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1.1.3. OCP
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1.1.4. LSP
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List<Speakable> animals = new ArraylList<>();

5 animals.add(new Cat());
@ * Animal animals.add(new Dog());
A H ul Al Cichl

for(Speakable animal : animals)
animal.speak();
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1.1.6. DIP
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1.2. Class Relationship

1.2.1. Class Diagram Relationship
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1. DP
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2. Creational DP

2.1. Singleton Pattern

2.1.1. Singleton Pattern

1. Singleton Pattern
Singleton Pattern sh9] classZ7} @2 3149 instanceRt 718 4~ Q= E SH= DP%. o] singleton&
shel 914w 7HE AEe
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2. Singleton Pattern®] JL%
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Singleton %'
- instance: Singleton
- Singleton()

m + getinstance(): Singleton 1

if (instance == null) {

// place a thread lock here
instance = new Singleton()

}

return instance

3. Singleton Pattern_J g

singleton patterna AH-8-5HH ObJect* Sttt g dAor &goto] Bl-g3t 2lasg dofsial, A
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1. Lazy Initialization
singleton pattern®] EH2 TItfg @S HA]Ql. getlnstance()o] gt A §& A|o|| object7} AT 22
lazy initializationo]t}.

single thread A&oA= EA7F ¢LAT, multi thread 4ol A= synchronizationo] A-8F|Z] ¢Fo} o7
e}

i
object7} A/4dE ¢l At
e \

1 public class Settings {
2 private static Settings instance;
3 private Settings();
4 public static Settings getInstance {
5 if (instance == null) {
6
7
8
9

return new Settings();
}

return instance;

10 }

11

12 Settings settings = Settings.getInstance();
\ J

2. Thread-safe Initialization
lazy initializationo]| 4] getInstance() M|AE9] synchronized& &0+ HH414.

A1
S WA= tigt synchronization2 Z-&8}] multi-thread SN A = EA7F IA9F, synchronization
overhead7} A&

3. Eager Initialization
Iz A5E final® 24 A Ale] objectE Aot WA,




javao] A final2 A AL T

T=A o]| multi-thread
of| A& thead-safedt. S} qt H% obJectOH o

l__
=5=1 H] x401

public class Settings {
private static final Settings instance = new Settings();
private Settings();
public static Settings getInstance {
return instance;
}
}

© W N e oA W N e

Settings settings = Settings.getInstance();
\ J

4. Double-checked Locking

getInstance() H|AE7} ofyz} instance’} nullel ZAE YE o9 synchronized & AF&3) synchronization
overheadE &< HHAQl. o]uf] HPZZE null ZAEL o] thread’7} B3-S 4~ QI © 2 2| synchronization©]
. RO A E milldl 2] HAE,

oluf] ZZ Hof volatile2 XA 3foF $F. multi threadQl 73-$ thE thread 2] cacheof|= ZZ H4=9] ZFo] null
2 gol9lS 4908 2 volatile2 B0 Fof cachingel] AR Y& A2 1| 4= 9)-L. E 5t synchronized
blocko]] XA 5}H= object(statico] 22 this7} §lo]A] Settings.class2 2| A §HE g 58 A|=g clabsfﬂ ol
synchronized block-2 AF85}HH 7} threadi= 3| objecto]l Tt 2 852 A|Z5}, AFA19] 217} b4 =
215519 o block Qtell 014 4 -

thread-safes}H A & synchronlzatlon overheadE Zo0]11, lazysHA A w22 §&A02 AFL3TH 4
9. shAat ;1 Ao BHELL olals} olel . VM L5 e EA5

r N

1 public class Settings {

2 private static volatile Settings instance;
3 private Settings();

4 public static Settings getInstance {

5 if (instance == null) {

6 synchronized (Settings.class) {
7 if (instance == null) {

8 return new Settings();
9 }

10 }

11 }

12 return instance;

13 }

}

[
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=
o

Settings settings = Settings.getInstance();
\ J

5. Lazy Holder(Bill Pugh’s Solution)

nested static classS A 2]5}11, instances static final2 A 2|8} AF-&5}= HHAL. ST nested class= 2] class
9] object7} A/dE o Z7]5}=]2] ¢Fa1, ST classo] H w] Z7]3HEth EF nested classO] HH 4=
statico]o} ] 2 AL Aol g 18 AR

-
=N

lazy initialization©] 1, thread—safeOI-Uil synchronization overhead”} §111, =7} 7HA35 ) SFA|RE 20|
HEZ} 2183}t/ 4AE3l 52 AHESHH Aol= singletong mhe 4 ot of7|oA 1 HH7EA] ohe3l
orL
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public class Settings {
private static class SettingsHolder {

1
2
3 private static final Settings instance = new Settings();
4 }
5 public static Settings getInstance {
6 return SettingsHolder.instance;
7 }
8 }
9
L Settings settings = Settings.getInstance(); y

6. Enum Method

enum O 2 classE A3 fF classQ] object’} AH5 @ EEE S}= HFA]L

javall A enum-2 classo]1l, enum UjFof] AHALE 2HJ5tH Ao o] 5O & i class] objectE AJ4]
A egst =, o2 FEof A INSTANCE®] Settings object”} 4.

thread-safed}al synchronization overhead”} §l31, I EV} 7FE5I1, Sto|AEVF o2 oadd 4 gl
SHAIR lazys} 4] 918

[ 1 public enum Settings { A
2 INSTANCE;
3
4 private Settings() {};
5 public static Settings getInstance {
6 return INSTANCE;
7 }
8 }
9

Settings settings = Settings.getInstance();

—
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2.2. Factory Method Pattern

2.2.1. Factory Method Pattern

1. Factory Method Pattern

Factory Method Pattern object AA W % 7]|3}E subclasso] YUSHEZE 5= DPY. ©]& 93} object
3742 218t interfaceE AHESHAL, FAH O 2 classE AP A] = subclassol| o5 274 H.

object A4S 2elolT S 7154S Eo] OCPE stz ot o) ALSh. woF interface® AH831) 81T
object® LGOI class SFIE AFGTTHE, AL object A4 7158 Foelelnl 7|E TES AoF
stE =2 OCP7}F Yui&E. factory method patternof A= interfaces E3)| factory object?} product object ZF
AgS &5 9

XML document parser(¢]2] mt4 B AlF), spring®] BeanFactory 5©] factory method pattern®.z &
=0l 318

2. Factory Method Pattern®] #%

factory method pattern2 th23} ZHo] object A4 abstract H|AEE 7}2 Creator(factory) interface(TE+=
abstract class)E& A 9Js}al, ZF sub factory classE0] ZFA1o] A S objecto] e} Sid HAEE LSS
Sk ESF Creator= Z}F producto] tfst FA A7} o}y 2t Product interfaceof ©]&3}.




Product p = createProduct() | oyza) gyacE xarst ojoy Me

return new ConcreteProductA()

3. Factory Method Pattern®] At
B4 BE 37 st
object AH/R-I Jo]] W= overheadT ZAS. FH oA TS enum factory method(subclassE Z+2Z¢

enum 0}\4-& Fd¢), dynamic factory method(reflection apiS AFE3l F& o2 A a|gh)
7R DPY.

M SEHAZ OIS THOKH T
Creator JAVAZ U= HiE FUNS Fedot
interface2 S & -
«interface»
_____________________ Product
+ someOperation() >
ME HEE| ZEHANM XHELYL + createProduct(): Product + doStuff()
W] Al 24 DM A T
[ | T H
H H
M‘E ';:F" -Eﬁliii?f“; ConcreteCreatorA ConcreteCreatorB Concrete Concrete
A= HE WHIE YHtE S
air A acE me | ProductA ProductB
HIE FTA|
HIZE MH gwﬂ [,” + createProduct(): Product + createProduct(): Product
=t

object AJ/doll ti et interfaceE A-G-SFELE SRP (object /gl Higt A9l £2]), OCP(ZE ®7 glo] M=

SR ZF product 9] &0ttt classE A oA AFRSfoF SR 2 FE BT Holx] 1, factory product

ot Al
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2.2.2. Factory Method Pattern®] 7@

factory method pattern2 tF23} Zro| L H. o] % A 2L factory class, product class o] 7= & 7| &

I AT HQ glL. Eot client 2o A& ShipFactoryl} Ship2 ZF W42 A ZEE ¢ 7HESH]
498,
r N\
1 public interface ShipFactory {
2 default Ship orderShip(String name) {
3 Ship ship = createShip(name) ;
4 return ship;
5 }
6 Ship createShip(String name);
7 }
8
B public interface Ship {
10 void setName(String name);
11 T
12
13 public class WhiteShip implements Ship {
14 private String name = "WhiteShip";
15 public void setName(String name) {
16 this.name = name;
17 }
18 }
19
20 public class WhiteShipFactory implements ShipFactory {
21 public Ship createShip(String name) {
22 WhiteShip whiteShip = new WhiteShip();
23 whiteShip.setName (name) ;
24 return whiteShip;
25 }
26 }
27 oo
2 Ship whiteShip = new WhiteShipFactory().orderShip("myWhiteShip") ; )

10




2.3. Enum Factory Method Pattern

2.3.1. Enum Factory Method Pattern

1. Enum Factory Method Pattern

Enum Factory Emthod Pattern-& o2 7] 9] factory classE A 25}l Ztztof o3t object& A SH= factory
method pattern?] H| €82 s1-45}17] ¢5l, enum-S AF&3] factory classS A 2|5l= PDY.

enum-2 A28 singleton objectE AJAINE AAH, o] 7fo] HHE ZHAJ 5] o] 7] 2] instanceS e st=
classQ]l Multiton2 A2l 4= 9)-&. 0] A FLASHH ZF factoryo] tisl] fE A 02 classE ZHAI5)AL object
£ AAste diAl, she Clabbi FolA St HTl objectE AT AL SIEE & 4 98-

2. Enum Factory Method Pattern?] A3

enum factory method pattern& Zt factory classE HIEE A 9|5} objectE 7HA o ZE A= Al
SIL}9] factory classE A 9J5}al, | objectE singleton 0.2 A5 E-8olE S}

oluf M 2-& factory/products F7}5H= 79 enum factory classE 23 $=AdfjoF & =, OCP
ol 9] T/ }e] tradeoffd].

