapeFactory = new EnumShapeFactory() ;
enumShapeFactory.RECTANGLE. createShape () ;

¥
=}

V)
it

2.4. Abstract Factory Pattern

2.4.1. Abstract Factory Pattern

1. Abstract Factory Pattern

Abstract Factory Patterne 3+ 9J+= product family (A &) 9] A& A4St
patterno] @< product A2 FAFSHITHH, abstract factory pattern—fj— 0131
o e A9 & Fysie Ae.

2. Abstract Factory Pattern®] %

abstract factory patternofl A= th-21t Zo] Z} product®} factoryE interface®2 FAaFstal, &
FAA Q] productE AASH= FA A Q] factory S AFES. factory interface= 71’ productS AJAJ 5}
method & 7H. o] Eﬂra} Mz AFe 1o tf-g5« factory”} 5 7}H015 7E FEE £AT

DP
=l

]
1&:
T AR

r:i et

12

. =, factory method
product& (A &)

£Q,
o

4. Concrete Factory
2% Kﬂs 2| AEHY0] X0 HIES

MMOIES M B2ES Y

2. Concrete
Product ConcreteFactoryl

L HIZE 20l 2=
HEL FUS

i + createProductA(): ProductA 3. Abstract Factory interface

Fur:wly»l ________________ + createProductB(): ProductB 7HE Abstract products 4aot=
I ot FotS pod
Concrete Concrete |} '
' ProductA: ProductB: ' v
1. Abstract D Client

Product

Z 28 7ot i Abstract Abstract E AbstractFactory << - factory: AbstractFactory
a%gu‘;;ﬂE : Pladu foddcB, | dareatePodUcth(zRiodUct + Client(f: AbstractFactory)
o g . - N
Jo + createProductB(): ProductB + someOperation()

A In someOperation()

_>.'.

Concrete
ProductB2

. 1 i
ProductB pb = factory.createProductB()
Family2 7'\— A ConcreteFactory2 P 2

ProductA pa = factory.createProductA()

.................... A7)0 X0l I factory WHIE FEX|0f Tt
N M someOperation LHOflA AMEl= HIZ0| Satd
a‘::?e;‘::rlodumzo + createProductAQ: ProductA (2aiLk fic‘ror g as so::Dperu‘rion =1=b/}
+ createProductB(): ProductB YE*EHI;F oo -

= s

Concrete factoryS2 cuncre#e productsS2
AnotR|2 A HASSS abstract
productsS "'E’ Efelo2 7txiof ot
3. Abstract Factory Pattern®] o3
factory method patterni} upz7}2]2 SRP, OCPE &H3t = cliente}e] I = AJdLE T30
A&t /factoryE GA F7HL & U=

3 producto]] tﬂgj— 18l 0] Z7}1Eojof ot

factory method pattern®} upH7F2] 2 product, factory Ztztof tigt classE 5 FAfoF stR 2 F
o] == ER ZF productZ} Al S A/dst=tl, Aol M2 product”} F7F=H HE factoryo]|

A, Mz

C 2
—

2.4.2. Abstract Factory Pattern®] L&

abstract factory pattern2 th-21} Zto] LLHS 4~ 912

[1 public interface Button { void paint(); } A
2 public interface Checkbox { void paint(); }
3
4 public interface GUIFactory {
5 Button createButton();
6 CheckBox createCheckbox();
7 }
~
1 // windows A=t
2 public class WinButton implements Button {
3 @0verride
4 public void paint() {
5 System.out.println("Windows AEIY HEZ AHZL|CL. ");
6 }
7 }
8
9 public class WinCheckbox implements Checkbox {
10 @0verride
11 public void paint() {
12 System.out.println("Windows AEIQY HIEIAZ 2AHTILICE. ") ;
13 }
14 }
\ J

13

1 // windows factory

2 public class WinGUIFactory implements GUIFactory {
3 Q@0verride

4 public Button createButton() {

return new WinButton();

o

6 }
7
8 Q@0verride
) public Checkbox createCheckbox() {
10 return new WinCheckbox() ;
11 ¥
12 }
13 o ..
14 WinGUIFactory winGUIFactory = new WinGUIFactory();
1 Button button = winGUIFactory.createButton();]

2.5. Builder Pattern

2.5.1. Builder Pattern

1. Builder Pattern
Builder Pattern< objecto] tjjst 235t A MA-8 B2, client7} theFst 240 2 objectE AT 4
NLEE o= DPY.

objectol] et A4 Ao B gke] £57) T8 S 93, BRP RE S AR 43 A AL
W78 A58 4 90 builder pattenE ALESIH B g IR 4040 2 SReAA objectS BT 5

ol o
A

_{

java2] StringBuilder, Stream 5-©] builder pattern© 2 3o Q)&

2. Builder Pattern®] %

builder= t23} Z+o] buildero] gt interface@}, builder FdA|, director® FA4H. builder LA A 2] Z+
WAL= Zp7] ZHA (this)-& WIS = S| A] builder.setRoofs(4).set Walls(4).getResult() 522 ARgo] 715
SIE= Sh director= AFF AFR-E]= builder?] AA step F configs AHESHA] HIAER A 2]6}= classY.
client+= director& A& o] = = A7 stepi} config? objectE AT += U1, 213 builderE A3

objectE AT F= S

b = new ConcreteBuilderl()
d = new Director(b)

d.make()
Productl p = b.getResult()
4. Director
Frmmmm————————— XtF SOt step configurations
! (step 2% &M)E directorLioll F0iM
1. Builder interface \ o|otct
2E ERY UHof SENY i «interface» Director
HIZ build step & MU ! Builder
P : - builder: Builder
H + reset() - >
E + buildStepA(+ Director(builder)
i + buildStepB() + changeBuilder(builder)
i + buildStepZ() + make(type)
|
! JaN
________ I builder.reset()
\y H H if (type == "simple”) {
builderbuildStepA()
2. Concrete builders Cor.|crete Cor_'cmte }else {
74 Build step 459 g mZ | Builderl Builder2 builderbuildStepB)
=3 BrAZ 2 builder.buildStepZ
Common step?| CIZ step B8 XIS - result: Product1 - result: Product2 } e
o2 S
+ reset() + reset() =
+ buildStepA(+ buildstepA([a0
+ buildStepB() + buildStepB()
+ buildStepZ() + buildStepZ() result.setFeatureB()
+ getResult(): + getResult():
Productl Product2 return this.result
Build ES.EE’IIO"T;C&XI" HE y v getResult Z0{A L2004 A2
ullders & =) = M=z OGN HALE 2718 £ 12
HES 2o SoiA H= T olEmo] [Productl] [Product2 = S F7tY &

Aol 22 BRE 9

14

3. Builder Pattern®] %3

builder patterng 229 object /42 Fe|sf OCPE RS = QUL B3 A g2 expA oz Hfed
T Qe ER AT ZRAAE Fof o2 WA O R objectE BT 4 1AL, BT objectE AHESH=
s HAT 5= e

SHAE builder objectE T #] THEO]oF ARgo] 7hastal, I E 271 B Xoh= o] 5. olef whaf
7reet A2 A A o= Al

= [=4

2 method chainings FAsh= -9 2 HlA=7F AH 25 WHeste 5 sfjof o

2.5.2. Builder Pattern9] ¢

builder pattern& th-23} Zro] L=,

r N
1 public class House {

private int roofs;

N

3 private int walls;
4 private int windows;
5 // getters and setters
6 }
7
8 public interface Builder {
9 void reset();
10 Builder setRoof (int roofs);
11 Builder setWalls(int walls);
12 Builder setWindows(int windows);
13 }
" J
1 public class HouseBuilder implements Builder {
2 private House house;
3
4 HouseBuilder() {
5 this.house = new House();
6 }
7
8 @0verride
9 public void reset() {
10 this.house = new House();
11 }
12
13 @0verride
14 Builder setRoof (int roofs) {
15 this.house.setRoofs(roofs);
16 }
17
18 }
\ J
s N\
1 public class Director {
2 public void makeSimpleHouse(Bulider builder) {
3 builder.reset();
4 builder.setRoof (1) .setWalls(4) .setWindows (4) ;
5 }
6 }
7 .« e
8 Director director = new Director();
9 HouseBuilder houseBuilder = new HouseBuilder();
10 director.makeSimpleHouse (houseBuilder) ;
L House hosue = houseBuilder.getResult();)

15

2.6. Prototype Pattern

2.6.1. Prototype Pattern

1. Prototype Pattern

Prototype Pattern& 7]&9] objectE EAFSH= g9 A& %= DPY.

535 JIA82 wizol o f oA A HAShE A2 HARE 5 o8 =E, 7} classo| 4] clone() HIAEE
FANES ol A%,

javaQ] Cloneable interface”} prototype patternd. Cloneable-2 implementss}il clone()-& @ H2to| = Jfjof
St 312 Cloneable2 HIHE 7}2| 2] ¢kl clone()-2 Object class9] H|AE=<]. thAl Cloneable-2 marker
mterfacei, Cloneable2 implementsd}A] ?.,]:—' clone()2 @Hzgto]=5FH CloneNotSupportedException &
Q)7 AYet.

2. Prototype Pattern®] #%

prototype pattern< T3] clone() abstract A EE 71X &= interfaceS AF8-5}F1L, clone()& ZF Ao A

LHfEto|EstE 22 Hof Sla.

