AZEYJIENHEAA(HAF)

Lee Jun Hyeok (wnsx0000@Qgmail.com)

December 12, 2025

1 A2
1.1 SAD . . e
1.1.1 0 SAD . . s
1.1.2 OO0AD e
1.1.3 Object Oriented SW Development Process
1.2 OO0P . . e
1.2.1 OO0OP e e
1.2.2 Object@} Class o o v i
1.3 Four Pillars in OOP s
1.3.1 Abstraction e
1.3.2 Encapsulation L
1.3.3 Imheritance e
1.3.4 Polymorphism e
2 0O0A
2.1 Requirment Analysis L
2.1.1 Requirment Analysis L e
2.2 Use-case Analysis L e e
2.2.1 Use-case Analysis.
2.2.2 Use-case Specification
2.3 Domain Model e
2.3.1 Domain Model e
2.3.2 Conceptual Class Diagram o
2.4 SSD . e
2.4.1 SSD . .o e
2.4.2 Operation Contract
3 0OO0D - Structure Diagram
3.1 Package Diagram e e
3.1.1 Logical Architecture
3.1.2 Package Diagram L e
3.2 Class Diagram e
3.2.1 Class Diagram
3.2.2 Class Diagram Notation o
3.3 Class Diagram Relationship e
3.3.1 Class Diagram Relationship,
3.3.2 Dependency e
3.3.3 Association e
3.3.4 Aggregation&Composition Lo
3.3.5 Imheritance e

© 0000 ~JIJOO O Uik WwWw

4 OOD - Behaviour Diagram 27

4.1

4.2

4.3

Interactive Diagram oL L L e 27
4.1.1 Interactive Diagram L L e 27
4.1.2 Sequence Diagram L 28
4.1.3 Combined Fragments in Sequence Diagram 30
4.1.4 Communication Diagram L Lo 34
State Machine Diagram L 35
4.2.1 State Machine Diagram 35
Activity Diagramo L 37
4.3.1 Activity Diagram 37

1. 4=

1.1. SAD
1.1.1. SAD
1. SE

SE(Software Engineering, AT E o] o} £ ZZ o] 4T EJo]E XZ o] A7k} H|-§ 0 &2 &

ofof ZHEFsl= Al A A Q] AxF = gH 2 o 2 Aol & o 2 o7l JHHEF convention©]LF 7]-0]7312]-0707
£ I E gloj= g flo]HE XJE]O}O‘] g dyE vhEolyls TR 79, B 77 T2 7o) JiE/
28/ |70 B G A8 & 2 U] software AN 1 44 BH B} ol F L, ol
AF&RFA] TFFet 75 ?(f]—’—OHO]-’ 511, efficientel HA] FZ7} M_QE _7-1:,7-— o]gf-2o] QL.
SL=gJo] Aol Wl 2L EHo]o] $27) HoldellE, £LESolr} A o) wek 1 A
S S5 08 TeThA] Boll AL AZEge] $17)2 3. olo] uhe AmE gloli 1 A
7l soltf s uk oftaf 7}]’:’7'/—‘?——(%?-/77—}]_’,31—,— o419 ejﬁcwncy Eok Favk 5 2 589
L mEgolE B2 BE 5 Yolof §

SBS) SHeA 2T EGo] TRAEL o2} Zo] 4, 4, R, 7, HAE, #e F2 FHE
A s, £ A o] 24 % A i) Lol

U Vs 2 YL SR B, 90715 § 1S o

u_
5) B £nESolo] B i 2YE HE, 74 5o OB T
4) - high-level 9AE 5% mz 1o ololz 7@,
A9 o5

5) fAE: BE BT 2

6) #el: LTEGo] A TR AE BT,

AT EQJo] LZAHE o] Az 5 SAD(Software Analysis and Design)= X 9] H]- &0 2 225] &
o].7] 7‘]0177 u]/“xJo] J,].xqol

gl
e

2. Software Analysis
Software Analyszsf 2A JgE oldflolal, 27AIY S FAlelols YA Y. ofuf E&FRF Z]& okl -
Aol 2oL 7ladz] oL, =, whatd} how 5 whato]9F Z =g}

1) Eojel 24: 2AZ ofsfst7] 9Jgk el meel D v X 4je] s A
o) 2] Ho|: S| ZelaE ZAE YIS Fa A

5) 87 FE: SWI Rl sJofshr] A7 Fee

4) 87 B SWo} QPG wet UAZ AL sfopstex] H Y

5) 87 WAlek SWoF ofwA] FESFEA] del e AFE T

3. Software Design
Software Design-2 Q-7AFet] tioh 785 ol= TAY. oja] A2 Q] 78 H = R 7AFgF] et

YR gjdAo) =L E.