E3L javaol A enum-2 AF&0] E7HESHER factory7b SR A L2 E 7T B3 of §HA7F A3

o

fj
do
=
ol
S5
rr
:(T‘_,l

2.3.2. Enum Factory Method9] L&

1. javaQ] enum

javaoll Al enum2 T Al BEEo0] ofyE} classY. enum classE A Ol5HH AAZ = tr27F Zo] Enum
classE AF&HEE class2 ‘ﬂigﬂ, Zr Ae= SlY classof] tst % W4Tt H.
r N
1 enum Season {
s SPRING ("= "),
3 SUMMER("C|E") ;
4 /..
5 }
N J
AA == o33 Zo] Hgh.
r N

class Season extends java.lang.Enum {
public static final Season SPRING = new Season("&");
public static final Season SUMMER = new Season("O{&");

S

}

-
&

(

H
ol

TS enum class= 7] 22 0 2 abstract classo] 1, Y5o]] abstract methodS ZHA] 5}

=2 Aol g

1)
i
o
i
rr
:‘OL_I‘
ot
=,
>

N
J

enum Calculator {

1

2 PLUS {

3 @0verride

4 double apply(double x, double y) { return x + y; }
5 Yo

6 MINUS {

7 @0verride

8 double apply(double x, double y) { return x - y; }
9 };

-
[S)

/) FY HME A
abstract double apply(double x, double y);

=
[

-
w

}

o 7

E3SF enum2 THE classE ASES 4 9l (0]0] Enume AE5E-S), 7|22 0 2 final classoﬂ A o= class7}
=

2
enum2 Ar&EHRS 4 glo Al interfaceS

(‘D
=
o
B
oM
o
el
_O|L
I_H
Ju
_O|L
rlr 4%
s,
rlo
N
o{r
ol

2. Enum Factory Method?9] L&
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enum factory method= T2 o] enum © 2 A3t

7

1 enum EnumShapeFactory {

2 RECTANGLE {

3 public Shape createShape() {
4 return new Rectangle();
5 }

6 },

7 CIRCLE {

s public Shape createShape() {
9 return new Circle();

10 }

11 };

12

13 public Shape create(String color) {
14 Shape shape = createShape();

-
o

return shape;

}
abstract protected Shape createShape();

o
o

-
<

}

[
o

=
©

EnumShapeFactory enumShapeFactory = new EnumShapeFactory() ;
enumShapeFactory.RECTANGLE. createShape () ;

¥
=}

V)
it

2.4. Abstract Factory Pattern

2.4.1. Abstract Factory Pattern

1. Abstract Factory Pattern

Abstract Factory Patterne 3+ 9J+= product family (A &) 9] A& A4St
patterno] @< product A2 FAFSHITHH, abstract factory pattern—fj— 0131
o e A9 & Fysie Ae.

2. Abstract Factory Pattern®] %

abstract factory patternofl A= th-21t Zo] Z} product®} factoryE interface®2 FAaFstal, &
FAA Q] productE AASH= FA A Q] factory S AFES. factory interface= 71’ productS AJAJ 5}
method & 7H. o] Eﬂra} Mz AFe 1o tf-g5« factory”} 5 7}H015 7E FEE £AT

DP
=l

]
1&:
T AR

r:i et

12

. =, factory method
product& (A &)




£Q,
o

4. Concrete Factory
2% Kﬂs 2| AEHY0] X0 HIES

MMOIES M B2ES Y

2. Concrete
Product ConcreteFactoryl

L HIZE 20l 2=
HEL FUS

i + createProductA(): ProductA 3. Abstract Factory interface

Fur:wly»l ________________ + createProductB(): ProductB 7HE Abstract products 4aot=
I ot FotS pod
Concrete Concrete |} '
' ProductA: ProductB: ' v
1. Abstract D Client

Product

Z 28 7ot i Abstract Abstract E AbstractFactory << - factory: AbstractFactory
a%gu‘;;ﬂE : Pladu foddcB, | dareatePodUcth(zRiodUct + Client(f: AbstractFactory)
o g . - N
Jo + createProductB(): ProductB + someOperation()

A In someOperation()

_>.'.

Concrete
ProductB2

. 1 i
ProductB pb = factory.createProductB()
Family2 7'\— A ConcreteFactory2 P 2

ProductA pa = factory.createProductA()

.................... A7)0 X0l I factory WHIE FEX|0f Tt
N M someOperation LHOflA AMEl= HIZ0| Satd
a‘::?e;‘::rlodumzo + createProductAQ: ProductA (2aiLk fic‘ror g as so::Dperu‘rion =1=b/}
+ createProductB(): ProductB YE*EHI;F oo -

= s

Concrete factoryS2 cuncre#e productsS2
AnotR|2 A HASSS abstract
productsS "'E’ Efelo2 7txiof ot
3. Abstract Factory Pattern®] o3
factory method patterni} upz7}2]2 SRP, OCPE &H3t = cliente}e] I = AJdLE T30
A&t /factoryE GA F7HL & U=

3 producto]] tﬂgj— 18l 0] Z7}1Eojof ot

factory method pattern®} upH7F2] 2 product, factory Ztztof tigt classE 5 FAfoF stR 2 F
o] == ER ZF productZ} Al S A/dst=tl, Aol M2 product”} F7F=H HE factoryo]|

A, Mz

C 2
—

2.4.2. Abstract Factory Pattern®] L&

abstract factory pattern2 th-21} Zto] LLHS 4~ 912

[ 1 public interface Button { void paint(); } A
2 public interface Checkbox { void paint(); }
3
4 public interface GUIFactory {
5 Button createButton();
6 CheckBox createCheckbox();
7 }
~
1 // windows A=t
2 public class WinButton implements Button {
3 @0verride
4 public void paint() {
5 System.out.println("Windows AEIY HEZ AHZL|CL. ");
6 }
7 }
8
9 public class WinCheckbox implements Checkbox {
10 @0verride
11 public void paint() {
12 System.out.println("Windows AEIQY HIEIAZ 2AHTILICE. ") ;
13 }
14 }
\ J

13




1 // windows factory

2 public class WinGUIFactory implements GUIFactory {
3 Q@0verride

4 public Button createButton() {

return new WinButton();

o

6 }
7
8 Q@0verride
) public Checkbox createCheckbox() {
10 return new WinCheckbox() ;
11 ¥
12 }
13 o ..
14 WinGUIFactory winGUIFactory = new WinGUIFactory();
1 Button button = winGUIFactory.createButton(); ]

2.5. Builder Pattern

2.5.1. Builder Pattern

1. Builder Pattern
Builder Pattern< objecto] tjjst 235t A MA-8 B2, client7} theFst 240 2 objectE AT 4
NLEE o= DPY.

objectol] et A4 Ao B gke] £57) T8 S 93, BRP RE S AR 43 A AL
W78 A58 4 90 builder pattenE ALESIH B g IR 4040 2 SReAA objectS BT 5

ol o
A

_{

java2] StringBuilder, Stream 5-©] builder pattern© 2 3o Q)&

2. Builder Pattern®] %

builder= t23} Z+o] buildero] gt interface@}, builder FdA|, director® FA4H. builder LA A 2] Z+
WAL= Zp7] ZHA (this)-& WIS = S| A] builder.setRoofs(4).set Walls(4).getResult() 522 ARgo] 715
SIE= Sh director= AFF AFR-E]= builder?] AA step F configs AHESHA] HIAER A 2]6}= classY.
client+= director& A& o] = = A7 stepi} config? objectE AT += U1, 213 builderE A3

objectE AT F= S

b = new ConcreteBuilderl()
d = new Director(b)

d.make()
Productl p = b.getResult()
4. Director
Frmmmm————————— XtF SOt step configurations
! (step 2% &M)E directorLioll F0iM
1. Builder interface \ o|otct
2E ERY UHof SENY i «interface» Director
HIZ build step & MU ! Builder
P : - builder: Builder
H + reset() - >
E + buildStepA( + Director(builder)
i + buildStepB() + changeBuilder(builder)
i + buildStepZ() + make(type)
|
! JaN
________ I builder.reset()
\y H H if (type == "simple”) {
builderbuildStepA()
2. Concrete builders Cor.|crete Cor_'cmte }else {
74 Build step 459 g mZ | Builderl Builder2 builderbuildStepB)
=3 BrAZ 2 builder.buildStepZ
Common step?| CIZ step B8 XIS - result: Product1 - result: Product2 } e
o2 S
+ reset() + reset() =
+ buildStepA( + buildstepA( [ a0
+ buildStepB() + buildStepB()
+ buildStepZ() + buildStepZ() result.setFeatureB()
+ getResult(): + getResult():
Productl Product2 return this.result
Build ES.EE’IIO"T;C&XI" HE y v getResult Z0{A L2004 A2
ullders & =) = M=z OGN HALE 2718 £ 12
HES 2o SoiA H= T olEmo] [ Productl ] [ Product2 = S F7tY &

Aol 22 BRE 9
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3. Builder Pattern®] %3

builder patterng 229 object /42 Fe|sf OCPE RS = QUL B3 A g2 expA oz Hfed
T Qe ER AT ZRAAE Fof o2 WA O R objectE BT 4 1AL, BT objectE AHESH=
s HAT 5= e

SHAE builder objectE T #] THEO]oF ARgo] 7hastal, I E 271 B Xoh= o] 5. olef whaf
7reet A2 A A o= Al

= [ =4

2 method chainings FAsh= -9 2 HlA=7F AH 25 WHeste 5 sfjof o

2.5.2. Builder Pattern9] ¢

builder pattern& th-23} Zro] L=,

r N
1 public class House {

private int roofs;

N

3 private int walls;
4 private int windows;
5 // getters and setters
6 }
7
8 public interface Builder {
9 void reset();
10 Builder setRoof (int roofs);
11 Builder setWalls(int walls);
12 Builder setWindows(int windows);
13 }
" J
1 public class HouseBuilder implements Builder {
2 private House house;
3
4 HouseBuilder() {
5 this.house = new House();
6 }
7
8 @0verride
9 public void reset() {
10 this.house = new House();
11 }
12
13 @0verride
14 Builder setRoof (int roofs) {
15 this.house.setRoofs(roofs);
16 }
17
18 }
\ J
s N\
1 public class Director {
2 public void makeSimpleHouse(Bulider builder) {
3 builder.reset();
4 builder.setRoof (1) .setWalls(4) .setWindows (4) ;
5 }
6 }
7 .« e
8 Director director = new Director();
9 HouseBuilder houseBuilder = new HouseBuilder();
10 director.makeSimpleHouse (houseBuilder) ;
L House hosue = houseBuilder.getResult(); )

15



2.6. Prototype Pattern

2.6.1. Prototype Pattern

1. Prototype Pattern

Prototype Pattern& 7]&9] objectE EAFSH= g9 A& %= DPY.

535 JIA82 wizol o f oA A HAShE A2 HARE 5 o8 =E, 7} classo| 4] clone() HIAEE
FANES ol A%,

javaQ] Cloneable interface”} prototype patternd. Cloneable-2 implementss}il clone()-& @ H2to| = Jfjof
St 312 Cloneable2 HIHE 7}2| 2] ¢kl clone()-2 Object class9] H|AE=<]. thAl Cloneable-2 marker
mterfacei, Cloneable2 implementsd}A] ?.,]:—' clone()2 @Hzgto]=5FH CloneNotSupportedException &
Q)7 AYet.

2. Prototype Pattern®] #%

prototype pattern< T3] clone() abstract A EE 71X &= interfaceS AF8-5}F1L, clone()& ZF Ao A

LHfEto|EstE 22 Hof Sla.