JavaOilA Cloneabledi| EHS

«interface» Shape

+ clone(): Prototype Application [<>—>|- color

copy = existing.clone() A

+ Shape(source)
+ clone()

ConcretePrototype E}
-field1

Rectangle Circle

this.field1 = prototype.field1

+ ConcretePrototype(prototype)
return new ConcretePrototype(this) + clone(): Prototype -width - radius

- height =
% + Circle()
+ Rectangle() + clone()
SubclassPrototype + clone()
super(prototype) - field2
this.field2 = prototype.field2
+ SubclassPrototype(prototype)
return new SubclassPrototype(this) + clone(): Prototype
3. Prototype Pattern9] 7@",:_]'7@
prototype pattern< *}ﬁé} 1 | gt A ede &Z=ls) SRPE &HE 4= 914, shallow copyE AH8-5HH
objectZ A2 AT ARTE FEEY.
SFAIRE object F+27F 47 4 clone()= F@3H7] M7 2& % 1AL, deep copy A|of| WK 2|7} g H] = ALt
o

object7} T2 = 7] oH& & 3=

e

2.6.2. Prototype Pattern9]

— | [

prototype pattern< t}-23} ZHo| shallow copy = deep copy —7— H 4~ 9] Shallow Copy©]| A=
Z=9] 7ZFS H|E |2 Ealst= Ao 2 o|o whal primitives AA| 2 A& Zro] EALE| A, reference

=z BAME (S5 LS objectE 718] 714 H). Deep Copy©l| A= reference’} ZF=%3}= object7}A] A&A|

715 0.2 A slo] BARIE A4,

E35] read-only?l -3 shallow copy & sh= Z o] 22

©

super.clone() © & Objecto]] +@ 5 clone()-& 12 AFES}HA shallow copy’} A-& %11, deep copyE 5F2H
4 o vleo| a4 FANoF .

7

// shallow copy
public class Person implements Cloneable {
private String name;
public Objects clone() throws CloneNotSupportedException {
return super.clone();

}

© N o w A W N

16

1 // Deep copy
public class Person implements Cloneable {

N

3 private String name;
4 public Objects clone() throws CloneNotSupportedException {
5 Person person = new Person();
6 person.setName (name) ;
7 return person;
8 }
9
10 }
" J

3. Structural DP

3.1. Adapter Pattern

3.1.1. Adapter Pattern

1. Adapter Pattern
Adapter PatternS S8 %] = interfaceE 714 classE AFRES 4 T2 5= DPY. =,
class/interface?l adapteeE 7] 1nterface§ ALES = Qe &

F2 A2 interface?} lagacy TES TAEA] & wf, A2 L 75 F7he 0 AHET

fot
rloy
il
2
52
rr

2. Adapter Pattern?] L%
adapter pattern< th-21} ZFo] object adapter 7+ 2} class adapter 32 FHE =,

o Object Adapter F-Z= 7|Z interfaceS FLHSH= adapter classE A5}, adapteeS adapter class
QA WHZA OS2 AESt= composition T+XE 7.

2 3Efﬂl?i'= ‘.’JEillilﬂI’\

Zotots 2afa «interface»

Client Interface

+ method(data)
A 3. MH|A (adaptee)

AHo Ep EE FiAS 280 SeHA
| MHIA ZEAS DY AR £ o2

)
i [EL] 24 4 gig)

|
H

Adapter Service

xoz
9i=7)

- adaptee: Service

+ method(data) + serviceMethod(specialData)

specialData = convertToServiceFormat(data)
return adaptee.serviceMethod(specialData)

4. ofgHEf
Sefol= et AfHIA o] cof SR 2 ol
HEIA HHIE wrappingdtoi 2el0/HE EE|0|A

i fy

(=
Bl

o Class Adapter :r'- ZLE 7] interfaceS L@ S}= adapter classS AR5}, adapteeS AERIE 2 5F=
inheritance e 7]-7q E9| o5 S-S A D5k c++ollA] AF8st7] HE]skal, javao] A= interface
L implements2, adaptee— extends= /‘]'—'—‘*‘,: 7o JLHAT 4 Qle

17

]

=0

SHAEE 2L classE ISHol SIEE TE Bago] 23 kol 4 9. THT B9 adapteed] TE
SANA A Zlo] AT 4 92

Client interface

Existing Class Service
Client '%
+ method(data) + serviceMethod(specialData)
implements | extends
Adapter

+ method(data)

specialData = convertToServiceFormat(data)
return serviceMethod(specialData)

3. Adapter Pattern®] ¢+

4 £ IS oASEA G2 TS ALS
slE2 SRP2} OCPE &4¢ ot A28 FEE VS W @ 57F U adapter?} adapteedt

SH
=

A~
-
j_Z]-
=

o]

KR
il

=
st

g

il

3.1.2. Adapter Pattern?] L&

object adapteri Th&} o] 7EH,

[1 public class Service { A
2 public void serviceMethod() { ... };
3 }
4
5 public interface TargetInterface {
6 void targetMethod();
7 }
8
9 public class ServiceAdapter implements TargetInterface {
10 Service adaptee;
11 ServiceAdapter(Service adaptee) {
12 this.adaptee = adaptee;
13 }
14
15 @0verride
16 public void targetMethod() {
17 adaptee.serviceMethod() ;
18 }
19 }
" J
class adapter= TF21} Zto] 1 E.
r \
1 // Service®| TargetInterface= =2
2
3 public class ServiceAdapter extends Service implements TargetInterface {
4 @0verride
5 public void targetMethod() {
6 serviceMethod() ;
7 }
8 }
\ J

18

3.2. Bridge Pattern

3.2.1. Bridge Pattern

1. Bridge Pattern
Bridge Pattern & class Ti= G4 AT classg9] A2 F M9 NE AT #2322 e 242 7i
SIE= 5= DPY. =, inheritance T+ & composition F+Z 2 YEIE= A Y.

of| & 50] shape} colorgt= 7lid o] Ql-& wi, ZFz of] thet classE A &St shape 7] x color 74 ¥HE-2]
classE©o] @ Q3 o] classE inheritance® FA3H I A 2lY], g4l =& A X H shapeS abstraction
© 2, colorE implementation© 2 A 2|5} shapeo]| Al colore]] o3t reference fieldS AT 4~ 912 o]zH
shape 7|4 + color 7|42 class7} 0] %.

bridge pattern-& adapter patterny} 7320 2 S A}s|] B 4= Qx4 bridge pattern- A THA o A T}k
oF RRS =9A 07 sdslr] 99 AFHEE+= DPo|1l, adpater pattern -5-2| R4 TA| oA §3HE]| 2] k=
interface® AR5t 1 ¢ uf A}2E= DPY.

JDBC 5-¢] bridge pattern® 2 L@ & o] Q1. ojof g} JDBCE DB Hlig ol Aatglo] &=
Ne= G

2. Bridge Pattern?] L%

bridge pattern T} @o] A9l 52 Aol /7152 E5FL 3l Abstraction classe}, 2 715l et
42 EZFS Q1= Implementation class/interface® -4 %H. abstraction implementation?| object&
AL ZFA1 9] 7158 AT (composition). abstractione A A 7£H-& implementationo] 4t o] utzt
SE ol W1o] BHoR gheT & L.

s

ek

i
_{

2y

5. Client
Abstractiont Zot=0| Y& 2. Implementation

BE concrete implementation0il CHZH
Client abstraction.featurel() ZEXQ OEHYO|AS MA

1. Abstraction Hz|x|
42 £E2 Mo =2 MBS
Implementation Z4|0f| 2|Z0t0] AX|

ote| £E9 S +U Abstraction «interface»
Implementation
i.method1 -i: Implementation [>—>>
g : + method1()
+ featurel() + method2()
+ fi
i.method2() gature2(+ method3()
i.method3() A
g
1
(ME§AL)]
Refined Abstraction Concrete
Implementations
i.methodN()
LmethodM() + featureN() 3. Concrete Implementation
2HE By 001 JC

4. Refined Implementation
Hol =20l MHE M2

3. Bridge Pattern®] A4

bridge pattern-& abstractionT} implementationg £2]5}1, |22 /go] F71EPS o EPH oz ITE

Z7ket 4 9lomz SRP9 OCPE &4:3ht}.

SR A2 d 720 O3] LE H3HES} ST, A FEE LT Y Ak o w TE 24o) ofel e
[e]

2~ 0] O
T ART| -

3.2.2. Bridge Pattern?] L&

bridge pattern& t}-21} Zro] L= 4 912, o]uf BasicRemote”} abstraction, DeviceZ} implementation,
Radio”} implementation®] St A Y.

19

1 public interface Device {

2 void setVolume();

3 void getVolume();

4 }

5

6 public class Radio implements Device {

7 private int volume = 30;

8 Q@0verride

9 void setVolume() { ... };

10 @0verride

11 void getVolume() { ... };

12 }
N J

N

1 public class BasicRemote {

2 protected Device device;

3

4 public BasicRemote(Device device) {

5 this.device = device;

6 }

7

s public void volumeDown() {

9 device.setVolume(device.getVolume - 10);

10 }

11 public void volumUp() {

12 device.setVolume (device.getVolume + 10);

13 }

14 }

15 c ..

16 Radio radio = new Radio();

17 BasicRemote basicRemote = new BasicRemote(radio);
L 18 basicRemote.volumeDown() ;)

3.3. Composite Pattern

3.3.1. Composite Pattern

1. Composite Pattern

Composite Pattern ZA-F& #A 0] Ev] FHIZ BHE= 53 objectES TY object2 FojA FAL
4 QlE 2 3= DPY. =, composite patterne AFRSHH T objecte} B3t objectE SHt2] interface®
A 4 9. o]u] &Y objectE leaf, &3} object%— composite©]|2tal gt

leaf?} composited 9] class2 # 2|52l 51 £ =95t o] =2 wnitt B9 AAME 5t
=Heto] 7|1, FIEL ZEolR] ¢F2-. composite pattern— ALSS] A AA LZE "W A o5, EF
T3k objectE 9] ?11]7‘4?1 E}%‘é SAIsHA] ot ZF¢o] 7heste s & 4= S ofof meEt =9
objecto] E2] BAE @eolsiA w5t A= & AU+

|

20

sub1

20 kb

{C osite)

filel2
IOKD

file 1

ID!lh

java2] Swing S©] composite patterne: AFR-3|
2. Composite Pattern®] %

file

10 kb

sub2

10kb
(Composite)

F=of St

composite pattern< th-23} Zro] 51}t9] interfaceZ leaf®} composite THAE AR &4 = LXE 714,
IS compositer= Componento] tgt 2|AEE W2 71X 11 1o, TFE composite®| Y leafE E3H 4=
o
U
Y. Client
Component QE{I0|AS SoHM 2E
2251 NS
| Client |
E2|2f T WA % =Y WA 250]
CHol Zt2 2ia) (o, execu‘re)c’ 2
Mo 2 92
1. Component «interface»
E2|0flM T2 HH| (leah) 2t ST HA| C
(composite) 2F0fl 20! =g omponent
ME
+ execute()
v o i
1 1
2. Leaf Leaf Composite 3. Composite (S&H)
E20M2 7|12 24 (012 2A= US)
P2 AF 2Eg 2 - children: Component][] ComponentS X492 Fhxl=
sorm|E, Tpe) TR ZHAS
+ execute() +add(c: Component) Ux| Y
+ remove(c: Component) c .
; UEHOIAS & 2
Do some work. | [*+getChildren(: Component[] | - =P - e
+ execute()
THZ NI wou Zols MU
Delegate all work to Okl RA0 1YL ET UNZF He|
child components. 9 X E HLE Clientof] g
3. Composite Pattern?] 43
HU-=3t object O] Ed] WAE Tedked 4+ QAL =2 leaf class7} 37 Hete thE 55 4T D a7t
O~
glomg OCPE 43
ShARE A A QN A 2] B4 EFrE A2 HAo] o# . &S 7|50l UF HE classg Tolle 3%
interface A7} o]&]-&-.