1) AAE] GA: A 2HO] 2} BRE ShEglol/4mEgJo] oz ofBA 2T A
2) OFZ|E|H: A|AEH-S AHA]AH O 2 Hols] AHAAH 719] X5 2189 AAE,
5) A A ZF AEAZEE] A4 AV (RPETE, class &)& EE Y
4) olE]Hjo] A /Hz]] AFER[Ql A AH] 7FO] AFg 22 -0 AT
5) A2 GA: AARS oG AL EY ek

4. B2dg
Modeling(R g &)& swo] g2t2 2XE 1Y o2 YENE S modeling 27 oA A]AE oLt
& teslote] 2yHe g B AL Model(BE)ol2} L B o7} 22 RAZE] ZA3h

1) Use-case modeling : AFFGAFS] A|AH] use-caseE A2 LIEFH.
2) Static modeling : swol] EAol= classL," objectE L EFY.
3) Dynamic modeling : A]2H| Q] AFefl &l 2FQ) ~o 3174-5 LIEFH].

|

o

1.1.2. OOAD

1. OOAD

do 2 ZE o] o] gl ES A0 2 el g, o]of mpef 22 I E o] FAvF HAl= OOAD(Object
Origented Analysis and Design)Z FX|3}FE. OOA(Object Oriented Analysis)—= ZA|F FHH HE S
domain conceptO]LF object2 EE]1L 7]« ¢l OOD(Object Oriented Design)+ objectE A& 02
o]l (static), objectz0] FLAFEo}H QFAFGS BFEA|Z[=X] HAIgH dynamic).

Sale = e Register ProductCatalog

Domain Model

Use-Case Model

Use-Case Model
(+System Sequence Diagram)

Use Case Diagrams Use Case Text System Sequen

Sequence Diagrams

Class Diagram

>

OOA A= requirment 22 E] domain objectS TFoFoF11 A-GF2} XA AHI O] A AR5 BASH 00
oAl I¥ domain objecte} TGS LA R oA FHAYXE design®l. =, O0A A= 73
(what)& TAE, O0ODA= 14 o] B A (how) T2 28

B 904l OOADL} #FEsfo] UMLI} design patternt THH=.

2. UML

UML(Unified Modeling Language) OOADO] 9J3F Lf-8-8 R Y g sl= fjoj] AFEEE HE rfo]o] 7
8 F modeling 9101%). FAAE UMLE 1 HAz2 AL HEO} T2 1e elofi
oFd.

UMLoJl&= tf el diagramo] o ek notationo] g oJ& o] QI[ok, &EE R tfo]o] 135 ghy 12+
opr z2HEd R gk o FARIE o)A g-83)

Diagram

the dynamic aspects of the system A
(e.g.. behavior or use-case)

the static aspects of the system
Behaviour Structure (e.g., class or components)
Diagram Diagram
A

| | I |
Activity State Class Component Object
Diagram Machine Diagram Diagram Diagram
Diagram O ®
Interaction Use Case Composite Deployment Package Profile
Diagram Diagram Structure Diagram Diagram Diagram
Diagram

[I I
Interaction Sequence
Overview Diagram
Diagram

Communication
Diagram

Timing
Diagram

AN
Notation: UML

3. Object Modeling

00D2] object modeling2 class, package, attribute, operation 5= % 2]5l= Static Object Modeling
I, =2ZF method 55 §9]5F= Dynamic Object Modeling© 2 L. o] = modeling T5oFA &
25FH, unified processof A= A 2E FolH HHEA o= a7 FHAE.

static object modelingof| A= class 5 A]AHO] X 24 Q4F FZ ol ZHojA 714,

dynmaic object modelingofJAl= class2] instance2 XA E object’] 57 A]ZF o] CFE object2} o] BA]
A5 GSHEAE T8, o]o] T} object, Al 5F 24, 2]¥] SEo] LhehiA F.