JavaOilA Cloneabledi| EHS

«interface» Shape

+ clone(): Prototype Application [<>—>|- color

copy = existing.clone() A

+ Shape(source)
+ clone()

ConcretePrototype E}
-field1

Rectangle Circle

this.field1 = prototype.field1

+ ConcretePrototype(prototype)
return new ConcretePrototype(this) + clone(): Prototype -width - radius

- height =
% + Circle()
+ Rectangle() + clone()
SubclassPrototype + clone()
super(prototype) - field2
this.field2 = prototype.field2
+ SubclassPrototype(prototype)
return new SubclassPrototype(this) + clone(): Prototype
3. Prototype Pattern9] 7@",:_]'7@
prototype pattern< *}ﬁé} 1 | gt A ede &Z=ls) SRPE &HE 4= 914, shallow copyE AH8-5HH
objectZ A2 AT ARTE FEEY.
SFAIRE object F+27F 47 4 clone()= F@3H7] M7 2& % 1AL, deep copy A|of| WK 2|7} g H] = ALt
o

object7} T2 = 7] oH& & 3=

e

2.6.2. Prototype Pattern9]

— | [

prototype pattern< t}-23} ZHo| shallow copy = deep copy —7— H 4~ 9] Shallow Copy©]| A=
Z=9] 7ZFS H|E |2 Ealst= Ao 2 o|o whal primitives AA| 2 A& Zro] EALE| A, reference

=z BAME (S5 LS objectE 718] 714 H). Deep Copy©l| A= reference’} ZF=%3}= object7}A] A&A|

715 0.2 A slo] BARIE A4,

E35] read-only?l -3 shallow copy & sh= Z o] 22

©

super.clone() © & Objecto]] +@ 5 clone()-& 12 AFES}HA shallow copy’} A-& %11, deep copyE 5F2H
4 o vleo| a4 FANoF .

7

// shallow copy
public class Person implements Cloneable {
private String name;
public Objects clone() throws CloneNotSupportedException {
return super.clone();

}

© N o w A W N
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1 // Deep copy
public class Person implements Cloneable {

N

3 private String name;
4 public Objects clone() throws CloneNotSupportedException {
5 Person person = new Person();
6 person.setName (name) ;
7 return person;
8 }
9
10 }
" J

3. Structural DP

3.1. Adapter Pattern

3.1.1. Adapter Pattern

1. Adapter Pattern
Adapter PatternS S8 %] = interfaceE 714 classE AFRES 4 T2 5= DPY. =,
class/interface?l adapteeE 7] 1nterface§ ALES = Qe &

F2 A2 interface?} lagacy TES TAEA] & wf, A2 L 75 F7he 0 AHET

fot
rloy
il
2
52
rr

2. Adapter Pattern?] L%
adapter pattern< th-21} ZFo] object adapter 7+ 2} class adapter 32 FHE =,

o Object Adapter F-Z= 7|Z interfaceS FLHSH= adapter classE A5}, adapteeS adapter class
QA WHZA OS2 AESt= composition T+XE 7.

2 3Efﬂl?i'= ‘.’JEillilﬂI’\

Zotots 2afa «interface»

Client Interface

+ method(data)
A 3. MH|A (adaptee)

AHo Ep EE FiAS 280 SeHA
| MHIA ZEAS DY AR £ o2

)
i [EL] 24 4 gig)

|
H

Adapter Service

xoz
9i=7)

- adaptee: Service

+ method(data) + serviceMethod(specialData)

specialData = convertToServiceFormat(data)
return adaptee.serviceMethod(specialData)

4. ofgHEf
Sefol= et AfHIA o] cof SR 2 ol
HEIA HHIE wrappingdtoi 2el0/HE EE|0|A

i fy

(=
Bl

o Class Adapter :r'- ZLE 7] interfaceS L@ S}= adapter classS AR5}, adapteeS AERIE 2 5F=
inheritance e 7]-7q E9| o5 S-S A D5k c++ollA] AF8st7] HE]skal, javao] A= interface
L implements2, adaptee— extends= /‘]'—'—‘*‘,: 7o JLHAT 4 Qle
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]

=0

SHAEE 2L classE ISHol SIEE TE Bago] 23 kol 4 9. THT B9 adapteed] TE
SANA A Zlo] AT 4 92

Client interface

Existing Class Service
Client '%
+ method(data) + serviceMethod(specialData)
implements | extends
Adapter

+ method(data)

specialData = convertToServiceFormat(data)
return serviceMethod(specialData)

3. Adapter Pattern®] ¢+

4 £ IS oASEA G2 TS ALS
slE2 SRP2} OCPE &4¢ ot A28 FEE VS W @ 57F U adapter?} adapteedt

SH
=

A~
-
j_Z]-
=

o]

KR
il

=
st

g

il

3.1.2. Adapter Pattern?] L&

object adapteri Th&} o] 7EH,

[ 1 public class Service { A
2 public void serviceMethod() { ... };
3 }
4
5 public interface TargetInterface {
6 void targetMethod();
7 }
8
9 public class ServiceAdapter implements TargetInterface {
10 Service adaptee;
11 ServiceAdapter(Service adaptee) {
12 this.adaptee = adaptee;
13 }
14
15 @0verride
16 public void targetMethod() {
17 adaptee.serviceMethod() ;
18 }
19 }
" J
class adapter= TF21} Zto] 1 E.
r \
1 // Service®| TargetInterface= =2
2
3 public class ServiceAdapter extends Service implements TargetInterface {
4 @0verride
5 public void targetMethod() {
6 serviceMethod() ;
7 }
8 }
\ J
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3.2. Bridge Pattern

3.2.1. Bridge Pattern

1. Bridge Pattern
Bridge Pattern & class Ti= G4 AT classg9] A2 F M9 NE AT #2322 e 242 7i
SIE= 5= DPY. =, inheritance T+ & composition F+Z 2 YEIE= A Y.

of| & 50] shape} colorgt= 7lid o] Ql-& wi, ZFz of] thet classE A &St shape 7] x color 74 ¥HE-2]
classE©o] @ Q3 o] classE inheritance® FA3H I A 2lY], g4l =& A X H shapeS abstraction
© 2, colorE implementation© 2 A 2|5} shapeo]| Al colore]] o3t reference fieldS AT 4~ 912 o]zH
shape 7|4 + color 7|42 class7} 0] %.

bridge pattern-& adapter patterny} 7320 2 S A}s|] B 4= Qx4 bridge pattern- A THA o A T}k
oF RRS =9A 07 sdslr] 99 AFHEE+= DPo|1l, adpater pattern -5-2| R4 TA| oA §3HE]| 2] k=
interface® AR5t 1 ¢ uf A}2E= DPY.

JDBC 5-¢] bridge pattern® 2 L@ & o] Q1. ojof g} JDBCE DB Hlig ol Aatglo] &=
Ne= G

2. Bridge Pattern?] L%

bridge pattern T} @o] A9l 52 Aol /7152 E5FL 3l Abstraction classe}, 2 715l et
42 EZFS Q1= Implementation class/interface® -4 %H. abstraction implementation?| object&
AL ZFA1 9] 7158 AT (composition). abstractione A A 7£H-& implementationo] 4t o] utzt
SE ol W1o] BHoR gheT & L.

s

ek

i
_{

2y

5. Client
Abstractiont Zot=0| Y& 2. Implementation

BE concrete implementation0il CHZH
Client abstraction.featurel() ZEXQ OEHYO|AS MA

1. Abstraction Hz|x|
42 £E2 Mo =2 MBS
Implementation Z4|0f| 2|Z0t0] AX|

ote| £E9 S +U Abstraction «interface»
Implementation
i.method1 -i: Implementation [ >—>>
g : + method1()
+ featurel() + method2()
+ fi
i.method2() gature2( + method3()
i.method3() A
g
1
(ME§AL) ]
Refined Abstraction Concrete
Implementations
i.methodN()
LmethodM() + featureN() 3. Concrete Implementation
2HE By 001 JC

4. Refined Implementation
Hol =20l MHE M2

3. Bridge Pattern®] A4

bridge pattern-& abstractionT} implementationg £2]5}1, |22 /go] F71EPS o EPH oz ITE

Z7ket 4 9lomz SRP9 OCPE &4:3ht}.

SR A2 d 720 O3] LE H3HES} ST, A FEE LT Y Ak o w TE 24o) ofel e
[e]

2~ 0] O
T ART| -

3.2.2. Bridge Pattern?] L&

bridge pattern& t}-21} Zro] L= 4 912, o]uf BasicRemote”} abstraction, DeviceZ} implementation,
Radio”} implementation®] St A Y.
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1 public interface Device {

2 void setVolume();

3 void getVolume();

4 }

5

6 public class Radio implements Device {

7 private int volume = 30;

8 Q@0verride

9 void setVolume() { ... };

10 @0verride

11 void getVolume() { ... };

12 }
N J

N

1 public class BasicRemote {

2 protected Device device;

3

4 public BasicRemote(Device device) {

5 this.device = device;

6 }

7

s public void volumeDown() {

9 device.setVolume(device.getVolume - 10);

10 }

11 public void volumUp() {

12 device.setVolume (device.getVolume + 10);

13 }

14 }

15 c ..

16 Radio radio = new Radio();

17 BasicRemote basicRemote = new BasicRemote(radio);
L 18 basicRemote.volumeDown() ; )

3.3. Composite Pattern

3.3.1. Composite Pattern

1. Composite Pattern

Composite Pattern ZA-F& #A 0] Ev] FHIZ BHE= 53 objectES TY object2 FojA FAL
4 QlE 2 3= DPY. =, composite patterne AFRSHH T objecte} B3t objectE SHt2] interface®
A 4 9. o]u] &Y objectE leaf, &3} object%— composite©]|2tal gt

leaf?} composited 9] class2 # 2|52l 51 £ =95t o ] =2 wnitt B9 AAME 5t
=Heto] 7|1, FIEL ZEolR] ¢F2-. composite pattern— ALSS] A AA LZE "W A o5, EF
T3k objectE 9] ?11]7‘4?1 E}%‘é SAIsHA] ot ZF¢o] 7heste s & 4= S ofof meEt =9
objecto] E2] BAE @eolsiA w5t A= & AU+

|
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sub1

20 kb

{C osite)

filel2
IOKD

file 1

ID!lh

java2] Swing S©] composite patterne: AFR-3|
2. Composite Pattern®] %

file

10 kb

sub2

10kb
(Composite)

F=of St

composite pattern< th-23} Zro] 51}t9] interfaceZ leaf®} composite THAE AR &4 = LXE 714,
IS compositer= Componento] tgt 2|AEE W2 71X 11 1o, TFE composite®| Y leafE E3H 4=
o
U
Y. Client
Component QE{I0|AS SoHM 2E
2251 NS
| Client |
E2|2f T WA % =Y WA 250]
CHol Zt2 2ia) (o, execu‘re)c’ 2
Mo 2 92
1. Component «interface»
E2|0flM T2 HH| (leah) 2t ST HA| C
(composite) 2F0fl 20! =g omponent
ME
+ execute()
v o i
1 1
2. Leaf Leaf Composite 3. Composite (S&H)
E20M2 7|12 24 (012 2A= US)
P2 AF 2Eg 2 - children: Component][] ComponentS X492 Fhxl=
sorm|E, Tpe) TR ZHAS
+ execute() +add(c: Component) Ux| Y
+ remove(c: Component) c .
; UEHOIAS & 2
Do some work. | [ *+getChildren(: Component[] | - =P - e
+ execute()
THZ NI wou Zols MU
Delegate all work to Okl RA0 1YL ET UNZF He|
child components. 9 X E HLE Clientof] g
3. Composite Pattern?] 43
HU-=3t object O] Ed] WAE Tedked 4+ QAL =2 leaf class7} 37 Hete thE 55 4T D a7t
O~
glomg OCPE 43
ShARE A A QN A 2] B4 EFrE A2 HAo] o# . &S 7|50l UF HE classg Tolle 3%
interface A7} o]&]-&-.