3.3.2. Composite Pattern?] &

composite pattern2 th23} Zo] LT 4 9l

21

1 public interface Component {
int getPrice();

N

3 }

4

5 public class Item implements Component {

6 private int price;

7 public Item(int price) {

8 this.price = price;

9 }

10 @0verride

11 public int getPrice() {

12 return this.price;

13 }

14 }
" J
e N\

1 public class Composite implements Component {

2 List<Component> components;

3 public Composite() {

4 this.components = new ArrayList<>();

5 }

6 public void add(Component component) {

7 this.components.add(component) ;

8 }

9 @0verride

10 public int getPrice() {

11 int totalPrice;

12 for(Component component : components) totalPrice += component.getPrice();

13 return totalPrice;

14 ¥

15 }
\ J
r \

1 Item iteml = new Item(10);

2 Item item2 = new Item(20);

3 Item item3 = new Item(30);

4 Composite composite = new Composite();

5 Composite subComposite = new Composite();

6 subComposite.add(iteml) ;

7 subComposite.add(item2) ;

s composite.add(item3);

9 composite.add(subComposite) ;
L System.out.println(composite.getPrice()); // 60)

3.4. Decorator Pattern

3.4.1. Decorator Pattern

1. Decorator Pattern
Decorator Pattern2 objecto]] &£7}2 ¢l 7|52 o] ZH o2 =718 4 QJEE 1= DPY. =, 7|&
objecto]l F7} 7]'5& FAlot= AR olafF & Sl

o2 So], SNSE E5l ¢ 7|52 7St 1S uf AFexpE g oL vy 410 SNS7 AE 21, 2
A o1 S Qo AL O1F shte] 44 P2 Fastelw we] SNS7T 9lS w 2 — 17]9) class
£ A 95fjof gt S5}A|HE decorator pattern2 AFE5HH 512 decorator classTh A Q) ol 511 AFR-A}2] A e

wel 502 158 488 4 U8

22 objecte] AT} 7)50] WMl MAEE 49, 2-& classE A4 20| RS
At BP0 A8

Pt giol WAE

f
rr

22

java@] Stream, Collection 5-©] decorator pattern®© &2 F3A x| o] ¢J-2-.

2. Decorator Pattern9] #%

decorator pattern< th-&-3} Zto] 7] & 3§ =2 A o]5} 11, OH Y =of o3} decoratedSl= FLZ5 7142, decorator
= ZpAlo] wrapSh= object(wrappee)E 7122 WW WHE4E 711 9J-S. o]uf base decorator= BE ZH]
2 wrapping® objecto]] $]35}al, base decorator—‘:'f— Ar&=Ht concrete decoratorso] &7} 52 744,]@,
concrete decoratoro]| A= 7] wrappee?] 7|52 I E =515 (super.method()) 7} 7]—~ A o]5t,

cli a = new ConcComponent()
b = new ConcDecoratori(a)

¢ = new ConcDecorator2(b)

cexecute()
R // Decorator -> Decorator -> onen
«interface» e ato Decoratol Component
1. Component Component
BHE BHLE MH|S D Eof CHOH
HEHS]_'i Hoc.._ Lt HEE e il CHE! + execute()
25 YEHojAS MY yy
R 3. Base Decorator
J ! BHEIE MH|E AtxOL7| QU HEE XL
2. [_Zonr:refe Component Concrete Base Decorator 7% HI2H0EE BE xS afuE
2HEEE WHS 2eha Component Wxjlofl et
7|2 HES o| -wrappee: Component
2 OESS ojo B4
712 wSSE EE'I“AEEllIElE'iuﬂ Aot 13 + BaseDecorator(c: Component) wrappee = ¢
= T e + execute() + execute()
4 wrappee.execute()
Concrete
Decorators

Concrete Decorator
=
=

o Edoz =7kE 4 U

[y
dxdE i

=7 UES FO
tass g super:execute()

5
7% H|Z{0EIS 2uiztole o CEE S
ol WES o oiME =5 ey [+extral
A\Ezlli

3. Decorator Pattern®] 3

ZF decorator classhfth QY-S 7R B2 SRPE £4:511, |2& FE =77} {olst22 OCPE &4
FERF FAA 7} ob 2t interfaceE AHSHE = DIPE F4-39F.

SIAEE & BRE 7} =otx] a1, o] decorator® A= H-$- EA wrapperdt AHA|517] o] 82 E;_f—)‘__ old
decorator® 7HES 1) 1 A0 wet F2to] Aolrk Qe 4 9, Mo Apdlo] FUH SAES
F@3E o] Actzg.

I

3.4.2. Decorator Pattern?] L@

decorator pattern th-21} Zro] FL&AS. base decoratoro] A& wrappee?] 7|5 I & AFESIEE S,
concrete decoratorof| A= wrappee?| 752 AF8-51E (super.send()), 752 71

[1 public interface Notifier { A
2 void send(String meesage);
3 }
4
5 public class BasicNotifier implements Notifier {
6 @0verride
7 public void send(String message) {
8 System.out.println(message) ;
9 }
10 }
. J

23

1 public class BaseDecorator implements Notifier {
2 private Notifier wrappee;

3 public BaseDecorator(Notifier wrappee) {

4 this.wrappee = wrappee;

5 }

6 @0verride

7 public void send(String meesage) {

s wrappee.send (message) ;

9 }

10 }

11

12 public class FacebookDecorator extends BaseDecorator {
13 public FacebookDecorator(Notifier wrappee) {
14 super (wrappee) ;

15 }

16 Q@0verride

17 public void send(String message) {

18 System.out.println(" [Facebook]") ;

19 super.send (message) ;

20 }

21 }

3.5. Facade Pattern

3.5.1. Facade Pattern

1. Facade Pattern
Facade(T{ATE) Pattern> 2to]Hejg|up A BAARS Mot ARG 4= Sl
[T = |

A °1 Zb_i facade= A& AHAL 9u|gh

o & 59, javao] Al oW de L gc

F2 B ABALH E Oz}
el ol 27t Baw w gt

Ea = S
e = [¢}
DPA. 55, 271 A4) cla s 4 LI 218 5.6 51 A8 A7) el ool AL 2 ol 2 el A Bore

£ ZA5t= AL, chent7} email APIE 2435 =9
20 S . e pattern S 2 T2 FolA A AIAE AT AL§ol 1 BT
ol

olE H¥Fi & uf, MEA L tis) At

Client 1 Client 2 ‘ ‘ Client 1 ‘ ‘ Client 2 ‘
Complex Subsystem |\>(/ Complex Subsystem | Facade

—

2. Facade Pattern9] L%

class ZHH| & A of whet o] class=2 B E|5H= 7

24

facade pattern& Th2-3} ZHo] subsystem classo 2] —E—ﬁ]—% facade class& A oJst= FXE
7ol 4

7H4.

o] 1 7hekgt

o|t] facade

1. Facade 2. =7k HALE 3l
S2t0|UE7 HotA| A2 U 2= UES OfLEe] HAES s
ME A|AEIQ] 7|5 XetS OOIS Exigt

BH= =

Facade Additional

- - Facade
m - linksToSubsystemObjects

- optionalAdditionalFacade

3. Client
ZE0|UEE ME A AR HHIE + subsystemOperation() . + anotherOperation()
Y 2 &0 g3 HAES S - v N —
R P Y R /
/ \ b “ ’

’ \ \ LY !

; S A \
\ Subsystd Subs | /
IS MLEYd cl ubsystem %

S~ Subsystem class
Su
class
system

Subsystem
class
class
class

3. Facade Pattern®] F+4

OlEA-E Fo| AL} g E(facade class) 2 H-& 4 Q111, client+= facade classTt o|3l|5}H H&= H TS AlH

A
T?}\D

5}2] gt facade class7} W& classet AgsHA & o] god object7} & 4= 9111, I E F7}of ufgl G2 H S thAato]

=°d.

st

God Object® 5FLt9] classt object7} U B2 Ho[E|9F 755 7P A AAE R Al Het
o2, SRPE 94t

3.5.2. Facade Pattern®] &

= anti pattern

9] sendEmail(emailMessage);& $&3l= 2o 2 oA 44 24 4+ 2.

public class EmailSender {
private EmailSettings emailSettings;

public EmailSender(EmailSettings emailSettings) {
this.emailSettings = emailSettings;
I

public void_sendEmail(FmailMessage .emailMessagel d. . . ._..
'Properties properties = System.getProperties();
iproperties.setProperty("mail.smtp.host", emailSettings.getHost()});
|

I
1Session session = Session.getDefaultInstance(properties);

i

try {
| MimeMessage message = new MimeMessage(session);
i message.setFrom(new InternetAddress(emailMessage.getFrom()));
! message.addRecipient(Message.RecipientType.TO,
! new InternetAddress(emailMessage.getTo()));
! message.setSubject(emailMessage.getSubject());
! message.setText(emailMessage.getText());

1

1

]

|

I

1

I

]

i

I

Transport.send(message);
} cateh (MessagingException e) {
e.printStackTrace();

facade patterne T3} Zo], T3] E&SH IT L} o8] 7|52 B2 class2 TG client= EmailSender

25

3.6. Flyweight Pattern

3.6.1. Flyweight Pattern

1. Flyweight Pattern

Flyweight Pattern& W2 28] AFEHS £0]7] Y8l 7153t objectE ZH/x]-—QLo]-— DP<¢. =, objecto] tst
caching2 285t ZQ). o|u] Ho}sH= &AL extrinsic stateZ, %3}0}7\] oL & é% ntrinsic statez}al
E. 2 31, intrinsic stateoﬂ 3 caching2 -3t

A& 591, editorof| A chacracerg Z @ok= object7} § mebJLqﬁﬂﬂﬂonﬁ*LQEmE%dwmma
object7} fonto] et HHE A& ot QS A= §lS. flyweight pattern2 2-85HH fonto] Eﬂa BRo
w2 WA classE /d5tal, font objecti= stTE AJAdSto] of 2] chrarcter object7} AFESlE S & 4= Q3.