static modelingo] 4] 2] diagram-2 Structure Diagram, dynamic modelingofJ412] diagram-S Behaviour
Diagramo]efal oF. FofA] ZFzko] tief ofH "hAl5o] QE=XE RFAe] Lol

Design Pattern sw A7) 4ol A7 545+ BA0] A< AAHgst7] 474 feiske 29,

1.1.3. Object Oriented SW Development Process

1. Waterfall and Iterative Model
Waterfall Model:>- oF Hloj H&= A& A&ty 2F ©AIE of HHgF =2} 0 &2 HdPS5k= sw T2
zae. f'ﬁ Iterative F+= Agile Model:> 2} ©AIE oF Hloj e1d35] EYl= A oft]ef, GAIE &>
F)2 ke ek, TS WA WA ke sw A BEY

waterfull model:& FX7F Th5fF11 o]&ls}7] Rk -4 o] o e iterative modelS Q FAFG}
o) oA thAe = YRT HAH ¢l Ags & HAsHoF o}l e Ago] Hagl

2. UP

UP(Unified Process)+<= object oriented swg& ZNEe o de-facto(AFEA HE&E)2E AFEEE iterative
model 2, 7% 7]7F Ylof] ZR& waterfall 7S ¥HE 2] 0 2 309}, UPE= o} Z+2 4 7] 9] phase(HF
)2 gH.

1) Inception(i 9J5): T2AE] W, Q7AF, use-case, ¥9], H1§ 52 tfeFH0 2 Tl

2) Elaboration(A2}): inception EH—‘/H A8 a} g5 FA5] gFgsto] 27 Al2]E g sl risk

= falgk

3) Construction(4+5): o]Z9 designst -85 HIEF O 2 sw& 7EFet.

4) Transition(Z2l): 7ot swg AFERFE0] /‘fﬁ"} UEE HAE, HjZ, QA HT 55 9.
7_

471e] T4 phasez L o] Il incept, elaboration, constructoin, transition. ZF SAHE 2 o] g
iteration©] ZXgFct. o] & iterationdFCF requirment/O0A9] ter OOD/FFdo] =3 5.

<

developmentcycle
A

iteration phase
P
[
inc. elaporatjon construcition transition
e e I e

UP+= ofefje} Zro] 97)9] discipline(O0F) 2 74 %11, o]i= WA 0 2 g F. 2 7Y A= business
modeling, requirments, analysis€ddesignof] gjs) =2 o2 C}2. Z} HHE oA = A 9] BE discipline
o] Al =X, A} BHE o] upet ZF discipline F H]F0] TfF.

Phases | Incept. | Elaboration Construction Transition

Business Modelling

Requirements

Analysis & Design

Implementation

Testing S

Deployment

Change Manag nt

Project Management |) | e e,

EnvironmentH

Iterationsl B E1 [E2 [c1 | c2 | c3 | T | T2

7] SA oAl zF 219 o] mskﬂ]— valueE Fr}ola, 4] ol7]|€l 4 & o5k, UMLE modelingsF
& He1o] Hop] uf2f A3} AIL Lofohi, |43 02 Bk =] -2 A4, ofel el

=
x o=
mfef ohFRt e (artifact)o] %%7-
=

ol ey} WAl ol 2l

rr
2

AL ol BEHOR WP o] AR AEY.

r

1.2. OOP

& FUollM = OOPE javas E-8all 45
1.2.1. OOP
1. OOP

OOP(Object Oriented Programming)E swg obejetZl= 72 GoJ2 L= 1, swQ] F2FS obejet 7HQ]

JoRpgon pyohs T2 oY Wl =, HolEs) BaE ohfe] Foizjel object 745}
2, o] objects5 Z9Fol 2 wAIE HESF= 4 (bottom-up) Y.
z7]o] ma Jafn] 9L =& sequential /procedural programming©] $1-=. Sequential Programming (4=
A m2 gepnl)e Q8-S expd] o2 xzglsl= "9 Q. PP(Procedural Programming, GXF& I
Iei7))L swg o2 7fe 2R procedureZ U1, swo] &2FS procedure?] THAE & (top-down)
2 7Sl AY. PPE AP0l 5k lo]g Xa AT 7z sker A0 HolEe] gt 7ok
Z 52| oL, 7R H7F of 2l