3.3.2. Composite Pattern?] &

composite pattern2 th23} Zo] LT 4 9l
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1 public interface Component {
int getPrice();

N

3 }

4

5 public class Item implements Component {

6 private int price;

7 public Item(int price) {

8 this.price = price;

9 }

10 @0verride

11 public int getPrice() {

12 return this.price;

13 }

14 }
" J
e N\

1 public class Composite implements Component {

2 List<Component> components;

3 public Composite() {

4 this.components = new ArrayList<>();

5 }

6 public void add(Component component) {

7 this.components.add(component) ;

8 }

9 @0verride

10 public int getPrice() {

11 int totalPrice;

12 for(Component component : components) totalPrice += component.getPrice();

13 return totalPrice;

14 ¥

15 }
\ J
r \

1 Item iteml = new Item(10);

2 Item item2 = new Item(20);

3 Item item3 = new Item(30);

4 Composite composite = new Composite();

5 Composite subComposite = new Composite();

6 subComposite.add(iteml) ;

7 subComposite.add(item2) ;

s composite.add(item3);

9 composite.add(subComposite) ;
L System.out.println(composite.getPrice()); // 60 )

3.4. Decorator Pattern

3.4.1. Decorator Pattern

1. Decorator Pattern
Decorator Pattern2 objecto]] &£7}2 ¢l 7|52 o] ZH o2 =718 4 QJEE 1= DPY. =, 7|&
objecto]l F7} 7]'5& FAlot= AR olafF & Sl

o2 So], SNSE E5l ¢ 7|52 7St 1S uf AFexpE g oL vy 410 SNS7 AE 21, 2
A o1 S Qo AL O1F shte] 44 P2 Fastelw we] SNS7T 9lS w 2 — 17]9) class
£ A 95fjof gt S5}A|HE decorator pattern2 AFE5HH 512 decorator classTh A Q) ol 511 AFR-A}2] A e

wel 502 158 488 4 U8

22 objecte] AT} 7)50] WMl MAEE 49, 2-& classE A4 20| RS
At BP0 A8

Pt giol WAE

f
rr
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java@] Stream, Collection 5-©] decorator pattern®© &2 F3A x| o] ¢J-2-.

2. Decorator Pattern9] #%

decorator pattern< th-&-3} Zto] 7] & 3§ =2 A o]5} 11, OH Y =of o3} decoratedSl= FLZ5 7142, decorator
= ZpAlo] wrapSh= object(wrappee)E 7122 WW WHE4E 711 9J-S. o]uf base decorator= BE ZH]
2 wrapping® objecto]] $]35}al, base decorator—‘:'f— Ar&=Ht concrete decoratorso] &7} 52 744,]@,
concrete decoratoro]| A= 7] wrappee?] 7|52 I E =515 (super.method()) 7} 7]—~ A o]5t,

cli a = new ConcComponent()
b = new ConcDecoratori(a)

¢ = new ConcDecorator2(b)

cexecute()
R // Decorator -> Decorator -> onen
«interface» e ato Decoratol Component
1. Component Component
BHE BHLE MH|S D Eof CHOH
HEHS ]_'i Hoc.._ Lt HEE e il CHE! + execute()
25 YEHojAS MY yy
R 3. Base Decorator
J ! BHEIE MH|E AtxOL7| QU HEE XL
2. [_Zonr:refe Component Concrete Base Decorator 7% HI2H0EE BE xS afuE
2HEEE WHS 2eha Component Wxjlofl et
7|2 HES o| -wrappee: Component
2 OESS ojo B4
712 wSSE EE'I“AEEllIElE'iuﬂ Aot 13 + BaseDecorator(c: Component) wrappee = ¢
= T e + execute() + execute()
4 wrappee.execute()
Concrete
Decorators

Concrete Decorator
=
=

o Edoz =7kE 4 U

[y
dxdE i

=7 UES FO
tass g super:execute()

5
7% H|Z{0EIS 2uiztole o CEE S
ol WES o oiME =5 ey [+extral
A\Ezlli

3. Decorator Pattern®] 3

ZF decorator classhfth QY-S 7R B2 SRPE £4:511, |2& FE =77} {olst22 OCPE &4
FERF FAA 7} ob 2t interfaceE AHSHE = DIPE F4-39F.

SIAEE & BRE 7} =otx] a1, o] decorator® A= H-$- EA wrapperdt AHA|517] o] 82 E;_f—)‘__ old
decorator® 7HES 1) 1 A0 wet F2to] Aolrk Qe 4 9, Mo Apdlo] FUH SAES
F@3E o] Actzg.

I

3.4.2. Decorator Pattern?] L@

decorator pattern th-21} Zro] FL&AS. base decoratoro] A& wrappee?] 7|5 I & AFESIEE S,
concrete decoratorof| A= wrappee?| 752 AF8-51E (super.send()), 752 71

[ 1 public interface Notifier { A
2 void send(String meesage);
3 }
4
5 public class BasicNotifier implements Notifier {
6 @0verride
7 public void send(String message) {
8 System.out.println(message) ;
9 }
10 }
. J
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1 public class BaseDecorator implements Notifier {
2 private Notifier wrappee;

3 public BaseDecorator(Notifier wrappee) {

4 this.wrappee = wrappee;

5 }

6 @0verride

7 public void send(String meesage) {

s wrappee.send (message) ;

9 }

10 }

11

12 public class FacebookDecorator extends BaseDecorator {
13 public FacebookDecorator(Notifier wrappee) {
14 super (wrappee) ;

15 }

16 Q@0verride

17 public void send(String message) {

18 System.out.println(" [Facebook]") ;

19 super.send (message) ;

20 }

21 }

3.5. Facade Pattern

3.5.1. Facade Pattern

1. Facade Pattern
Facade(T{ATE) Pattern> 2to]Hejg|up A BAARS Mot ARG 4= Sl
[T = |

A °1 Zb_i facade= A& AHAL 9u|gh

o & 59, javao] Al oW de L gc

F2 B ABALH E Oz}
el ol 27t Baw w gt

Ea = S
e = [¢}
DPA. 55, 271 A4) cla s 4 LI 218 5.6 51 A8 A7) el ool AL 2 ol 2 el A Bore

£ ZA5t= AL, chent7} email APIE 2435 =9
20 S . e pattern S 2 T2 FolA A AIAE AT AL§ol 1 BT
ol

olE H¥Fi & uf, MEA L tis) At

Client 1 Client 2 ‘ ‘ Client 1 ‘ ‘ Client 2 ‘
Complex Subsystem |\>( / Complex Subsystem | Facade

—

2. Facade Pattern9] L%

class ZHH| & A of whet o] class=2 B E|5H= 7

24

facade pattern& Th2-3} ZHo] subsystem classo 2] —E—ﬁ]—% facade class& A oJst= FXE
7ol 4

7H4.

o] 1 7hekgt

o|t] facade




1. Facade 2. =7k HALE 3l
S2t0|UE7 HotA| A2 U 2= UES OfLEe] HAES s
ME A|AEIQ] 7|5 XetS OOIS Exigt

BH= =

Facade Additional

- - Facade
m - linksToSubsystemObjects

- optionalAdditionalFacade

3. Client
ZE0|UEE ME A AR HHIE + subsystemOperation() . + anotherOperation()
Y 2 &0 g3 HAES S - v N —
R P Y R /
/ \ b “ ’

’ \ \ LY !

; S A \
\ Subsystd  Subs | /
IS MLEYd cl ubsystem %

S~ Subsystem class
Su
class
system

Subsystem
class
class
class

3. Facade Pattern®] F+4

OlEA-E Fo| AL} g E(facade class) 2 H-& 4 Q111, client+= facade classTt o|3l|5}H H&= H TS AlH

A
T?}\D

5}2] gt facade class7} W& classet AgsHA & o] god object7} & 4= 9111, I E F7}of ufgl G2 H S thAato]

=°d.

st

God Object® 5FLt9] classt object7} U B2 Ho[E|9F 755 7P A AAE R Al Het
o2, SRPE 94t

3.5.2. Facade Pattern®] &

= anti pattern

9] sendEmail(emailMessage);& $&3l= 2o 2 oA 44 24 4+ 2.

public class EmailSender {
private EmailSettings emailSettings;

public EmailSender(EmailSettings emailSettings) {
this.emailSettings = emailSettings;
I

public void_sendEmail(FmailMessage .emailMessagel d. . . ._..
'Properties properties = System.getProperties();
iproperties.setProperty("mail.smtp.host", emailSettings.getHost()});
|

I
1Session session = Session.getDefaultInstance(properties);

i

try {
| MimeMessage message = new MimeMessage(session);
i message.setFrom(new InternetAddress(emailMessage.getFrom()));
! message.addRecipient(Message.RecipientType.TO,
! new InternetAddress(emailMessage.getTo()));
! message.setSubject(emailMessage.getSubject());
! message.setText(emailMessage.getText());

1

1

]

|

I

1

I

]

i

I

Transport.send(message);
} cateh (MessagingException e) {
e.printStackTrace();

facade patterne T3} Zo], T3] E&SH IT L} o8] 7|52 B2 class2 TG client= EmailSender
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3.6. Flyweight Pattern

3.6.1. Flyweight Pattern

1. Flyweight Pattern

Flyweight Pattern& W2 28] AFEHS £0]7] Y8l 7153t objectE ZH/x]-—QLo]-— DP<¢. =, objecto] tst
caching2 285t ZQ). o|u] Ho}sH= &AL extrinsic stateZ, %3}0}7\] oL & é% ntrinsic statez}al
E. 2 31, intrinsic stateoﬂ 3 caching2 -3t

A& 591, editorof| A chacracerg Z @ok= object7} § mebJLqﬁﬂﬂﬂonﬁ*LQEmE%dwmma
object7} fonto] et HHE A& ot QS A= §lS. flyweight pattern2 2-85HH fonto] Eﬂa BRo
w2 WA classE /d5tal, font objecti= stTE AJAdSto] of 2] chrarcter object7} AFESlE S & 4= Q3.

%5 v|@elo] Q.2 AFeke object7} W& 1, object o] FEACIHA W i Ho| B uf 2
483

et}

2. Flyweight Pattern®] 7%

flyweight pattenr-2 th-2-1} Zo] flyweight objecto] thet poold 2| 5}=(caching2 5}=) flyweight factory
¢} flyweight class= LA E. flyweight classE AF86}= classt= flywieght object& 7}2]7] 7] 5t Wl HEE
714,

3. FlyweightFactory
FHAIZ 0|2010q flyweight poolS 22|

FlyweightFactory

- cache: Flyweight[] Client I

+ getFlyweight(repeatingState)

if (cache[repeatingState] == null) { Context
cache[repeatingState] =
new Flyweight(repeatingState) - unigueState
} - flyweight

return cache[repeatingState
[rep 2 ] + Context(repeatingState, uniqueState)

+ operation()

2. Context

Flyweight2l context LHO{lM 238
MEHS Zg

this.uniqueState = uniqueState
Flyweight this.flyweight =
factory.getFlyweight(repeatingState)

- repeatingState

1. Flyweight
02! BH|S Zofl 38 & £ QU=

s20| ToE

3. Flyweight Pattern®] 3
fiyweight pattern AL81A HR 2] ALg} dlolel 44 9 o] W2 latency S £ 4 L.
ol =

IR gF =714 class AFg o2 I B2 o}A.