%5 v|@elo] Q.2 AFeke object7} W& 1, object o] FEACIHA W i Ho| B uf 2
483

et}

2. Flyweight Pattern®] 7%

flyweight pattenr-2 th-2-1} Zo] flyweight objecto] thet poold 2| 5}=(caching2 5}=) flyweight factory
¢} flyweight class= LA E. flyweight classE AF86}= classt= flywieght object& 7}2]7] 7] 5t Wl HEE
714,

3. FlyweightFactory
FHAIZ 0|2010q flyweight poolS 22|

FlyweightFactory

- cache: Flyweight[] Client I

+ getFlyweight(repeatingState)

if (cache[repeatingState] == null) { Context
cache[repeatingState] =
new Flyweight(repeatingState) - unigueState
} - flyweight

return cache[repeatingState
[rep 2] + Context(repeatingState, uniqueState)

+ operation()

2. Context

Flyweight2l context LHO{lM 238
MEHS Zg

this.uniqueState = uniqueState
Flyweight this.flyweight =
factory.getFlyweight(repeatingState)

- repeatingState

1. Flyweight
02! BH|S Zofl 38 & £ QU=

s20| ToE

3. Flyweight Pattern®] 3
fiyweight pattern AL81A HR 2] ALg} dlolel 44 9 o] W2 latency S £ 4 L.
ol =

IR gF =714 class AFg o2 I B2 o}A.

3.6.2. Flyweight Pattern®] L&

. o]t flyweight class= 7] 2] © 2 instrinsic stateWr-2 7}2] 1L

26

1 public class Character {
2 private char value;
3 private Font font;
4 public Character(char value, Font font) {
5 this.value = value;
6 this.font = font;
7 }
8 }
9
10 public class Font {
11 final String family;
12 final int size;
13 public Font(String family, int size) {
14 this.family = family;
15 this.size = size;
16 }
17 // getters
18 }
\ J
e \
1 public class FontFactory {
2 private Map<String, Font> cache = new HashMap<>();
3 public Font getFont(String family, int size) {
4 String key = family + ":" + size;
5 if (!cache.containsKey(key)) {
6 Font newFont = new Font(family, size);
7 cache.put (key, newFont) ;
s System.out.println("Al22 ZE MH: " + key);
9 }
10 return cache.get (key);
11 }
12 PR
13 FontFactory fontFactory = new FontFactory();
M Character cl = new Character('A', factory.getFont("Nanum", 10)); |

3.7. Proxy Pattern

3.7.1. Proxy Pattern

1. Proxy Pattern
Proxy Pattemn B4 2 objecto] t7 28 EISA AolE 4 Y= G DPEL. 5, client7h 22
objecto]] 213 oA 2L F St 4, proxyE AA AMESHES Sh= AY.

FZ YE object7} 117SH AR E 7R YA, obJect 3717} AA lazy initializationg Z-835}11
ﬂ% 50l AH83h 4 proxy clasol cache® HA BT 37} cachinglo] 914 91 w6 oby
£ ABOIES S5 S5, U objeerE AGS] ol proxy A B2 Hold £14 AA, 27
SO AP 7% & 27101 428 PR class® 2H17] o2& 1 A}l
2. Proxy Pattern9 7%

proxy pattern b3 ZHo] i object®} A3t interfaces FASHHAA Y1 objectE &= LR E
7. o & 9lall Y& objectE 712]7]+= R H4E T &8

o{n =
o Q Mo

DOIK

27

1. Service Interface

«interface» EEN7H MEIA WRIZ QY 5
. OIEE ZEA|7} Of2}0} OH= A{H|AL
Servicelnterface ~ A R

2IEfT0| A
+ operation()
1
D e e]
! :
N 2. Service
3. Proxy Proxy Service o 220 252 X2ots
MH|A THS k27)E AT EFN
HEZL A - realService: Service K>—=]... ato|= 2|2
ZEA7t 239 Halg (EIOI=E1ED
erZoiet 1 2 H2s RES g : ;
Jrim . = |+ Proxy(s: Service) + operation()
+ checkAccess()
+ operation() realService = s

if (checkAccess()) {
realService.operation()

}

3. Proxy Pattern®] Z¢t3

7)E DEG 7 %5-S GAGFAN HZL 7S F718 5 GLOBE OCPE E4311, 71 7152 U object
7SS L AZL 7SS proxy7t SAREE o SRPE F5@
proxy AHgo] afel 3 Bg4o] ok T, proxy AA7F AHGSHE 427 BOW MR ol H

facadeZ} A|2-& interfaceS A 2]5) B2 st A|AH-S Th45}
object®2 7H= A&5-E& Aot

3.7.2. Proxy Pattern?] &

Al A, proxy+= 7] interfaced AHE-S|

proxy pattern Thxit Zro] +dT 4= 915
r B
1 public interface YoutubeLib {
2 Video downloadVideo(int id);
3 }
4
5 public class YoutubeClass implements YoutubeLib {
6 public Video downloadVideo(int id) {
7 Video video = new Video();
. // dA 22 2
9 return video;
10 }
11 }
12
13 public class ProxyYoutubeClass implements YoutubeLib {
14 YoutubeClass youtubeClass;
15 public ProxyYoutubeClass(YoutubeClass youtubeClass) {
16 this.youtubeClass = youtubeClass;
17 }
18 public Video downloadVideo(int id) {
19 // cache=l video’} UCH BfEt video Elzt
20 // cacheZl video?} 2D youtubeClass.downloadVideo(...) &=
21 ¥
22 }
23 PR
24 YoutubeLib youtubLib = new ProxyYoutubeCLass(new YoutubeClass());
. youtubLib.downloadVideo (1000) ;)

28

4. Behavior DP

4.1. Chain of Responsibility Pattern

4.1.1. Chain of Responsibility Pattern

1. Chain of Responsibility Pattern

Chain of Responsibility Pattern(CoR)-2 o]® Zrg oLt client®] & -8 S}t9] objectol| A 25 Sh= th4l,
ol2] 72| objectollA] $HFFHLE L}FIL chain FEIZ QA AMH o2 Aelshe DPY. ol A4S 5
885}= =3 objectE52 handlerztal §F =, handlerE chain® 2 AZAS|A] chaine w2t Qo] A=
k13

ol® Aol we} handlerS Aok s, £4 2348 oA 9] objecto]] A z]slok 3 uf A5, £
23S Ao handlerS9] FR1} 247k BH 0= AFEolo} & uf AH5H.

2. Chain of Responsibility Pattern®] L%

CoR2 th&3 2 +2E 7M. base handler+ handlere] Hiet 3-& 7|57}, th handler& 235171 919
ﬂ“bﬂ M-S 7H2] 11 Q)= class. concrete handlerof| A= 2|7} 7}50lH * 2] 511, base handler?] HH
H 2 /\]—JloH & handlerof| 7] 242 4.

Zeto|HE
l Handler .
ZEMO OIETO|AS Mot el =20 okt HQISS B Het LokALE
FSHL == Exoz IO A QI2
EXoR MU £ UZ
4 4
«interface» l Clien:t 9
Handler
+ setNext(h: Handler) h1 = new HandlerA()
+ handle(request) h2 = new HandlerB()
A h3 = new HandlerC()
2. Base Handler (F=4f 22iA) 2 H hi.setNext(h2)
DE WS2 IAS0| 2SN ; h2 setNext(h3)
M8 ICE WS QS BaseHandler I
O WEZ HEE A next - next: Handler hl.handle(request)

+ setNext(h: Handler)
+ handle(request)

Iy

3. Concrete Handler ConcreteHandlers N
IHE H2[0}7| T AN ZEI Y if (canHandle(request)) {

/.
}else {
m parent::handle(request)

}

if (next != null)
next.handle(request)

T

+ handle(request)
—

3. Chain of Responsibility Pattern®] Z¢t3
client= chain®] W& 725 & 87} gla. EoF 7|E I E W7 glo] 2L handler I=5 F7}5]| chain
o ¥& 4 9lomg OCP7} ShH H.