Begin

Main Proeram

I |
v ~

Sequential

Statement 1 .

l I Function A I I Function B I I Function C I
Statement 2

l Function D Function E
Statement 3

Function F
End * P
=Xy 2320 MAPM =20y

HHH O0OPL S classS ZF

2. PP vs. OOP
PP2} OOP= A2 Bljx]= g olepr| Hgk T2 Ty ffefrfelo[m,

(o] SEF A& o
Zo] 32 HeT - 9IS

22} geo] EAE. e

kg =220 (PP) WHIXIY =2 321 (00P)
Z 44l | Top-down Bottom-up
7 2™ | TN 75 S A HY s 2 WH| A -> WH| Mz 2 M|
N RA | U |
- WA 2 QU ES E0{ w27 SZ IS FES E0|1L Mol =3
= Tz utet ol clszol 418
- 27t SYOiXL 2E FE0| AoiE AAofl 22 Alto] 27
= EME X|7{0f offA XHZE-EMo| ToiF |7 QEOMX| Y QE{O =7 Hral o = QI
S= SHRE XtRl/S+ S (22 £5) A2 Py =2HE (Yard F4))

1.2.2. Object®} Class

1. Object?} Class

A BFE HAsl= E5 class, classof mief H-GE HAE Object E+= Instancesf 1!
et FoIE 7R o2, o] ES o2 7ol A](encapsulation) ErE]eh = S
FE SHIA] classe= field(HH] B, e, &4)9F method(HH e,)2 7=, ofS}
Zro] Ol javadflAl classi= typed.

s}k object=

public class Animal

{
public String name; Jy) EHE
public int age;
public int getAge() // HAE
{
}

}

A= @ oFe e Zo] new Z|RIEE ARS-ofo] Ao ojmf new 7] Y EE %’W A o] IAHE
317

E517] ufe] YEA] ()8 BolFok 3. WYRE 2] Gt SEY IR} eIl 3
Apz] 0 2 EZ}s)

new 7] JE7} AFEE 4] (eapression)2 ol A 9] referenceE HFelel. o] A Aok ZiA] o] HH
& .oz 9

Circle pizza;

pizza = new Circle();

pizza.getArea();

2. §o] ge|

object®} class P4l B 71| o] FelF 5fal Hol7FR].

Instance Variable:2 Z} instanced] EXJol= W2, CFE object2} -F-7-EX] 2. Class Variable2
class7} 7211 Q= ,_—,—E classOI] £5H= ob]ect—o] FEZ o AFGEF 4~ QI class variable
classof A type 2Fof] staticS Zjolx] 11, wk of Hol A E.

Static Area
(methad area)

Stack Area Heap Area

staticTest
(instance)

staticTest1

classVar = 10
instanceVar

staticTest
(instance)

localVar = -100 oF i X
- i stancevar “ S

Operation2- classof Al =g = ofoF & FLIZ Hdut e Ao 2, 765 718ofz] o2 A1¢. =, abstract
method®]. Method= 574 classofA] HAZ FH7IZ] oF YPE ©

PPo| A= objecto] Jejet FAE 77 F2AeF = o2 BASoF sh=H], o] A Hele et A7t

22 Ho] A=

1.3. Four Pillars in OOP

OOP2] 4s+e abstraction, encapsulation, inheritance, polymorphism® 2 A XY= Ao =2 o]3
ol
=N

ek

2~
T

1.3.1. Abstraction

Abstraction(F¢2F)< dlg o] TR ST FFokl, g TR AR ARk lgfopA] g
orst
=2 %

rlr
!
Mo

design A= abstaractions el 2420l HEF 2ol BEE 1}5] 7 HHL Besle 5
2. 2, high-level oFo]E] o] (what) S} 3] o7 EHE W] H311, O]F low-level A2 7 (how) 2

A5} 2 ol o,

abstraction2 data®} procedured] gt A 02 L& 4~ 9l-2. Data Abstraction& ¢J& data typeS S}
L2 2ol of =2 oA =2 genemlzzatwnOf el Procedure T = Control Abstraction-2 procedureo]
ek BF WS EAE L 5 A L, WY AR THL ZEE A

OOPIJ 4] Generalization(YHIS})E of 2] 7H9] subclassE2] F&F-S Zrof oFLL9] super classE &
Zol= AE 2ok

abstraction-2 interface, generalization, ADT 522 417 o|s5|& 4= 2.