3.6.2. Flyweight Pattern®] L&

. o]t flyweight class= 7] 2] © 2 instrinsic stateWr-2 7}2] 1L
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1 public class Character {
2 private char value;
3 private Font font;
4 public Character(char value, Font font) {
5 this.value = value;
6 this.font = font;
7 }
8 }
9
10 public class Font {
11 final String family;
12 final int size;
13 public Font(String family, int size) {
14 this.family = family;
15 this.size = size;
16 }
17 // getters
18 }
\ J
e \
1 public class FontFactory {
2 private Map<String, Font> cache = new HashMap<>();
3 public Font getFont(String family, int size) {
4 String key = family + ":" + size;
5 if (!cache.containsKey(key)) {
6 Font newFont = new Font(family, size);
7 cache.put (key, newFont) ;
s System.out.println("Al22 ZE MH: " + key);
9 }
10 return cache.get (key);
11 }
12 PR
13 FontFactory fontFactory = new FontFactory();
M Character cl = new Character('A', factory.getFont("Nanum", 10)); |

3.7. Proxy Pattern

3.7.1. Proxy Pattern

1. Proxy Pattern
Proxy Pattemn B4 2 objecto] t7 28 EISA AolE 4 Y= G DPEL. 5, client7h 22
objecto]] 213 oA 2L F St 4, proxyE AA AMESHES Sh= AY.

FZ YE object7} 117SH AR E 7R YA, obJect 3717} AA lazy initializationg Z-835}11
ﬂ% 50l AH83h 4 proxy clasol cache® HA BT 37} cachinglo] 914 91 w6 oby
£ ABOIES S5 S5, U objeerE AGS] ol proxy A B2 Hold £14 AA, 27
SO AP 7% & 27101 428 PR class® 2H17] o2& 1 A}l
2. Proxy Pattern9 7%

proxy pattern b3 ZHo] i object®} A3t interfaces FASHHAA Y1 objectE &= LR E
7. o & 9lall Y& objectE 712]7]+= R H4E T &8

o{n =
o Q Mo

DOIK
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1. Service Interface

«interface» EEN7H MEIA WRIZ QY 5
. OIEE ZEA|7} Of2}0} OH= A{H|AL
Servicelnterface ~ A R

2IEfT0| A
+ operation()
1
D e e ]
! :
N 2. Service
3. Proxy Proxy Service o 220 252 X2ots
MH|A THS k27)E AT EFN
HEZL A - realService: Service K>—=]... ato|= 2|2
ZEA7t 239 Halg (EIOI=E1ED
erZoiet 1 2 H2s RES g : ;
Jrim . = |+ Proxy(s: Service) + operation()
+ checkAccess()
+ operation() realService = s

if (checkAccess()) {
realService.operation()

}

3. Proxy Pattern®] Z¢t3

7)E DEG 7 %5-S GAGFAN HZL 7S F718 5 GLOBE OCPE E4311, 71 7152 U object
7SS L AZL 7SS proxy7t SAREE o SRPE F5@
proxy AHgo] afel 3 Bg4o] ok T, proxy AA7F AHGSHE 427 BOW MR ol H

facadeZ} A|2-& interfaceS A 2]5) B2 st A|AH-S Th45}
object®2 7H= A&5-E& Aot

3.7.2. Proxy Pattern?] &

Al A, proxy+= 7] interfaced AHE-S|

proxy pattern Thxit Zro] +dT 4= 915
r B
1 public interface YoutubeLib {
2 Video downloadVideo(int id);
3 }
4
5 public class YoutubeClass implements YoutubeLib {
6 public Video downloadVideo(int id) {
7 Video video = new Video();
. // dA 22 2
9 return video;
10 }
11 }
12
13 public class ProxyYoutubeClass implements YoutubeLib {
14 YoutubeClass youtubeClass;
15 public ProxyYoutubeClass(YoutubeClass youtubeClass) {
16 this.youtubeClass = youtubeClass;
17 }
18 public Video downloadVideo(int id) {
19 // cache=l video’} UCH BfEt video Elzt
20 // cacheZl video?} 2D youtubeClass.downloadVideo(...) &=
21 ¥
22 }
23 PR
24 YoutubeLib youtubLib = new ProxyYoutubeCLass(new YoutubeClass());
. youtubLib.downloadVideo (1000) ; )
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4. Behavior DP

4.1. Chain of Responsibility Pattern

4.1.1. Chain of Responsibility Pattern

1. Chain of Responsibility Pattern

Chain of Responsibility Pattern(CoR)-2 o]® Zrg oLt client®] & -8 S}t9] objectol| A 25 Sh= th4l,
ol2] 72| objectollA] $HFFHLE L}FIL chain FEIZ QA AMH o2 Aelshe DPY. ol A4S 5
885}= =3 objectE52 handlerztal §F =, handlerE chain® 2 AZAS|A] chaine w2t Qo] A=
k13

ol® Aol we} handlerS Aok s, £4 2348 oA 9] objecto] ] A z]slok 3 uf A5, £
23S Ao handlerS9] FR1} 247k BH 0= AFEolo} & uf AH5H.

2. Chain of Responsibility Pattern®] L%

CoR2 th&3 2 +2E 7M. base handler+ handlere] Hiet 3-& 7|57}, th handler& 235171 919
ﬂ“bﬂ M-S 7H2] 11 Q)= class. concrete handlerof| A= 2|7} 7}50lH * 2] 511, base handler?] HH
H 2 /\]—JloH & handlerof| 7] 242 4.

Zeto|HE
l Handler .
ZEMO OIETO|AS Mot el =20 okt HQISS B Het LokALE
FSHL == Exoz IO A QI2
EXoR MU £ UZ
4 4
«interface» l Clien:t 9
Handler
+ setNext(h: Handler) h1 = new HandlerA()
+ handle(request) h2 = new HandlerB()
A h3 = new HandlerC()
2. Base Handler (F=4f 22iA) 2 H hi.setNext(h2)
DE WS2 IAS0| 2SN ; h2 setNext(h3)
M8 ICE WS QS BaseHandler I
O WEZ HEE A next - next: Handler hl.handle(request)

+ setNext(h: Handler)
+ handle(request)

Iy

3. Concrete Handler ConcreteHandlers N
IHE H2[0}7| T AN ZEI Y if (canHandle(request)) {

/.
}else {
m parent::handle(request)

}

if (next != null)
next.handle(request)

T

+ handle(request)
—

3. Chain of Responsibility Pattern®] Z¢t3
client= chain®] W& 725 & 87} gla. EoF 7|E I E W7 glo] 2L handler I=5 F7}5]| chain
o ¥& 4 9lomg OCP7} ShH H.

S 5 4o] ol ALt A1) Helo] T latency7} ol 5 Q1 chaino] ZE FHHW TG 7
1 4 98-

L=

o

B K

4.1.2. Chain of Responsibility Pattern®] L&

CoRL the1} Zro] I+ 4= Q1L o] interface?} base handlerE HE 2 A 2)5}l= tA], HandlerE abstract
class2 Ao,
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[ 1 public abstract class Handler { A
2 private Handler nextHandler = null;
3 public Handler setNext(Handler nextHandler) {
1 this.nextHandler = nextHandler;
5 return nextHandler;
6 }
7 protected abstract void process(String url);
8
9 public void run(String url) {
10 process(url);
11 if (nextHandler '= null) {
12 nextHandler.run(url);
13 }
14 }
15 }
\
e N
1 public class DomainHandler extends Handler {
2 @0verride
3 protected void process(String url) {
4 // url®| domain IO ~af
5 }
6 }
7
8 public class ProtocolHandler extends Handler {
9 @0verride
10 protected void process(String url) {
11 // url®| protocol IfY +af
12 }
13 }
N J
e \
1 Handler handlerl = new ProtocolHandler();
2 Handler handler2 = new DomainHandler();
3 Handler handler3 = new PortHandler();
4 handlerl.setNext (handler2) .setNext (handler3) ;
5 String urll = "http://www.youtube.com:80";
6 System.out.println("INPUT: " + urll);
L 7 handlerl.run(urlil); ]

4.2. Command Pattern

4.2.1. Command Pattern

1. Command Pattern

Command Pattern Q% E= HT-2 object® encapsulateds}o] Q3o gt AAIEAS =

command pattern 242 HUYE= object?l invoker2}, _9_7~4 2 Ht 29| receiver2 FAH. =, invokere}
receiver= classE £2]5}1, 2 42 object®2 A HAEs= A Q.

ANE 50, TLsHA AT o HEo] 247 thE A HOF Sh= A%, ©eol A 2R T
HEHZ classS 3R Aol @ Hato|dsfjof 3t O] 31 39 command patternS ARESHH Z+HZbo]| o gt
classE A5l HAEE 1L 23S HY= EH/;J, button2 invoker®, AA| 22 43Y5l= object
£ receiver2 5111, command& AFES| R4S HULEE & 4 2. =, commandZ} AFE2F QJE H o] A2}
Rz 22 Aol o] Z7F layer2A] 715,

command patterng AF-&SHH invokerol| A 27, undo, redo 52 F3AsH7| o=

)

2]

i
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2. Command Pattern®] %

copy = new CopyCommand(editor)
button.setCommand(copy)

5r'
LClient

command pattern< T3} 7+0] commandS AP A] 7| = invoker, -2 Tl
o2 2FS 43 5}= receiver®2 FHAJH.

1. Invoker (Z&Xt)
2N of= Hug ¥

exioz Z2t0|UEZFE 02|

Q)X command,

MME FMES BropH S 2. Command
FUES AWot7| 2t HfIMES MU
Invoker 9
- command «interface»
Command
+ setCommand(command)
+ executeCommand() + execute()

Receiver

+ operation(a,b,c)

t

3. Command Pattern?] Z43

receiver.operation(params)

ConcreteCommand1 Concrete
. Command2
- receiver
- params
+ Command1(receiver, params) | |+ execute()
+ execute()
3

3. Concrete Command

EN
T
HiA
T

Clet uel 2N Aug 2o
|0 DS Al ot
S 74 ivce WS Mo &

ohe o TR0k o
ol

il

AA 2 QA

command pattern< invokerQ} receivers £2|5l1l, 7|& IE £ Qo] |28 ZES U1 £ 9long
SRPZ 253,
SHAu SLE BErt 574
4.2.2. Command Pattern?] 7¢&
command patternS th2 3} Zho] JLAT 4~ 9L
e \
1 // receiver
2 public class Light {
3 private boolean isOn;
4 public void on() {
5 System.out.println("&= ZALICt."™);
6 this.isOn = true;
7 }
8 public void off() {
9 System.out.println("S2 HLCt.");
10 this.isOn = false;
11 }
12 }
13
14 // Invoker
15 public class Button {
16 public void press(Command command) {
17 command.execute() ;
18 }
19 }
\ J
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// command

1
2 public interface Command {
3 void execute();
4 }
5
6 public class LightOnCommand implements Command {
7 private Light light;
] public LightCommand(Light light) {
9 this.light = light;
10 }
11 Q@0verride
12 public void execute() {
13 light.on();
14 }
15 }
16 ..
17 Button button = new Button();
18 Light light = new Light();
L button.press(new LightOnCommand(light)); )