S 5 4o] ol ALt A1) Helo] T latency7} ol 5 Q1 chaino] ZE FHHW TG 7
1 4 98-

L=

o

B K

4.1.2. Chain of Responsibility Pattern®] L&

CoRL the1} Zro] I+ 4= Q1L o] interface?} base handlerE HE 2 A 2)5}l= tA], HandlerE abstract
class2 Ao,

29

[1 public abstract class Handler { A
2 private Handler nextHandler = null;
3 public Handler setNext(Handler nextHandler) {
1 this.nextHandler = nextHandler;
5 return nextHandler;
6 }
7 protected abstract void process(String url);
8
9 public void run(String url) {
10 process(url);
11 if (nextHandler '= null) {
12 nextHandler.run(url);
13 }
14 }
15 }
\
e N
1 public class DomainHandler extends Handler {
2 @0verride
3 protected void process(String url) {
4 // url®| domain IO ~af
5 }
6 }
7
8 public class ProtocolHandler extends Handler {
9 @0verride
10 protected void process(String url) {
11 // url®| protocol IfY +af
12 }
13 }
N J
e \
1 Handler handlerl = new ProtocolHandler();
2 Handler handler2 = new DomainHandler();
3 Handler handler3 = new PortHandler();
4 handlerl.setNext (handler2) .setNext (handler3) ;
5 String urll = "http://www.youtube.com:80";
6 System.out.println("INPUT: " + urll);
L 7 handlerl.run(urlil);]

4.2. Command Pattern

4.2.1. Command Pattern

1. Command Pattern

Command Pattern Q% E= HT-2 object® encapsulateds}o] Q3o gt AAIEAS =

command pattern 242 HUYE= object?l invoker2}, _9_7~4 2 Ht 29| receiver2 FAH. =, invokere}
receiver= classE £2]5}1, 2 42 object®2 A HAEs= A Q.

ANE 50, TLsHA AT o HEo] 247 thE A HOF Sh= A%, ©eol A 2R T
HEHZ classS 3R Aol @ Hato|dsfjof 3t O] 31 39 command patternS ARESHH Z+HZbo]| o gt
classE A5l HAEE 1L 23S HY= EH/;J, button2 invoker®, AA| 22 43Y5l= object
£ receiver2 5111, command& AFES| R4S HULEE & 4 2. =, commandZ} AFE2F QJE H o] A2}
Rz 22 Aol o] Z7F layer2A] 715,

command patterng AF-&SHH invokerol| A 27, undo, redo 52 F3AsH7| o=

)

2]

i

30

2. Command Pattern®] %

copy = new CopyCommand(editor)
button.setCommand(copy)

5r'
LClient

command pattern< T3} 7+0] commandS AP A] 7| = invoker, -2 Tl
o2 2FS 43 5}= receiver®2 FHAJH.

1. Invoker (Z&Xt)
2N of= Hug ¥

exioz Z2t0|UEZFE 02|

Q)X command,

MME FMES BropH S 2. Command
FUES AWot7| 2t HfIMES MU
Invoker 9
- command «interface»
Command
+ setCommand(command)
+ executeCommand() + execute()

Receiver

+ operation(a,b,c)

t

3. Command Pattern?] Z43

receiver.operation(params)

ConcreteCommand1 Concrete
. Command2
- receiver
- params
+ Command1(receiver, params) | |+ execute()
+ execute()
3

3. Concrete Command

EN
T
HiA
T

Clet uel 2N Aug 2o
|0 DS Al ot
S 74 ivce WS Mo &

ohe o TR0k o
ol

il

AA 2 QA

command pattern< invokerQ} receivers £2|5l1l, 7|& IE £ Qo] |28 ZES U1 £ 9long
SRPZ 253,
SHAu SLE BErt 574
4.2.2. Command Pattern?] 7¢&
command patternS th2 3} Zho] JLAT 4~ 9L
e \
1 // receiver
2 public class Light {
3 private boolean isOn;
4 public void on() {
5 System.out.println("&= ZALICt."™);
6 this.isOn = true;
7 }
8 public void off() {
9 System.out.println("S2 HLCt.");
10 this.isOn = false;
11 }
12 }
13
14 // Invoker
15 public class Button {
16 public void press(Command command) {
17 command.execute() ;
18 }
19 }
\ J

31

// command

1
2 public interface Command {
3 void execute();
4 }
5
6 public class LightOnCommand implements Command {
7 private Light light;
] public LightCommand(Light light) {
9 this.light = light;
10 }
11 Q@0verride
12 public void execute() {
13 light.on();
14 }
15 }
16 ..
17 Button button = new Button();
18 Light light = new Light();
L button.press(new LightOnCommand(light));)

4.3. Interpreter Pattern

4.3.1. Interpreter Pattern

1. Interpreter Pattern
Interpreter Pattern 57 10]9] % 215 class2 UEHU AL, siE dojo] £45 siAste 4% 5ol
AHgEE DPY.

ol Hutlel, Qe mele S AL 4 9
sl 5.

o
=
Am
ol
re
<
=2,
r-lu
mlo
W
;L
D
A
_\;
QL
rr
ol
o
Jo
r
9#
X

& &1, postfix expression®| g2 A4t ¢, =AHE terminal expression, A4HAE nonterminal ex-
pression @ 2 A || A AAS 4= Q)&

2. Interpreter Pattern®] L%

interpreter pattern< Th-2-1} 20| expressiono| A AlEst= A H (HG9 ZF 5)5 Al = context, inter-
pret() HIAE (A= HAE)E EJS)E= expression 1nterface9]— I3 Ez TAE

interpreter patternof| A= <10]9] 22 objectE 9] treex® UEFH L, ZF objectoll Al AAZ 2 Z+ZH9] in-
terpret() HIAES S&3] ZIE WHESH o|nf expression interface?] THAE leafo]] SJFSl= terminal
expression(At 5)1 leaf”} obd nontermmal expression(AAA}F 5) o072 LA,

32

ZE expression0i|A At20t=E 2SE
MEJL T QIS (0], #g 2
Client Context
E¥ot=s 2HS LERH =0 context
£ &xohM ofaiots B4E 7tz
<<Interface>>
Expression
+ interpret{(Context)
l}
1
TerminalExpression NonTerminalExpression
+ interpret(Context) + interpret(Context)
3 XtM|2 Z27t == expression CHE expressions& MM E X
(x,y, z) O}l Q= expression

(*+-)

3. Interpreter Pattern?] Z¢+d
interpreter pattern Aolo] A2 B4 & F71eb7] 418, 5ol Pedt 2L /FAck T4,

SHAIE Qlojo] Rlo] Bts|E4 S A BHEE Robx 1, Aol 45tE 4 98-

4.3.2. Interpreter Pattern?] L@

T3} 2o interpreter patterng ARE-of| GIAlX MAL-S 3Z9tS= postfix A4S TS 4= = ol Vari-
ableExpression©]| terminal, PlusExpressionT} MinusExpression®] nontermainal$J.

o|uj] PostfixParser= postfix d4to]| what, AA| 2 E2d-8 1}Al5tl stacke 283t AAS)E= classY.
r D)
1 public interface PostfixExpression {
2 int interpret(Map<Character, Integer> context);
3 }
4
5 public class VariableExpression implements PostfixExpression {
6 private Character character;
7 public VariableExpression(Character character) {
8 this.character = character;
9 }
10 @0verride
11 public int interpret(Map<Character, Integer> context) {
12 return context.get(this.character);
13 }
14 }
\ y)
r \
1 public class PlusExpression implements PostfixExpression {
2 private PostfixExpression left, right;
3 public PlusExpression(PostfixExpression left, PostfixExpression right) {
4 this.left = left;
5 this.right = right;
6 }
7 @0verride
s public int interpret(Map<Character, Integer> context) {
B return left.interpret(context) + right.interpret(context);
10 }
11 T
. J

33

r N\
1 public class PostfixParser {
2 public static PostfixExpression parse(String expression) {
3 Stack<PostfixExpression> stack = new Stack<>();
4 for (char c : expression.toCharArray())
5 stack.push(getExpression(c, stack));
6 return stack.pop();
7 }
8 private static PostfixExpression getExpression(char c, Stack<PostfixExpression>
— stack) {
9 switch (c) {
10 case '+':
11 return new PlusExpression(stack.pop(), stack.pop());
12 case '-':
13 PostfixExpression right = stack.pop();
14 PostfixExpression left = stack.pop();
15 return new MinusExpression(left, right);
16 default:
17 return new VariableExpression(c);
18 }
19 }
20 }
\ J
4.4. Iterator Pattern
4.4.1. Iterator Pattern
1. Iterator Pattern
Iterator Patterne 9] 9] collection(list, tree, stack 5)of T3l collection W] QA ES sl 43S 4+
UE= Sh= DPY.
A m7zo) vfet ARHel % gl (list, array 5), HMAFH AR Qv (tree 5) ZF H-20] o B
o2 235l FEE »= AL BEHG iterator patterne: AF&SHH collectiono]] A#glo] &35l 2 & 4=
13-
javaQ] java.util.iterator”} iterator pattern© 2 FHE o] ¢J-2. hasNext(), next(), remove()(next()2 T3t
d 94 AHA), forEachRemaining() (2 AH W AEH S 2HA5HH Z+ _9_/\01] s a&)7 &2 HAsE
A L.
2. Iterator Pattern®] %
iterator patterno]| A= collection& —(v_\—ﬂ;]-‘— HI 9] object?l iterator% A oJst. o] iteratoro]| A= has-

1\/101‘6()E E]—'g —9-/\7]— }_ZHE]"L;]]’ al, etNGXt()E E]"—‘ QA 7]'Z4_2_]__ indeXE- +16’]— O]Oﬂ
HHE 2.9 A1-851H 1A collectiong ﬂ’G 2= 9l

face2 implementsstil, -2 5= iteratorES L

o}% .