1.3.2. Encapsulation

Encapsulations2 FJEJ 2} YAE sfUZ Fo] &z vre o] Y2o] 1§28 Xt X o] (pri-
vate, default, protected, public)of 9]5} &7 HAE =]t

2ol 7] HYE K42515]1, TFE classo] HjoF Q&L E U=k Ho] 2.

encapsulatioZ} Z25Fo] cohesiond} couplingS T EHE 5 U-2. cohesion®] =11 couplingo] Fr=
designsl= o] o] &l encapsulationS o] 2 designs T-2.

o Cohesion(-§F =)= class 2F°] @450] doprf WA PHE o] =]
o Coupling(dEr)L t}Z classol] tfaf Yo} o] &A1z & 2kal,

oF
E

k.

i
el

\. \‘//.\.‘
o t./.\\\
~ 18-
el ® \\.; o
ol
-9

Coupling

Cohesion

1.3.3. Inheritance

1. Inheritacne

Inheritance (/<) super classol g2 AEfo} HLE subclass7F BA|Z O 2 IR EE slE= A9
oj# Alg 7o O]o] F&E JHF YYE vHEH o= Fojgr W glo]] e 4 Q5.

cFe7l ZFo] inheritanceE LIEFY.

public class Student extends Person

YA A 7ZE HoJet7] 9ol Is-A BAE T 5= 92 Z, A is kind of B} Yl A= B

subclass7} 2 £~ S

2. Method Owverriding
Method Overriding(HAE Q8 aFo]d)2 super classof] g2 E methodE subclasso 4] A7 sl 1
YoE Hol2= A9 o] mpet methodE &L o] F 0.2 2} subclass H 2 thEA] @] A&

A 0]oO
T 95

public class MotorBike extends Vehicle {

public class Vehicle { // &

String model; boolean isRaceable;

String color;

int wheels; t =

void moveForward() { void moveForward
System.out.println("®ZIgLICHI"); System.out.println("se: 2 TTIEh

void moveBackward() { public void stunt() {
System.out.println("£XELICHY"); System.out.printin("m2 27|85 SLICh");

3
}

overriding®] 2§ mALEE o] HZ2 t]F. c++9] A<= static binding(F 2] HF QG)o] Yojif Hupd
AlZof] ZF=x w4=9] El Qo] ufa} $ZE= method”} 2 =11, javas dynamzc binding(&2] HFIY)
o] 070{1/]- HEFQJof] ZZ HpoF ZFRSET Q= AA)] object2] method7} T2

class Vehicle { int main() {
public: Vehicle* a = new MortorBike();
void moveForward(){ a->moveForward();

cout << "Vehicle" << endl;
MortorBikex b = new MortorBike();

I H b->moveForward();
class MortorBike : public Vehicle { delete a;
public: delete b;
void moveForward(){
cout << "MortorBike" << endl; return 0;
}
b
EuL:
Vehicle
MortorBike
public class Vehicle { public class Main { .
public veid moveForward(){ public static void main(string[] args) {
System. out.printin("Vehicle"); Vehicle a = new MortorBike();

a.moveForward();

MortorBike b = new MortorBike();
b.moveForward();

}
public class MortorBike extends Vehicle { }
@0verride
public void moveForward() {
System. ouvt.println("MotorBike");
}
shu:k
MortorBike
MortorBike

1.3.4. Polymorphism

1. Polymorphism

Polymorphism(TEg 7§)& o] H object®] JejLt Y217} ol wel of2] 7kx] FEHE 71X= A Y.
ojoll ujet ZEE o 7ol JHHo R Beloh, BE +50] £oSlES T 5 IS

super class typel] X WE BE 519 type classE 7Fe]d 5 Q12 B &2 polymorphism< & e

Q2. FEoF A9 abstract classL]- operation(abstract method)S % 2]l polymorphism< © & o2
A 25 42,