4.3. Interpreter Pattern

4.3.1. Interpreter Pattern

1. Interpreter Pattern
Interpreter Pattern 57 10]9] % 215 class2 UEHU AL, siE dojo] £45 siAste 4% 5ol
AHgEE DPY.

ol Hutlel, Qe mele S AL 4 9
sl 5.

o
=
Am
ol
re
<
=2,
r-lu
mlo
W
;L
D
A
_\;
QL
rr
ol
o
Jo
r
9#
X

& &1, postfix expression®| g2 A4t ¢, =AHE terminal expression, A4HAE nonterminal ex-
pression @ 2 A || A AAS 4= Q)&

2. Interpreter Pattern®] L%

interpreter pattern< Th-2-1} 20| expressiono| A AlEst= A H (HG9 ZF 5)5 Al = context, inter-
pret() HIAE (A= HAE)E EJS)E= expression 1nterface9]— I3 Ez TAE

interpreter patternof| A= <10]9] 22 objectE 9] treex® UEFH L, ZF objectoll Al AAZ 2 Z+ZH9] in-
terpret() HIAES S&3] ZIE WHESH o|nf expression interface?] THAE leafo]] SJFSl= terminal
expression(At 5 )1 leaf”} obd nontermmal expression(AAA}F 5) o072 LA,
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ZE expression0i|A At20t=E 2SE
MEJL T QIS (0], #g 2
Client Context
E¥ot=s 2HS LERH =0 context
£ &xohM ofaiots B4E 7tz
<<Interface>>
Expression
+ interpret{(Context)
l}
1
TerminalExpression NonTerminalExpression
+ interpret(Context) + interpret(Context)
3 XtM|2 Z27t == expression CHE expressions& MM E X
(x,y, z) O}l Q= expression

(*+-)

3. Interpreter Pattern?] Z¢+d
interpreter pattern Aolo] A2 B4 & F71eb7] 418, 5ol Pedt 2L /FAck T4,

SHAIE Qlojo] Rlo] Bts|E4 S A BHEE Robx 1, Aol 45tE 4 98-

4.3.2. Interpreter Pattern?] L@

T3} 2o interpreter patterng ARE-of| GIAlX MAL-S 3Z9tS= postfix A4S TS 4= = ol Vari-
ableExpression©]| terminal, PlusExpressionT} MinusExpression®] nontermainal$J.

o|uj] PostfixParser= postfix d4to]| what, AA| 2 E2d-8 1}Al5tl stacke 283t AAS)E= classY.
r D)
1 public interface PostfixExpression {
2 int interpret(Map<Character, Integer> context);
3 }
4
5 public class VariableExpression implements PostfixExpression {
6 private Character character;
7 public VariableExpression(Character character) {
8 this.character = character;
9 }
10 @0verride
11 public int interpret(Map<Character, Integer> context) {
12 return context.get(this.character);
13 }
14 }
\ y)
r \
1 public class PlusExpression implements PostfixExpression {
2 private PostfixExpression left, right;
3 public PlusExpression(PostfixExpression left, PostfixExpression right) {
4 this.left = left;
5 this.right = right;
6 }
7 @0verride
s public int interpret(Map<Character, Integer> context) {
B return left.interpret(context) + right.interpret(context);
10 }
11 T
. J
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r N\
1 public class PostfixParser {
2 public static PostfixExpression parse(String expression) {
3 Stack<PostfixExpression> stack = new Stack<>();
4 for (char c : expression.toCharArray())
5 stack.push(getExpression(c, stack));
6 return stack.pop();
7 }
8 private static PostfixExpression getExpression(char c, Stack<PostfixExpression>
— stack) {
9 switch (c) {
10 case '+':
11 return new PlusExpression(stack.pop(), stack.pop());
12 case '-':
13 PostfixExpression right = stack.pop();
14 PostfixExpression left = stack.pop();
15 return new MinusExpression(left, right);
16 default:
17 return new VariableExpression(c);
18 }
19 }
20 }
\ J
4.4. Iterator Pattern
4.4.1. Iterator Pattern
1. Iterator Pattern
Iterator Patterne 9] 9] collection(list, tree, stack 5)of T3l collection W] QA ES sl 43S 4+
UE= Sh= DPY.
A m7zo) vfet ARHel % gl (list, array 5), HMAFH AR Qv (tree 5) ZF H-20] o B
o2 235l FEE »= AL BEHG iterator patterne: AF&SHH collectiono]] A#glo] &35l 2 & 4=
13-
javaQ] java.util.iterator”} iterator pattern© 2 FHE o] ¢J-2. hasNext(), next(), remove()(next()2 T3t
d 94 AHA), forEachRemaining() (2 AH W AEH S 2HA5HH Z+ _9_/\01] s a&)7 &2 HAsE
A L.
2. Iterator Pattern®] %
iterator patterno]| A= collection& —(v_\—ﬂ;]-‘— HI 9] object?l iterator% A oJst. o] iteratoro]| A= has-

1\/101‘6()E E]—'g —9-/\7]— }_ZHE]"L; ] ]’ al, etNGXt()E E]"—‘ QA 7]'Z4_2_]__ indeXE- +16’]— O]Oﬂ
HHE 2.9 A1-851H 1A collectiong ﬂ’G 2= 9l

face2 implementsstil, -2 5= iteratorES L

o}% .

3. IterableCollection
ZAMIY AL BEXE

e 2o B2 Ny MY 7txi27] 99t o= et
1 5 3
«interface» «interface»
Iterator IterableCollection
+ getNext() Bttt + createlterator(): Iterator
+ hasMore(): bool A
Ja\ :
] : 4
Concretelterator ConcreteCollection
- collection: ConcreteCollection
- iterationState
+ Concretelterator( + createlterator(): Iterator
2. Concretelterator ¢: ConcreteCollection)
2N =R E A ST [+ getNext() 4. ConcreteCollection
LaRIES Y + hasMore(): bool 2HERE ZeHAL A UAHA
dhet
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<. iterators A]-JQ-OL collection-& IterableCollection inter-




3. Iterator Pattern?] Zo+3

iterator patterng AR§-SFH 9219 collectiono] Hisl &Lt 2] A H |25 AL = 9l

tiond} iterators E2]5}o] SRPE 43t

TE B340 ok, AHESHE collectiono] B 7] GAL 2R 90 anti pattern <)

4.4.2. Tterator Pattern®] L&

iterator pattern2 th23} o] LAT 4 9L,
r \
1 public interface IterableCollection {
2 Iterator createlterator();
3 }
4
5 public interface Iterator {
6 Object getNext();
7 boolean hasNext();
8 }
9
10 public class ArraryCollection implements IterableCollection {
11 private Object[] array;
12 public ArraryCollection(int size) {
13 this.array = new Object[sizel;
14 }
15 e
16 @0verride
17 public Iterator createlterator() {
18 return new ArraryIterator(array);
19 }
20 }
\ J
r B
1 public class ArraryIterator implements Iterator {
2 private Object[] array;
3 private int index = 0;
4 public ArraryIterator(Object[] arrary) {
5 this.array = array;
6 }
7 @0verride
8 public Object getNext() {
9 return arrary[index];
10 index++;
11 }
12 public boolean hasNext() {
13 return index < arrary.length;
14 }
15 }
16
17 “ e
18 Iterator it = arrary.createlterator();
19 int sum = 0;
20 while(it.hasNext()) {
21 sum += it.getNext();
22 }
\ J

4.5. State Pattern

4.5.1. State Pattern
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1. State Pattern

State Pattern-2 objectQ] state(AE])E A 2|5}l, stateo] wel P52 HAT 4 YT =
composition© 2 stateE T&]slEE S}

of| & E9], document object”} Q111, state’} draft, moderation, published7} QIthal 3} ZF Abgjof| what
publish() AT Fato] Trefof shoy, ol thed XAROE TAT S5k AR 74=Ao] Holq.
state patterng AR8SHH 7} stateof Tt classE Y11, F4F —% ol o 3l

o]uff state objectE singleton© &2 Sh= 7 ¢ £ 4 Q2.

2. State Pattern?] %
state patterne stateE 7}2]= objectE contextz} 5}l context”} 7F2] = Z} stateo] ot class% ‘?_]'501 A

t= DP4.

AN

ol

stateo]] T2 S22 A OJS} context object= H A stateo] t)-E]+= state objectE X oh= HEE 7]—2]_1_
31, I objectl] HAEE SET 2GS —roﬂ St ESF state objectT context objectE FZF5H= HEE
7FA 2 Sl o= $A4F o] F context o] stateE WS Z|EF & o 7] W .
1. Context
StateE 7H= K| 2 State

MENS LIENE BE WES 717 ME HIMES 2

Context «interface»
I ——. State
- state
s +doThis()
+ Context(initialState) +doThat()
+ changeState(state)
+ doThis() 4
+ doThat() \ !
ConcreteStates 3. Concrete State B
- THIHY B MEHE SHAZ EW
e state.doThis( - context State BUE BHEI= HMESS 7
state.setContext(this) Nxoz o1
+ setContext(context) T
Client ]- ---------- | + doThis() Confextoi] CHot &% ZI=S k%2
L) Sl0f 2o oS 227l ok

initialState = new ConcreteState()
context = new Context(initialState)
context.doThis()

Context?] MEHE BHOP7|Z &

Se|AE0lA def

i el 2EAE EE // XA 8 4 )
H Z48| xAof] 2|3 state = new (‘JU’WEIS(E(EO
HAL|UE 5 ABLICL context.changeState(state)
3. State Pattern&] oA
context9} stateS 205 SRPE BT 5 93, 712 TCB 27 SHEA JHE F74g 4 glonz
OCP7} o] A S;Jri%l.
siAgE I E BT I Z716100, state B2 classE QYA oF SR E state =71 B 712 YA state?} &

W57 g A% v EEHY,

4.5.2. State Pattern®] 3¢

30
mlo

state pattern2 th2- Zo] LH=E 4
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[ 1 public interface PowerState { A
2 void pushPowerButton(LaptopContext context);
3 }
4
5 public OnState implements PowerState {
6 Q@0verride
7 public void pushPowerButton(LaptopContext context) {
] System.out.println("Laptop power OFF");
) context.changeState (new 0ffState());
10 }
11 T
12
13 public OffState implements PowerState {
14 @0verride
15 public void pushPowerButton(LaptopContext context) {
16 System.out.println("Laptop power ON");
17 context.changeState (new ONState());
18 }
19 }
\ J
e \
1 public class LaptopContext {
2 private PowerState = powerState;
3 public LaptopContext() {
4 this.powerState = new OffState();
5 }
6 public void changeState(PowerState powerState) {
7 this.powerState = powerState;
8 }
9 public void pushPowerButton() {
10 this.powerState.pushPowerButton(this) ;
11 }
12 }
13 PR
14 LaptopContext laptopContext = new LaptopContext();
15 laptopContext.pushPowerButton() ;
| laptopContext.pushPowerButton() ; ]