3. IterableCollection
ZAMIY AL BEXE

e 2o B2 Ny MY 7txi27] 99t o= et
1 5 3
«interface» «interface»
Iterator IterableCollection
+ getNext() Bttt + createlterator(): Iterator
+ hasMore(): bool A
Ja\ :
] : 4
Concretelterator ConcreteCollection
- collection: ConcreteCollection
- iterationState
+ Concretelterator(+ createlterator(): Iterator
2. Concretelterator ¢: ConcreteCollection)
2N =R E A ST [+ getNext() 4. ConcreteCollection
LaRIES Y + hasMore(): bool 2HERE ZeHAL A UAHA
dhet

34

e}

<. iterators A]-JQ-OL collection-& IterableCollection inter-

3. Iterator Pattern?] Zo+3

iterator patterng AR§-SFH 9219 collectiono] Hisl &Lt 2] A H |25 AL = 9l

tiond} iterators E2]5}o] SRPE 43t

TE B340 ok, AHESHE collectiono] B 7] GAL 2R 90 anti pattern <)

4.4.2. Tterator Pattern®] L&

iterator pattern2 th23} o] LAT 4 9L,
r \
1 public interface IterableCollection {
2 Iterator createlterator();
3 }
4
5 public interface Iterator {
6 Object getNext();
7 boolean hasNext();
8 }
9
10 public class ArraryCollection implements IterableCollection {
11 private Object[] array;
12 public ArraryCollection(int size) {
13 this.array = new Object[sizel;
14 }
15 e
16 @0verride
17 public Iterator createlterator() {
18 return new ArraryIterator(array);
19 }
20 }
\ J
r B
1 public class ArraryIterator implements Iterator {
2 private Object[] array;
3 private int index = 0;
4 public ArraryIterator(Object[] arrary) {
5 this.array = array;
6 }
7 @0verride
8 public Object getNext() {
9 return arrary[index];
10 index++;
11 }
12 public boolean hasNext() {
13 return index < arrary.length;
14 }
15 }
16
17 “ e
18 Iterator it = arrary.createlterator();
19 int sum = 0;
20 while(it.hasNext()) {
21 sum += it.getNext();
22 }
\ J

4.5. State Pattern

4.5.1. State Pattern

35

1. State Pattern

State Pattern-2 objectQ] state(AE])E A 2|5}l, stateo] wel P52 HAT 4 YT =
composition© 2 stateE T&]slEE S}

of| & E9], document object”} Q111, state’} draft, moderation, published7} QIthal 3} ZF Abgjof| what
publish() AT Fato] Trefof shoy, ol thed XAROE TAT S5k AR 74=Ao] Holq.
state patterng AR8SHH 7} stateof Tt classE Y11, F4F —% ol o 3l

o]uff state objectE singleton© &2 Sh= 7 ¢ £ 4 Q2.

2. State Pattern?] %
state patterne stateE 7}2]= objectE contextz} 5}l context”} 7F2] = Z} stateo] ot class% ‘?_]'501 A

t= DP4.

AN

ol

stateo]] T2 S22 A OJS} context object= H A stateo] t)-E]+= state objectE X oh= HEE 7]—2]_1_
31, I objectl] HAEE SET 2GS —roﬂ St ESF state objectT context objectE FZF5H= HEE
7FA 2 Sl o= $A4F o] F context o] stateE WS Z|EF & o 7] W .
1. Context
StateE 7H= K| 2 State

MENS LIENE BE WES 717 ME HIMES 2

Context «interface»
I ——. State
- state
s +doThis()
+ Context(initialState) +doThat()
+ changeState(state)
+ doThis() 4
+ doThat() \ !
ConcreteStates 3. Concrete State B
- THIHY B MEHE SHAZ EW
e state.doThis(- context State BUE BHEI= HMESS 7
state.setContext(this) Nxoz o1
+ setContext(context) T
Client]- ---------- | + doThis() Confextoi] CHot &% ZI=S k%2
L) Sl0f 2o oS 227l ok

initialState = new ConcreteState()
context = new Context(initialState)
context.doThis()

Context?] MEHE BHOP7|Z &

Se|AE0lA def

i el 2EAE EE // XA 8 4)
H Z48| xAof] 2|3 state = new (‘JU’WEIS(E(EO
HAL|UE 5 ABLICL context.changeState(state)
3. State Pattern&] oA
context9} stateS 205 SRPE BT 5 93, 712 TCB 27 SHEA JHE F74g 4 glonz
OCP7} o] A S;Jri%l.
siAgE I E BT I Z716100, state B2 classE QYA oF SR E state =71 B 712 YA state?} &

W57 g A% v EEHY,

4.5.2. State Pattern®] 3¢

30
mlo

state pattern2 th2- Zo] LH=E 4

36

[1 public interface PowerState { A
2 void pushPowerButton(LaptopContext context);
3 }
4
5 public OnState implements PowerState {
6 Q@0verride
7 public void pushPowerButton(LaptopContext context) {
] System.out.println("Laptop power OFF");
) context.changeState (new 0ffState());
10 }
11 T
12
13 public OffState implements PowerState {
14 @0verride
15 public void pushPowerButton(LaptopContext context) {
16 System.out.println("Laptop power ON");
17 context.changeState (new ONState());
18 }
19 }
\ J
e \
1 public class LaptopContext {
2 private PowerState = powerState;
3 public LaptopContext() {
4 this.powerState = new OffState();
5 }
6 public void changeState(PowerState powerState) {
7 this.powerState = powerState;
8 }
9 public void pushPowerButton() {
10 this.powerState.pushPowerButton(this) ;
11 }
12 }
13 PR
14 LaptopContext laptopContext = new LaptopContext();
15 laptopContext.pushPowerButton() ;
| laptopContext.pushPowerButton() ;]

4.6. Strategy Pattern

4.6.1. Strategy Pattern

1. Strategy Pattern

Strategy Pattern< HE}Qlof 41 e]& H=zk
Ae PelR 5 YD T

AE Sof, Hr[AClA Hol A AMgARS] Ao wet HHHF 2 S Zotof & & Q1A A7F 7P ¢F #6]+=
ARE gojok & 4 918 o|u] 2 Heke classel W& FHSIY TEA oA T, A2e Aol F7151]
SEFS

javaQ] Comparator?} strategy pattern® 2 FL&E 0] Q1S sort 5of| 4] comparedste= AZFS 214 2| Ast=
A9 ol A,

fle

EHoz st 4 9L E 5= DP9, =, composition© 2

t

r
[}

2. Strategy Pattern®] %

Strategy pattern® AAE strategy 5 SHE AF8E] AYS FASHE objectd] contexth, 7 S Zol
ot object]l strategy® /. contexti= gt stratgy g FZot= H4E 7HA AL, i strategy Q] HAEE
S &l AR

37

5. Client
S T2k YIS a0

Contextofl T

3. Strategy Pattern?] Zo+Ad

4 ofsfsta glolof &

strategy.execute()

1. Context

+ doSomething()

FHIFQ Tef F ofLtof chet BEE KX 2. Strategy
Tef QETo|A S SoHMLt S oE 24 Mol 282 YHT0|AS T
Context -
«interface»
- strategy > Strategy
+ setStrategy(strategy) + execute(data)

ConcreteStrategies

str = new SomeStrategy()
context.setStrategy(str)
context.doSomething()

Y oo

other = new OtherStrategy()
context.setStrategy(other)
context.doSomething()

+ execute(data)

3. Concrete Strategy
Context?t AtE0t= 22|52
Crofor s g 2N

strategy pattern AH8-51%] Rehlo] strategy® 2N F8T % 9. ol M2 e &
%7 glol 2712 4 o2 OCP7} E4H3L, 7 strategy classiz Shte] 3lel 52
F5

SPARE SE BATE S} ObA 1, strategy7h B A UL MIEEH Y. EF client7} 2 472

i

strategy patterni} state pattern FZ7} GASEL E t} compositiond &5k, ZFHZF G E|Eo] T3 ol
wA|eL AFeof] mE FF Hote] S wEthe HollA Aot Qg =, 2n ARl Zol7h EAR
4.6.2. Strategy Pattern?] 7&
strategy pattern-> Th-3-3 Zro] AT 4= Q3.
r N\
1 public interface PaymentStrategy {
2 void pay(int price);
3 }
4
5 // strategy
6 public class MasterCardStrategy implements PaymentStrategy {
7 @0verride
8 public void pay(int price) {
9 System.out.println(price + " Won paid using MasterCard");
10 }
11 }
\ J

38

// context
public class ShoppingCart {
PaymentStrategy paymentStrategy;
int price = 0;
public void addPrice(int price) {
this.price += price;
}
public void setPaymentStrategy(PaymentStrategy paymentStrategy) {
this.paymentStrategy = paymentStrategy;

© W N e g A W N e

}
public void pay(int price) {
this.paymentStrategy.pay(price) ;

[
[S)

-
-

—
)

}

o
w

}

-
IS

o
o

ShoppingCart shoppingCart = new ShoppingCart();
shoppingCart.setPaymentStrategy(new MasterCardStrategy());
shoppingCart.pay() ;

[T
ISI=Y

=
0

4.7. Mediator Pattern

4.7.1. Mediator Pattern

1. Mediator Pattern

Mediator(F A A) Pattern< object 2] FA4lS Agolal, mediator objectE FolAH FAISHES of=
DPYl.

oAE 0, o]H tho|d 2 10f ofg] HEe|Y tE0] 2 o, ZF HE Zg) o 3tH #3HE FdstEH
7} object7} B3t objectE FXoIEF & 4= 5. SHA|TE H Y5 @olx|H object 7He] FHx
T YR oA, ALt EolA Al H. mediator patterng ARESHH ©]7 M:N 25 M:19] A=
AR & 9L,

T2 CiSHARL T2 cshaxt

[Button]<—>[Dialog lv\ [Button]<—> Dialog
)
m Tabs I

| checkbox |<>| TextField | checkbox | | TextFietd

2. Mediator Pattern?] L%

mediator patterne th-23} Zro] EA1-& Fi1Hbolok 5= objectE<Ql component?}, EA1-S ZA|5H= object
o] mediator2 FAE. componentE-2 mediatorE ZZ5H= H4E 7FX]|2 9111, concrete mediator= 7+
components& FZ5h= HE4E 71241 912

39

1. Components 2. Mediator
STHXHO]| CHEF ZZ7E Qlod notify HIMEE Soif S
SIS SO &S
HEHES CHE SXXtof

ComponentA ComponentB
HUGHA THALBY SE S P P
—>| - m: Mediator - m: Mediator [«
+ operationA() «interface» + operationB()
Mediator
pp—
ComponentC | 7| pEer, ’S~| ComponentD
—=>| - m: Mediator Z} - m: Mediator [«
HEHES2 MES 2ot o
x| oroto} Bt + operationC() ConcreteMediator + operationD()
ZATIA S 0f| Q0| BHATiOd - componentA
EXHXOHE| o 2E{opet - componentB m.notify(this)
- componentC
& componentD *
if (sender == componentA) - {+ notify(sender) 3. Concrete Mediator
reactOnA + reactOnA() ChIOH HEHS210] 2|
+ reactOnB) H&U}
+ reactOnC() EXHXI7E ZE[ots HAEHE
+ reactOnD() o] Ax2 9x|

3. Mediator Pattern®] Z43
object 7+9] A& FF11, FE o] W GABSLE 47 ¢ Eot Y22 component E mediatore] tgt
F7HE vl ¢A & 5 5.

SFA|9 mediatorZ} god object7} = 4)&

mediator pattern< facade patternTt -G-A}sE HE.o] Q1 2]ut, facade pattern& A HA] Ao tfot TH&=31= QlE]
go|AE AoJ5t1 ABAAHLL facadeo] 2]t interfaceS Q1A15FR] F¢t. HFH mediator pattern component
2o BAE Stz F11, ABA o] mediatorS 27 BT,

4.7.2. Mediator Pattern®] L&

mediator pattern& th21} o] LH=E 4 QL.