HTMLElement

Each of them is implemented differently

2. Abstract Class
abstract methodS 7IX]= class= abstract class2 Z2SJoF &F. abstract class= objectE 2] A4
ot =~ 911, 5 abstract classE AFLERS subclassi= abstract class7F oY 2™ abstract method&
overridingsjA] +&sljoF &F.

public abstract class HTMLElement {

public abstract void render(); // operation

public class TextBox extends HTMLElement {
a0verride

public void render(){ // meth

s/ implementation here

od

2. O0OA

2.1. Requirment Analysis

2.1.1. Requirment Analysis

1. Requirment Analysis

Requirment(2-7AF)= 7HEret AJAYH E= swrl YFEA] ofefof ol= Jls, d&, 21 = 23
Requirement Analysis= o] 2 requirmentE 1 QF5}1 FE]sF= IFH 02, sw AFGAFLF 7EzF B =7
25 oJsfE ~ oo} B UPAIAE ol requirment7} HEH 0 2 B4/ 5.

2. FURPS

requirments Q] & FURPSZE Xz}l B 4~ ¢l-2. FURPSE requirments T3} Zo] 5712 B2
£l o] F function Functional Requirment(7]s2 27), X = Non-functional Requirment(H]
5H 27)e)

1) Function(7]&): A|2EHIQ] 2]F 2] 7]5of tjgl requirment.

2) Usablility(AF-§&74): AFEX7F €)1 He]skA ARgel 5~ Q=x]of] gt requirment. (ex. UL, document
)

3) Reliability(12]%): A|28]0] QLY F.02 Fopzh 4 L=xlo] thet requirment. (er. ©F BT 5)
4) Performance(%-&): A|A~E Q] H5of gl requirment. (ex. latency, throughtput 5)

5) Supportability(X]¢): A8 2] H o] teF requirment. (ex. Y IFo|E, 7= XY &

3. Requirment 24 4] 24
Requirment 2440 ofelo} 2 FEES 48 = Y2,

1) wA: A|2H o2 S FSFIAF o= A

2) ¥ : requirment OJoffo] AF&E= v 4]

3) e W AIAE: AAH] A BRAIAY, 2H Fof Hieh Ul

4) 7l 2 functional requirmento] teF use-case diagram/specification.

5) H]Z7]&2 Q7 non-functional requirmentoj] tf el supplementary specificaion.

10

functional requirmento]] tjalA] cF21} ZFo] reference ¥ 2} functionS F 2l o~ U=
Function
R31 Add Borrower
R3.2 Remove Borrower
R33 Update Borrower
R4l Validate System Access
R51 Get Total # of Loans

Authority Loan Maintenance Statistics
m — Add Title

Return Item Update Title
Remove Title
Make Reservation

Remove Reservation Add Item

Update Item
Get Replacement Fee T

Add Borrower
Update Borrower
Remove Borrower

oldl Jid-e ges] AR Holetr ek Wkl L.

rlo

2.2. Use-case Analysis

2.2.1. Use-case Analysis

1. Use-case Analysis

Use-case Analysiss= AFERF B O 2 AJAH] yse-caseE modelingdf= HO 2, F2 functional re-
quirmento] Hiol 37l use-caser= A|AH O] A Fol= 52 ofdfg 7 U5 ol oS £
2ol o]a - H.

1) A]2AHl requirment anaylsis 5-34.

2) A|2H A qctor G 9].

3) use-case g9J.

4) use-case diagram “12]7].

5) use-case specification ZF4.

¥R 367]3] 9] BE the 187} 2] 7eke] +ao] b
She B (AHER THE A2H 5)9).

b

. olf actoris AJAHS AFgo1H T

Actor Use case
7lsN 23 Customer 2Iaelot7|
AEXE S System Z=2g My

ARt == Ay * Banking app A T2 2|
Alst 3 2ol » o » S
&3 « Customer L ot7)|
zx * Bank Bank DMy Az} RS O
_______ DM £3 2 w2
Do) =X 2K M2

2. Use-case Diagram
Use-case Diagram-2 use-case& modelingeF 71 02, UMLoj] OJs}H o} Zro] 78 4~ Ql2.

11

i)

Customer

0

New Returning
Customer Customer

Banking App.