4.6. Strategy Pattern

4.6.1. Strategy Pattern

1. Strategy Pattern

Strategy Pattern< HE}Qlof 41 e]& H=zk
Ae PelR 5 YD T

AE Sof, Hr[AClA Hol A AMgARS] Ao wet HHHF 2 S Zotof & & Q1A A7F 7P ¢F #6]+=
ARE gojok & 4 918 o|u] 2 Heke classel W& FHSIY TEA oA T, A2e Aol F7151]
SEFS

javaQ] Comparator?} strategy pattern® 2 FL&E 0] Q1S sort 5of| 4] comparedste= AZFS 214 2| Ast=
A9 ol A,

fle

EHoz st 4 9L E 5= DP9, =, composition© 2

t

r
[}

2. Strategy Pattern®] %

Strategy pattern® AAE strategy 5 SHE AF8E] AYS FASHE objectd] contexth, 7 S Zol
ot object ]l strategy® /. contexti= gt stratgy g FZot= H4E 7HA AL, i strategy Q] HAEE
S &l AR
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5. Client
S T2k YIS a0

Contextofl T

3. Strategy Pattern?] Zo+Ad

4 ofsfsta glolof &

strategy.execute()

1. Context

+ doSomething()

FHIFQ Tef F ofLtof chet BEE KX 2. Strategy
Tef QETo|A S SoHMLt S oE 24 Mol 282 YHT0|AS T
Context -
«interface»
- strategy > Strategy
+ setStrategy(strategy) + execute(data)

ConcreteStrategies

str = new SomeStrategy()
context.setStrategy(str)
context.doSomething()

Y oo

other = new OtherStrategy()
context.setStrategy(other)
context.doSomething()

+ execute(data)

3. Concrete Strategy
Context?t AtE0t= 22|52
Crofor s g 2N

strategy pattern AH8-51%] Rehlo] strategy® 2N F8T % 9. ol M2 e &
%7 glol 2712 4 o2 OCP7} E4H3L, 7 strategy classiz Shte] 3lel 52
F5

SPARE SE BATE S} ObA 1, strategy7h B A UL MIEEH Y. EF client7} 2 472

i

strategy patterni} state pattern FZ7} GASEL E t} compositiond &5k, ZFHZF G E|Eo] T3 ol
wA|eL AFeof] mE FF Hote] S wEthe HollA Aot Qg =, 2n ARl Zol7h EAR
4.6.2. Strategy Pattern?] 7&
strategy pattern-> Th-3-3 Zro] AT 4= Q3.
r N\
1 public interface PaymentStrategy {
2 void pay(int price);
3 }
4
5 // strategy
6 public class MasterCardStrategy implements PaymentStrategy {
7 @0verride
8 public void pay(int price) {
9 System.out.println(price + " Won paid using MasterCard");
10 }
11 }
\ J
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// context
public class ShoppingCart {
PaymentStrategy paymentStrategy;
int price = 0;
public void addPrice(int price) {
this.price += price;
}
public void setPaymentStrategy(PaymentStrategy paymentStrategy) {
this.paymentStrategy = paymentStrategy;

© W N e g A W N e

}
public void pay(int price) {
this.paymentStrategy.pay(price) ;

[
[S)

-
-

—
)

}

o
w

}

-
IS

o
o

ShoppingCart shoppingCart = new ShoppingCart();
shoppingCart.setPaymentStrategy(new MasterCardStrategy());
shoppingCart.pay() ;

[T
ISI=Y

=
0

4.7. Mediator Pattern

4.7.1. Mediator Pattern

1. Mediator Pattern

Mediator(F A A) Pattern< object 2] FA4lS Agolal, mediator objectE FolAH FAISHES of=
DPYl.

oAE 0, o]H tho|d 2 10f ofg] HEe|Y tE0] 2 o, ZF HE Zg ) o 3tH #3HE FdstEH
7} object7} B3t objectE FXoIEF & 4= 5. SHA|TE H Y5 @olx|H object 7He] FHx
T YR oA, ALt EolA Al H. mediator patterng ARESHH ©]7 M:N 25 M:19] A=
AR & 9L,

T2 CiSHARL T2 cshaxt

[ Button ]<—>[ Dialog lv\ [ Button ]<—> Dialog
)
m Tabs I

| checkbox |<>| TextField | checkbox | | TextFietd

2. Mediator Pattern?] L%

mediator patterne th-23} Zro] EA1-& Fi1Hbolok 5= objectE<Ql component?}, EA1-S ZA|5H= object
o] mediator2 FAE. componentE-2 mediatorE ZZ5H= H4E 7FX]|2 9111, concrete mediator= 7+
components& FZ5h= HE4E 71241 912
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1. Components 2. Mediator
STHXHO]| CHEF ZZ7E Qlod notify HIMEE Soif S
SIS SO &S
HEHES CHE SXXtof

ComponentA ComponentB
HUGHA THALBY SE S P P
—>| - m: Mediator - m: Mediator [«
+ operationA() «interface» + operationB()
Mediator
pp—
ComponentC | 7| pEer, ’S~| ComponentD
—=>| - m: Mediator Z} - m: Mediator [«
HEHES2 MES 2ot o
x| oroto} Bt + operationC() ConcreteMediator + operationD()
ZATIA S 0f| Q0| BHATiOd - componentA
EXHXOHE| o 2E{opet - componentB m.notify(this)
- componentC
& componentD *
if (sender == componentA) - {+ notify(sender) 3. Concrete Mediator
reactOnA + reactOnA() ChIOH HEHS210] 2|
+ reactOnB) H&U}
+ reactOnC() EXHXI7E ZE[ots HAEHE
+ reactOnD() o] Ax2 9x|

3. Mediator Pattern®] Z43
object 7+9] A& FF11, FE o] W GABSLE 47 ¢ Eot Y22 component E mediatore] tgt
F7HE vl ¢A & 5 5.

SFA|9 mediatorZ} god object7} = 4 )&

mediator pattern< facade patternTt -G-A}sE HE.o] Q1 2]ut, facade pattern& A HA] Ao tfot TH&=31= QlE]
go|AE AoJ5t1 ABAAHLL facadeo] 2]t interfaceS Q1A15FR] F¢t. HFH mediator pattern component
2o BAE Stz F11, ABA o] mediatorS 27 BT,

4.7.2. Mediator Pattern®] L&

mediator pattern& th21} o] LH=E 4 QL.

[ 1 public interface Mediator { )
2 void sendMessage(Component sender, String message);
3 void addComponent (Component component) ;
4 }
5
6 public class Component {
7 private String name;
8 private Mediator mediator;
9 public Component (String name, Mediator mediator) {
10 this.name = name;
11 this.mediator = mediator;
12 }
13 public void receive(String message) {
14 System.out.println("[Received to " + name + "] " + message);
15 }
16 public void send(String message) {
17 this.mediator.sendMessage(this, message);
18 }
19 }
\ J
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[ 1 public class ConcreteMediator implements Mediator { A
2 private List<Component> componentList;
3 public ConcreteMediator() {
4 this.componentList = new ArrayList<>();
5 }
6 @0verride
7 public void addComponent (Component component) {
] this.componentList.add(component) ;
9 }
10 @0verride
11 void sendMessage(Component sender, String message) {
12 for(Component c¢ : componentList) {
13 if(c != sender) {
14 c.receive(message) ;
15 }
16 }
17 }
18 }
L
5
1 ConcreteMediator concreteMediator = new ConcreteMediator();
2 Component componentl = new Component("cl", concreteMediator);
3 Component component2 = new Component("c2", concreteMediator);
4 concreteMediator.addComponent (componentl) ;
5 concreteMediator.addComponent (component2) ;
L ° componentl.send("Hello~~ World~~!"); )

4.8. Memento Pattern

4.8.1. Memento Pattern

1. Memento Pattern
Memento Pattern = Snapshot Pattern& object 2] A5 AFak-2 F7N5HA] &0 HA STt object 2] o] Alef
S Aol B9 4 TS b DPY.

oAl S Eof, 9AE HA7|of|A HAE g Fof AP HAE o1l otH, £ A7 9] objecto] RE FEIE
Oi2 BelE& 4= glojof gt ofx| gt tf -2 9] object= F 8.3 JHE encapsulations}Z| & 5}l i classof]
571 71 B SRSk SR, object 2R M AR getter AMED] S BAahE AL AHalA]
OFS. memento pattern® AF§5HHA o] 9 DA HAT & 918,

2. Memento Pattern®] #%

memento pattern2 Th23} ZHo] YE objecto] 355} originatore}, originator®] A& *]%6H= object
2l memento= A E. o]w] memento class= originator class®] nested classZ, memento object—= originator
object @] private WH o] HZo]| 7}5¢. TS memento object 52 W& 5F= caretaker objectE AR

41




1. Originator
XHAID] AFEHO|| CHEF A4S MM
LRA| AHSEOIM XHAS| MERS =
Originator
- state

+ save(): Memento
+ restore(m: Memento)

3. Memento Pattern®] Zo+3

caretaker2 £2]5lo] SRPE A

F@7| = o

memento pattern2 AFESFH encapsulation2

SHA|gF snapshot& L% gol Aot vl@el7} gl g

AHAF HASES oh= |

TWHOoZ nUSE S0 o

MMILS SO U HE

Memento

- state
==

- Memento(state)

- getState()

4 &4
HHE 2eiAa = 22X|YI0lH LHRH
ZLe/HMETL private SHE ™2 7S

FA|5PHA snapshota A7

3. Caretaker
DHE SO AEHS Tzt
22|X|4|0|E{Y] 7|E 8 =T

Caretaker

- originator
- history: Memento[]

+ doSomething()
+ undo()

m = history.pop()
originator.restore(m)

m = originator.save()
history.push(m)
// originator.change()

A

To]

£ Q)€ caretakero] snapshot A4 @ #&] 7|5

4.8.2. Memento Pattern®] &

memento pattern2 23 Zto] @S 4
A5

Ho] B, A2 nested classol A HF2Z ]

[ea N
AT

H P Edltor this. textﬂ- Zro] 7~4T—_L—8L

’
1 public class Editor {

private String text;

// setter

public Snapshot create() {
return new Snapshot();

V)

}
public void restore(Snapes
this.text

© 0w N o o oA W

}
10
final class Snapshot {
private final String t
public Snapshot() {
this.text

11
12
13
14
}

// getter

15
16
17

18

hot snapshot) {

snapshot.getText () ;

ext;

= Editor.this.text;

42
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[ 1 public class Command { A
2 private Stack<Editor.Snapshot> stack;
3 public Command() {
4 stack = new Stack<>();
5 }
6 public void makeBackup(Editor editor) {
7 Editor.Snapshot snapshot = editor.create();
s stack.push(snapshot) ;
) }
10 public Editor undo(Editor editor) {
11 Editor.Snapshot snapshot = stack.pop();
12 editor.restore(snapshot) ;
13 return editor;
14 }
15 }
16 ...
17 Editor editor = new Editor();
18 Command command = new Command() ;
19 editor.setText("1");
20 command .makeBackup (editor) ;
21 editor.setText("2");
L 22 Editor oldEditor = command.undo(editior); // 1 )

4.9. Observer Pattern

4.9.1. Observer Pattern

1. Observer Pattern

Observer Pattern = Wa)-1= 1y
AHE ¢e+=DPY. =, LN A= +
S ZE™H BE subscriber Z}Zto] t]-2-5]

2. Observer Pattern®] %

observer pattern< th-23} Z+o| subscriberE 2|51 AHE A E5)= publishere}, A HE ¥h= subscriber
2 31X 5. publisher+= subscribero] thgt listE 7}&] 31 131, notify A]ofli= ZF subscriber®] update()& &
3t ESH publisher?] MW H4of AESt ZF-2 A6 =11, update A]o]| publisher®] x5 gr|= Aoz
P % U2