[1 public interface Mediator {)
2 void sendMessage(Component sender, String message);
3 void addComponent (Component component) ;
4 }
5
6 public class Component {
7 private String name;
8 private Mediator mediator;
9 public Component (String name, Mediator mediator) {
10 this.name = name;
11 this.mediator = mediator;
12 }
13 public void receive(String message) {
14 System.out.println("[Received to " + name + "] " + message);
15 }
16 public void send(String message) {
17 this.mediator.sendMessage(this, message);
18 }
19 }
\ J

40

[1 public class ConcreteMediator implements Mediator { A
2 private List<Component> componentList;
3 public ConcreteMediator() {
4 this.componentList = new ArrayList<>();
5 }
6 @0verride
7 public void addComponent (Component component) {
] this.componentList.add(component) ;
9 }
10 @0verride
11 void sendMessage(Component sender, String message) {
12 for(Component c¢ : componentList) {
13 if(c != sender) {
14 c.receive(message) ;
15 }
16 }
17 }
18 }
L
5
1 ConcreteMediator concreteMediator = new ConcreteMediator();
2 Component componentl = new Component("cl", concreteMediator);
3 Component component2 = new Component("c2", concreteMediator);
4 concreteMediator.addComponent (componentl) ;
5 concreteMediator.addComponent (component2) ;
L ° componentl.send("Hello~~ World~~!");)

4.8. Memento Pattern

4.8.1. Memento Pattern

1. Memento Pattern
Memento Pattern = Snapshot Pattern& object 2] A5 AFak-2 F7N5HA] &0 HA STt object 2] o] Alef
S Aol B9 4 TS b DPY.

oAl S Eof, 9AE HA7|of|A HAE g Fof AP HAE o1l otH, £ A7 9] objecto] RE FEIE
Oi2 BelE& 4= glojof gt ofx| gt tf -2 9] object= F 8.3 JHE encapsulations}Z| & 5}l i classof]
571 71 B SRSk SR, object 2R M AR getter AMED] S BAahE AL AHalA]
OFS. memento pattern® AF§5HHA o] 9 DA HAT & 918,

2. Memento Pattern®] #%

memento pattern2 Th23} ZHo] YE objecto] 355} originatore}, originator®] A& *]%6H= object
2l memento= A E. o]w] memento class= originator class®] nested classZ, memento object—= originator
object @] private WH o] HZo]| 7}5¢. TS memento object 52 W& 5F= caretaker objectE AR

41

1. Originator
XHAID] AFEHO|| CHEF A4S MM
LRA| AHSEOIM XHAS| MERS =
Originator
- state

+ save(): Memento
+ restore(m: Memento)

3. Memento Pattern®] Zo+3

caretaker2 £2]5lo] SRPE A

F@7| = o

memento pattern2 AFESFH encapsulation2

SHA|gF snapshot& L% gol Aot vl@el7} gl g

AHAF HASES oh= |

TWHOoZ nUSE S0 o

MMILS SO U HE

Memento

- state
==

- Memento(state)

- getState()

4 &4
HHE 2eiAa = 22X|YI0lH LHRH
ZLe/HMETL private SHE ™2 7S

FA|5PHA snapshota A7

3. Caretaker
DHE SO AEHS Tzt
22|X|4|0|E{Y] 7|E 8 =T

Caretaker

- originator
- history: Memento[]

+ doSomething()
+ undo()

m = history.pop()
originator.restore(m)

m = originator.save()
history.push(m)
// originator.change()

A

To]

£ Q)€ caretakero] snapshot A4 @ #&] 7|5

4.8.2. Memento Pattern®] &

memento pattern2 23 Zto] @S 4
A5

Ho] B, A2 nested classol A HF2Z]

[ea N
AT

H P Edltor this. textﬂ- Zro] 7~4T—_L—8L

’
1 public class Editor {

private String text;

// setter

public Snapshot create() {
return new Snapshot();

V)

}
public void restore(Snapes
this.text

© 0w N o o oA W

}
10
final class Snapshot {
private final String t
public Snapshot() {
this.text

11
12
13
14
}

// getter

15
16
17

18

hot snapshot) {

snapshot.getText () ;

ext;

= Editor.this.text;

42

A&, TSt originatore}

[1 public class Command { A
2 private Stack<Editor.Snapshot> stack;
3 public Command() {
4 stack = new Stack<>();
5 }
6 public void makeBackup(Editor editor) {
7 Editor.Snapshot snapshot = editor.create();
s stack.push(snapshot) ;
) }
10 public Editor undo(Editor editor) {
11 Editor.Snapshot snapshot = stack.pop();
12 editor.restore(snapshot) ;
13 return editor;
14 }
15 }
16 ...
17 Editor editor = new Editor();
18 Command command = new Command() ;
19 editor.setText("1");
20 command .makeBackup (editor) ;
21 editor.setText("2");
L 22 Editor oldEditor = command.undo(editior); // 1)

4.9. Observer Pattern

4.9.1. Observer Pattern

1. Observer Pattern

Observer Pattern = Wa)-1= 1y
AHE ¢e+=DPY. =, LN A= +
S ZE™H BE subscriber Z}Zto] t]-2-5]

2. Observer Pattern®] %

observer pattern< th-23} Z+o| subscriberE 2|51 AHE A E5)= publishere}, A HE ¥h= subscriber
2 31X 5. publisher+= subscribero] thgt listE 7}&] 31 131, notify A]ofli= ZF subscriber®] update()& &
3t ESH publisher?] MW H4of AESt ZF-2 A6 =11, update A]o]| publisher®] x5 gr|= Aoz
P % U2

TSt Qs T AHE7E MRS o BE subscribero Al 11
o] SUbSCHbera = AFelE T AERE dele s St wAaEst
HAEE SEE.

ox flo

rr

1. Publisher (& cHAxt) 3. Subscriber (A%}
FEX A2 S OHIE HrH otz OIE{H|o|A S Mo
Ygote! QET0|AZ 22| =T -

A T

2. A ot E b2 WOt publisher=

2 TEX} U H LY Publisher «interface»
- subscribers: Subscriberf[] <>—>| Subscriber
foreach (s in subscribers) - mainState + update(context)

s.updatethis) + subscribe(s: Subscriber) T

+ unsubscribe(s: Subscriber) '
mainState = newState + notifySubscribers()
notifySubscribers() + mainBusinessLogic()

p

s = new ConcreteSubscriber()
publisher.subscribe(s)

Concrete
Subscribers

+ update(context)

3. Observer Pattern®] Z43
observer patterng AR&6HA 3L WS LA Aot gh& G & Q1S TS 22 subscriberg 7|E
D Bo] S o Ho e OCRE At Hehal mieribor S 4 Ao BHE 92

43

SpA|EE Subscriberfﬂl*i dHe A= =4S Ao # ¢l Ee FEREE 72 3 o9 observer
¢} subscriber& o]-_l_ X}_Zr AFe1A] ke A9 m] |7t 2hgEE &~ 9l
4.9.2. Observer Pattern® &
observer pattern2 T3} Zro] L& .
e N\
1 public interface Subscriber {
2 void display(WeatherAPI api);
3 }
4
5 public class KoreanUser implements Subscriber {
6 public void display(WeatherAPI api) {
7 System.out.println("Korean user received : " + api.getTemperature);
8 }
9 }
10
11 public interface Publisher {
12 void register(Subscriber subscriber);
13 void remove(Subscriber subscriber);
14 void notifySubscribers();
15 }
N J
1 public class WeatherAPI implements Publisher { b
2 private List<Subscriber> subscriberList;
3 private int temperature;
4 // getterfsetter
5 public WeatherAPI() {
6 this.subscriberList = new ArrayList<>();
7 }
8 @0verride
9 public void register(Subscriber subscriber) {
10 this.subscriberList.add(subscriber) ;
11 }
12 @0verride
13 public void remove(Subscriber subscriber) {
14 this.subscriberList.remove(subscriber) ;
15 }
16 @0verride
17 public void notifySubscribers() {
18 for(Subscriber subscriber : subscriberList) {
19 subscriber.display(this);
20 }
21 }
22 }
"
~
1 WeatherAPI api = new WeatherAPI();
2 KoreanUser user = new KoreanUser();
3 api.register(user);
e api.notifySubscribers();)
4.10. Template Method Pattern
4.10.1. Template Method Pattern
1. Template Method Pattern
Template Method Pattern< 11 2]=9] ¥X(Hﬂ1q%) dAEZ A 94’8 1, 45 A E subclassof| A @ H =t
OJEFHH FET & YES oFe DPY. =, o]2] dassol] FEO 2 Alot v 4ES WEalstela, 244

44

G2 P8 TSRS ok A, olo] met dnelEe] TR 4212 A2 AT S o2A BT 4
9.