Verify
~A_Password
<include>>

Payment
General id

VAN

Pay From
Savings

Pay From
Checking

Specialized

18R

_g]]:]O]

o A2E): gREEE She

NAEL Ao TH. A2

Banking App.

/.

Verify
Password

Display
Login Error

Check
Balance
Transfer
Funds
<cinclu

Bank Customer'

gﬂ

icks
GoTo
“\ Profile Help

£ Aag g, o

Bank

L /(]/K =]

Actor: actor—= stick figure2 A]AH] o] Ho 78], o]u] AJAH X[-2-5 X|ZFSl= Primary Actor
L R]AH 21Z] primary actorl] -E&Fof] HFE5l= Secondary Actor= AJAH] 9 230 78,

Use-case: use-case(A|2EJo] AHoH= 7]5)= EFRIF 02 18], use-case 0]-2-2 FALZ AJZ5]

o ZHE 5] H7|F. use-caser= =23 AR H] X[

o Association: actor2} use-case AFo]Q] Ao 2-go] 7l

o =21

A< wincluder2l SHA] o2 A — B 3lFEE 74,

o FExtension(8F%}): base use-case(A)7F +HE 1 EF ZAS Or<E
Zt e = 2 qextendr 2F A HHAO02 A« B SFYEE T
= YO extension AFgE ZFoH-FAL), S E

A o]o
T/%’l:l

o Inclusion(Zg}): base use-case(A)7} T=HEH included use case(B)= HH=

777L
Extenswn Points(23F X1 4)
RS Ho] mAJSF AL 9l

5} Ao ng_*z%]'

E4] o]} T

-2 extension use case(B)

o Generalization(YYFs]): FAFeE actorLf use-case= F-E5H ZE7]2] 7o Yuts] BAE LfEld

2.2.2. Use-case Specification

343

1) Use-case o]

2) Actor

3) 24 actor?} S| use-caseE HWsl= 2
4) A2 24 actor?} oG use-case S 25}
5) & use- case: C}-E use-case2}0] H7HY

6) AFHO] 5E: actor ¥ /(]/REN_J ZEz10 /‘]Zf 2oz 1y
7) 25 X7: use-case TH &

/(]/\ E—ﬂ_,] XPE]]

12

Use-case Specification2 use-caseo] ot o] AFAJeF HEH-S gl Q= FA]

nu)
o
0
N
Mo

>
~~
5
un
o

A AbE] Transfer Funds (53
oUE

Customer, Bank
=5 &30 HIEE TS AIHZRE Y2 FUS LPL2 JIZ= oy of
a1 ojof| CHE! =5 Y

e AMo| 2391 E MEfo{of of3 5 7HsS S AHIZE 7Hx|2 Qlojop
2 AL A (Verify Sufficient Funds) AHE Af2f|E T
MU B o
YE] F A AlAR & w3
1 [2Y] 23 P M 2. &3 w2 claZeo|
5 [2%] olHiE Azt 5 29 U=
4 [SwH] 3 ool Azt He 2ol 5 oMY AHlE HE claSeo|
7 AMET OF et Cla S|

o
l
kA
ra

Azt olH (53) BAE LU 20E

2.3. Domain Model

2.3.1. Domain Model

Domain Model:& domainoA] 7fY E= HAAS] Ao st modeling®. domainS swz2 CFE1I
2} = 9 do]l, domain object= domain L] conceptual class®]. domam model:2 FZ use-case
analysis ©]<of] 718,

domain modelS 12]= AL domain Y-H22] domain object, =74, B4, =2F =& fjgFz] o 2 mjo}lsf
a7, A o]of et ojAlA-EE H8S] 511, design TAOA1C] class diagmm#«] ﬁ?i 2]l Afo] & EFol=
Eﬂ(lower representation gap)ol 55 <. ©]o] oleF domain model-S conceptual class diagram©]2f1l
I gF =, domain object2} 7 FAA ol HAE mlofste pFY o2 o]afo] domain object= software
object2l= 2.