TSt Qs T AHE7E MRS o BE subscribero Al 11
o] SUbSCHbera = AFelE T AERE dele s St wAaEst
HAEE SEE.

ox flo

rr

1. Publisher (& cHAxt) 3. Subscriber (A%}
FEX A2 S OHIE HrH otz OIE{H|o|A S Mo
Ygote! QET0|AZ 22| =T -

A T

2. A ot E b2 WOt publisher=

2 TEX} U H LY Publisher «interface»
- subscribers: Subscriberf[] <>—>|  Subscriber
foreach (s in subscribers) - mainState + update(context)

s.updatethis) + subscribe(s: Subscriber) T

+ unsubscribe(s: Subscriber) '
mainState = newState + notifySubscribers()
notifySubscribers() + mainBusinessLogic()

p

s = new ConcreteSubscriber()
publisher.subscribe(s)

Concrete
Subscribers

+ update(context)

3. Observer Pattern®] Z43
observer patterng AR&6HA 3L WS LA Aot gh& G & Q1S TS 22 subscriberg 7|E
D Bo] S o Ho e OCRE At Hehal mieribor S 4 Ao BHE 92
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SpA|EE Subscriberfﬂl*i dHe A= =4S Ao # ¢l Ee FEREE 72 3 o9 observer
¢} subscriber& o]-_l_ X}_Zr AFe1A] ke A9 m ] |7t 2hgEE &~ 9l
4.9.2. Observer Pattern® &
observer pattern2 T3} Zro] L& .
e N\
1 public interface Subscriber {
2 void display(WeatherAPI api);
3 }
4
5 public class KoreanUser implements Subscriber {
6 public void display(WeatherAPI api) {
7 System.out.println("Korean user received : " + api.getTemperature);
8 }
9 }
10
11 public interface Publisher {
12 void register(Subscriber subscriber);
13 void remove(Subscriber subscriber);
14 void notifySubscribers();
15 }
N J
1 public class WeatherAPI implements Publisher { b
2 private List<Subscriber> subscriberList;
3 private int temperature;
4 // getterfsetter
5 public WeatherAPI() {
6 this.subscriberList = new ArrayList<>();
7 }
8 @0verride
9 public void register(Subscriber subscriber) {
10 this.subscriberList.add(subscriber) ;
11 }
12 @0verride
13 public void remove(Subscriber subscriber) {
14 this.subscriberList.remove(subscriber) ;
15 }
16 @0verride
17 public void notifySubscribers() {
18 for(Subscriber subscriber : subscriberList) {
19 subscriber.display(this);
20 }
21 }
22 }
"
~
1 WeatherAPI api = new WeatherAPI();
2 KoreanUser user = new KoreanUser();
3 api.register(user);
e api.notifySubscribers(); )
4.10. Template Method Pattern
4.10.1. Template Method Pattern
1. Template Method Pattern
Template Method Pattern< 11 2]=9] ¥X(Hﬂ1q%) dAEZ A 94’8 1, 45 A E subclassof| A @ H =t
OJEFHH FET & YES oFe DPY. =, o]2] dassol ] FEO 2 Alot v 4ES WEalstela, 244
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G2 P8 TSRS ok A, olo] met dnelEe] TR 4212 A2 AT S o2A BT 4
9.

NS Sol, FUT AL FYSHE FuelZo] G, ofe] dlolelo] Tue] SEHEE sheln gt o
2}, o]= glolg Zuid R HE o] m|4AEY classE Ao 1TET & A9, template method patterne
AT FREE FEE B AL, O SR RO R THY 5 U

2. Template Method Pattern®] %

template method pattern& Th21} Zo] Zt A HAEE i%ﬁﬂ dygEo) IxE 4—40]-—— 5o "HlEs]

WA}, ZF @A 9] Y& Holoth= 0431 o] A HAER FAH. ojuff @A HAE F abstract Uﬂ—L

EL =4 ‘:]’74] Dﬂ._l.___, default HAEL TZE oA Dﬂﬁ:EE}ﬂ ot e abstract Clabba AFEHES class
]*11‘ EE— S A HAEE FRAGoF stl, HEE oA HAEE T8 A sk, "HES WAEE

o HEo] ESI AL gF H(final AelTh).

T3t abstract classof|A] 4 ©]Sh= body7} H]o] JAY 7|2 FATHS 7FA] AL Ql= ©A] WA E4] Hook HlAE

£ AEE S 98, BES WAL hook HAES} @ Hefol HA] ol Aafu, ol 2 o nel%o)

A/ 2 iz = o] ARt A] 71 & 21 1-S AlEE

1. AbstractClass AbstractClass
22|20 CHSS S ofs o step10
MHES pod if (step2() {
YS! e, 24 £, 712 © step30
HiMEZ 2 + templateMethod() }
+stepl1() else {
+ step2() step4()
+step3() }
+step4()
| |
2. ConcreteClass ConcreteClass1 ConcreteClass2
LRPH | HIMES S 2H
|-0|I:|
El=2 [=3 N =] cl
e=r m:?;&guﬁmc’ + step3() +stepl()
+ step4() +step2()
+ step3()
+ step4()

3. Template Method Pattern®] o3

template method patterng AF&3HH FE FES £ 4

= A e e TR A 2AS A classo ARt BE|StE R {A|H4TF e
SAjE Qo] 7201 AoA ene eo] A 4 US
Mol 248 & ofofotL Qolo ofol, A9 class7l WEEE 29 AT SANF B

it

4.10.2. Template Method Pattern?] &

Template Method PatternS 23} Zto] FASH 4~ 912,
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[ 1 public abstract class CalculateNum { A
2 protected int x, y;
3 public final int templateMethod() {
1 int result;
5 initNum() ;
6 result = calculate();
7 result = hook(result);
8 return result;
9 }
10 public void initNum() {
11 this.x = 1;
12 this.y =
13 }
14 public abstract int calculate();
15 public int hook(int input) {
16 return input;
17 }
18 }
\ J
e \
1 public class PlusNum extends CalculateNum {
2 @0verride
3 public int calculate() {
4 return x + y;
5 }
6 Q@0verride
7 public int hook(int input) {
s System.out.println("plus operation executed!");
9 return input;
10 }
11 T
12
13 PlusNum plusNum = new PlusNum();
- plusNum. templateMethod(); // 3 )

4.11. Visitor Pattern

4.11.1. Visitor Pattern

1. Visitor Pattern

Visitor Pattern2 object X of|A] &1 8] &2 visitorgl+= object = H2]5}al, visitor7} Z} object = 35|51
QS SIS SR DP9l &, 12|58 7} objectoll ] A FAs) Aok nl4l, dnelzo] 7@
o] 9 visitorS AFRS] A Eot= A QY. o]= ubA] visitor obJect7]- object F+%2] ZF objectE HFESHHA]
Aotz A 25

oAl E =01, graph FH|E A= thE 2 objectEo] AAE o] Qli= Tlo|¥ Ht-& A2t H 2} 7} object 2]
AHE XML gAoz2 WRYHT & off, ZF objectHE A4 XMLO_E.. YWHE Y= Hacs 75—401' 4= QAT
o]= SRP, OCP2] A o] A 724,@0]-?(] °*° . visitor patterne AF&5HH ZF X Hfof st WA EE visitor class
o B3 FHFEE ¢ 4 902,

2. Visitor Pattern®] %

visitor pattern& th-231} ZFHo] Z} elementof tjst &4 ES E 6= = visitor2}, S94r9] tjAFel element=
T4, ol visitor= element—J AR FRAAE 011}_‘% = wHAEES 7HAH, o] HAESS @ E Y o]
o] ZF element= SYGE FA O 2 visitors 5= 4 S 2+ elements—— FA Al &2]= Al visitor
o] visit() TZBF- accept()T FE3HE .

—
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3. Visitor Pattern®] Zo+3
visitor pattern2 AF-&5HH A2 &7

elemento] AL Lst= A 7Hs

=Z.
== =]
ot gloenz OCPE 45 ot 18 & 8 HL 9 classZ B st 2 SRP
T

.
v
SFAHE element interface?} A =™ visitoro] thet A o] S 4= Q)&

3. Element

. 4 2 A2t
1. Visitor A : Visitorg +&
«interface» «interface» o =
Wl 2x=2] 24 Element5S ¢! Visitor S— e (acceph)Bt= BIMES
F2 ARZY £ UE visit IMES M
Mod *visit(e: ElementA) ) + accept(v: Visitor)
+ visit(e: ElementB) !
A | 2
4 i ! '
i ! | concreteElementa | __! i 4 Concrete Eiemarﬁ
. — ! ! i U P4 element= accept
2. Concrete Visitor ConcreteVisitors sl ! ' otx= Jodofop o
CHuet 22 element 22 . i
‘e - H +
ASo| wzoE viste > { | featureA) : T} Element Z2HA0| o
0§2] B{H o= 204 | e i + accept(v: Visitor) ! . A
oz 3 i [*visit(e: ElementA) ' | chots 2 visit DIME
|+ visit(e: ElementB) . : 2 Z|clojAE o
! : ConcreteElementB !
I . i
1 . ]
: J/{HIXE HlMESS | -
i ‘.A‘HLHJ:.__ L
! /&8 EEhs 249
! O i + featureB() H
Vo |fTeRBEEUL. + accept(v: Visitor) |
! e.featureB() '
[ 1
" visit(this) i
‘\.\. ”"
5. Client
Uutdoz HAMZ 7kx|2
element.accept(new ConcreteVisitor()) element?} visitorS
oiioto] WRD TS 4

4.11.2. Visitor Pattern®] &

Visitor Pattern th-33F Zro] A% 4= Q15 oA s AAH visit
element= visit(this)?} Zro] visitorg AF&gt.

[ 1 public interface Shape { h
2 double accept(ShapeVisitor visitor);
3 }
4
5 public class Circle implements Shape {
6 private double radius;
7 // getter€isetter, KX}
8 @0verride
9 public double accept(ShapeVisitor visitor) {
10 return visitor.visit(this);
11 }
12 }
13 public class Triangle implements Shape {
14 private double sideAl;
15 private double sideB;
16 private double sideC;
17 // getteréisetter, HAX}
18 @0verride
19 public double accept(ShapeVisitor visitor) {
20 return visitor.visit(this);
21 ¥
22 }
\ J
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N

public interface ShapeVisitor {
double visit(Circle circle);

3 double visit(Triangle triangle);

4 }

5

6 public class AreaCalculator implements ShapeVisitor {
7 @0verride

s public double visit(Circle circle) {

9 double result = 0.0;

10 // circlel| 50| 7517/

11 return result;

12 }

13 Q@0verride

14 public double visit(Triangle triangle) {
15 double result = 0.0;

16 // trianglell 50| 517/

17 return result;

18 }

19 }

1 List<Shape> shapes = new ArrayList<>();

2 shapes.add(new Circle(10));

3 shapes.add(new Triangle(2, 4, 5));

4 AreaCalculator visitor = new AreaCalculator();
5 double area = 0;

6 for(Shape shape : shapes) {

7 area = shape.accept(visitor);

s System.out.println("for " + shape + ", area is " + area);
9 }
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