NS Sol, FUT AL FYSHE FuelZo] G, ofe] dlolelo] Tue] SEHEE sheln gt o
2}, o]= glolg Zuid R HE o] m|4AEY classE Ao 1TET & A9, template method patterne
AT FREE FEE B AL, O SR RO R THY 5 U

2. Template Method Pattern®] %

template method pattern& Th21} Zo] Zt A HAEE i%ﬁﬂ dygEo) IxE 4—40]-—— 5o "HlEs]

WA}, ZF @A 9] Y& Holoth= 0431 o] A HAER FAH. ojuff @A HAE F abstract Uﬂ—L

EL =4 ‘:]’74] Dﬂ._l.___, default HAEL TZE oA Dﬂﬁ:EE}ﬂ ot e abstract Clabba AFEHES class
]*11‘ EE— S A HAEE FRAGoF stl, HEE oA HAEE T8 A sk, "HES WAEE

o HEo] ESI AL gF H(final AelTh).

T3t abstract classof|A] 4 ©]Sh= body7} H]o] JAY 7|2 FATHS 7FA] AL Ql= ©A] WA E4] Hook HlAE

£ AEE S 98, BES WAL hook HAES} @ Hefol HA] ol Aafu, ol 2 o nel%o)

A/ 2 iz = o] ARt A] 71 & 21 1-S AlEE

1. AbstractClass AbstractClass
22|20 CHSS S ofs o step10
MHES pod if (step2() {
YS! e, 24 £, 712 © step30
HiMEZ 2 + templateMethod() }
+stepl1() else {
+ step2() step4()
+step3() }
+step4()
| |
2. ConcreteClass ConcreteClass1 ConcreteClass2
LRPH | HIMES S 2H
|-0|I:|
El=2 [=3 N =] cl
e=r m:?;&guﬁmc’ + step3() +stepl()
+ step4() +step2()
+ step3()
+ step4()

3. Template Method Pattern®] o3

template method patterng AF&3HH FE FES £ 4

= A e e TR A 2AS A classo ARt BE|StE R {A|H4TF e
SAjE Qo] 7201 AoA ene eo] A 4 US
Mol 248 & ofofotL Qolo ofol, A9 class7l WEEE 29 AT SANF B

it

4.10.2. Template Method Pattern?] &

Template Method PatternS 23} Zto] FASH 4~ 912,

45

[1 public abstract class CalculateNum { A
2 protected int x, y;
3 public final int templateMethod() {
1 int result;
5 initNum() ;
6 result = calculate();
7 result = hook(result);
8 return result;
9 }
10 public void initNum() {
11 this.x = 1;
12 this.y =
13 }
14 public abstract int calculate();
15 public int hook(int input) {
16 return input;
17 }
18 }
\ J
e \
1 public class PlusNum extends CalculateNum {
2 @0verride
3 public int calculate() {
4 return x + y;
5 }
6 Q@0verride
7 public int hook(int input) {
s System.out.println("plus operation executed!");
9 return input;
10 }
11 T
12
13 PlusNum plusNum = new PlusNum();
- plusNum. templateMethod(); // 3)

4.11. Visitor Pattern

4.11.1. Visitor Pattern

1. Visitor Pattern

Visitor Pattern2 object X of|A] &1 8] &2 visitorgl+= object = H2]5}al, visitor7} Z} object = 35|51
QS SIS SR DP9l &, 12|58 7} objectoll] A FAs) Aok nl4l, dnelzo] 7@
o] 9 visitorS AFRS] A Eot= A QY. o]= ubA] visitor obJect7]- object F+%2] ZF objectE HFESHHA]
Aotz A 25

oAl E =01, graph FH|E A= thE 2 objectEo] AAE o] Qli= Tlo|¥ Ht-& A2t H 2} 7} object 2]
AHE XML gAoz2 WRYHT & off, ZF objectHE A4 XMLO_E.. YWHE Y= Hacs 75—401' 4= QAT
o]= SRP, OCP2] A o] A 724,@0]-?(] °*° . visitor patterne AF&5HH ZF X Hfof st WA EE visitor class
o B3 FHFEE ¢ 4 902,

2. Visitor Pattern®] %

visitor pattern& th-231} ZFHo] Z} elementof tjst &4 ES E 6= = visitor2}, S94r9] tjAFel element=
T4, ol visitor= element—J AR FRAAE 011}_‘% = wHAEES 7HAH, o] HAESS @ E Y o]
o] ZF element= SYGE FA O 2 visitors 5= 4 S 2+ elements—— FA Al &2]= Al visitor
o] visit() TZBF- accept()T FE3HE .

—

46

3. Visitor Pattern®] Zo+3
visitor pattern2 AF-&5HH A2 &7

elemento] AL Lst= A 7Hs

=Z.
== =]
ot gloenz OCPE 45 ot 18 & 8 HL 9 classZ B st 2 SRP
T

.
v
SFAHE element interface?} A =™ visitoro] thet A o] S 4= Q)&

3. Element

. 4 2 A2t
1. Visitor A : Visitorg +&
«interface» «interface» o =
Wl 2x=2] 24 Element5S ¢! Visitor S— e (acceph)Bt= BIMES
F2 ARZY £ UE visit IMES M
Mod *visit(e: ElementA)) + accept(v: Visitor)
+ visit(e: ElementB) !
A | 2
4 i ! '
i ! | concreteElementa | __! i 4 Concrete Eiemarﬁ
. — ! ! i U P4 element= accept
2. Concrete Visitor ConcreteVisitors sl ! ' otx= Jodofop o
CHuet 22 element 22 . i
‘e - H +
ASo| wzoE viste > { | featureA) : T} Element Z2HA0| o
0§2] B{H o= 204 | e i + accept(v: Visitor) ! . A
oz 3 i [*visit(e: ElementA) ' | chots 2 visit DIME
|+ visit(e: ElementB) . : 2 Z|clojAE o
! : ConcreteElementB !
I . i
1 .]
: J/{HIXE HlMESS | -
i ‘.A‘HLHJ:.__ L
! /&8 EEhs 249
! O i + featureB() H
Vo |fTeRBEEUL. + accept(v: Visitor) |
! e.featureB() '
[1
" visit(this) i
‘\.\. ”"
5. Client
Uutdoz HAMZ 7kx|2
element.accept(new ConcreteVisitor()) element?} visitorS
oiioto] WRD TS 4

4.11.2. Visitor Pattern®] &

Visitor Pattern th-33F Zro] A% 4= Q15 oA s AAH visit
element= visit(this)?} Zro] visitorg AF>.

[1 public interface Shape { h
2 double accept(ShapeVisitor visitor);
3 }
4
5 public class Circle implements Shape {
6 private double radius;
7 // getter€isetter, KX}
8 @0verride
9 public double accept(ShapeVisitor visitor) {
10 return visitor.visit(this);
11 }
12 }
13 public class Triangle implements Shape {
14 private double sideAl;
15 private double sideB;
16 private double sideC;
17 // getteréisetter, HAX}
18 @0verride
19 public double accept(ShapeVisitor visitor) {
20 return visitor.visit(this);
21 ¥
22 }
\ J

47

N

public interface ShapeVisitor {
double visit(Circle circle);

3 double visit(Triangle triangle);

4 }

5

6 public class AreaCalculator implements ShapeVisitor {
7 @0verride

s public double visit(Circle circle) {

9 double result = 0.0;

10 // circlel| 50| 7517/

11 return result;

12 }

13 Q@0verride

14 public double visit(Triangle triangle) {
15 double result = 0.0;

16 // trianglell 50| 517/

17 return result;

18 }

19 }

1 List<Shape> shapes = new ArrayList<>();

2 shapes.add(new Circle(10));

3 shapes.add(new Triangle(2, 4, 5));

4 AreaCalculator visitor = new AreaCalculator();
5 double area = 0;

6 for(Shape shape : shapes) {

7 area = shape.accept(visitor);

s System.out.println("for " + shape + ", area is " + area);
9 }

48

	DP
	SOLID
	SOLID
	SRP
	OCP
	LSP
	ISP
	DIP

	Class Relationship
	Class Diagram Relationship

	DP
	DP

	Creational DP
	Singleton Pattern
	Singleton Pattern
	Singleton Pattern의 구현

	Factory Method Pattern
	Factory Method Pattern
	Factory Method Pattern의 구현

	Enum Factory Method Pattern
	Enum Factory Method Pattern
	Enum Factory Method의 구현

	Abstract Factory Pattern
	Abstract Factory Pattern
	Abstract Factory Pattern의 구현

	Builder Pattern
	Builder Pattern
	Builder Pattern의 구현

	Prototype Pattern
	Prototype Pattern
	Prototype Pattern의 구현

	Structural DP
	Adapter Pattern
	Adapter Pattern
	Adapter Pattern의 구현

	Bridge Pattern
	Bridge Pattern
	Bridge Pattern의 구현

	Composite Pattern
	Composite Pattern
	Composite Pattern의 구현

	Decorator Pattern
	Decorator Pattern
	Decorator Pattern의 구현

	Facade Pattern
	Facade Pattern
	Facade Pattern의 구현

	Flyweight Pattern
	Flyweight Pattern
	Flyweight Pattern의 구현

	Proxy Pattern
	Proxy Pattern
	Proxy Pattern의 구현

	Behavior DP
	Chain of Responsibility Pattern
	Chain of Responsibility Pattern
	Chain of Responsibility Pattern의 구현

	Command Pattern
	Command Pattern
	Command Pattern의 구현

	Interpreter Pattern
	Interpreter Pattern
	Interpreter Pattern의 구현

	Iterator Pattern
	Iterator Pattern
	Iterator Pattern의 구현

	State Pattern
	State Pattern
	State Pattern의 구현

	Strategy Pattern
	Strategy Pattern
	Strategy Pattern의 구현

	Mediator Pattern
	Mediator Pattern
	Mediator Pattern의 구현

	Memento Pattern
	Memento Pattern
	Memento Pattern의 구현

	Observer Pattern
	Observer Pattern
	Observer Pattern의 구현

	Template Method Pattern
	Template Method Pattern
	Template Method Pattern의 구현

	Visitor Pattern
	Visitor Pattern
	Visitor Pattern의 구현