domain modelingS TFS3l ZHe ML AX 3=, o]l domain object”} 7FX]= operationS 11
&skx] 9k, domain ob]ect_Q]- domain object 7F9] assoczatwn(?jﬂ' #A), domain objectZ} 7}X] =
i E Aol attribute®F 18,

1. ZH domain2 business concept= LIEel use-case analysis specificationof A A 7%6l=
§ol(GAE BEok= Ao el

=

(A) : Actor, (S) : System
1 (A : A8 A9 & oy
2. () : ID/PWE 218 BiCh
3. (5): ID/PWE 20 30| 7|& MEA[et Hla f,
4. (5): AR Hyo He A M HES 4y sick

(A) : Actor,_(S) : System
1. (A): STE BA| of+8 Y sk
2. (n: BE SHE 94 siCh » Manage Access login

Account Balance Print

3. (5): 25 92 4+ o30| BAIE EH
:Actor, (S):System 0L e
Do Sl Wk ¢ o0 praye 2woicy lagout Chaige
2 (5): 14 of=0] Wat Wadh B3 ALeic
3. (5): ARBRH A o BISR bl

4.(5): 98 7|8 BCh Business concepts
5. (5): gldfE T pich

2. concepto]] TJ-&EE= domain objectE F2o|gl. ol FEE EAS JIXE conceptEL general-
izationdA] FL o] EAS A9 domain objectof] IF ZRAEF 4~ Q12

3. domain object 7FQ] associationS 2]l association2 obejct EX-object o], o]H EAFQ]
(o)

[}
Z]ofl uF2} associations E Z7FX] association categoryZ H-FeF 4~ ¢l-2.

Association .

ManagementSystem - Printer

ManagementSystem - Account
- Account — User

Account — Manager

4. role/multiplicityE g 2] &t

13

5. attributeE F7FgF. ZHASFALF pure data value(ex. boolean, date, string, time &)91 HARF F7}
gl OloF pure data”} oFH 7F-2 CFE domain objectZ WA 12]= Ho] £2.

< <Business Object> >
<<Business Object>> Title
Item name : String
. isbn : String
ID : Integer o 1| count: Integer &
available : Boolean Copyof | Pprice : Float
publisher : String
L lending time : Integer Refer to
Refer to N
o.1
<<Business Object>>
Loan <<Business Object>> < <Business Object>>
Book Magazine
author: String month : Integer
0.+
Has/H: 1 : - —_—
a5/ Have < i Object>> <<Business Object>>
S kil Reservation
<<Business Object>> N o
Librarian ——"—| date : Date
Has/Have | |0.*
name : String
user ID : String
password : string

domain model& A 2]5]] T design TA A class 0]5-2 A= 1|2 7}A-tt 2t A Y s HEgho]

AN

2.3.2. Conceptual Class Diagram

UML2] Class Diagram-2 A]~H9] class@} class 7Fe] THA|E HEE = diagram$. OOAJAl= do-
main modelZ 18 o, OODOJA= class diagramS 18 o A-&H.

More . § More
abstract Operations and more detailed concrate
realtions are considered
Student ‘ Student Student Student SW Class
name name -name: String

Domain objects | id atiributes id -id: String

(concepts) enroll() +enroll{course: Course): void
D“’““igo"x’ SLi O Class diagram in operations

*

domain model(conceptual class diagram)& UMLE] class diagram 2 12|H C}-217 Z-2.

Domain objects

Sales Item
Lineltem Records-sale-of
quantity 0.1 U
* Roles Stores *

1.

Multiplicity
Stocked-in
Contained-in

Associations

Store
address
name
1
Houses
1
Register
Captured-on *
Payment P
amount

o Association: = class AFO]of associationo] EX5FH o2 o]L, o QFE class7} A]
ek 7 = P association?] - Sl HE T2 2] QFa1, 1 classTF Pl HS ¢14]er 4
= TS association®] ¢ Q1A]er 5~ Q= Fo A HIgiZ o2 SpaE T1F.

Advises

mentor mentee

fu
il
o,

B

14

Has

Person Jl Phone
phones

 Role: association 71|l 2t class’= o5 BANA 55 </e-e ApAd], o] & A 9o 5%
role O[5 A ZE 2y Aloj ol o] 9] Ml4EES AFgol= 02 o]efgd 4 Q5.
o Multiplicity(TF&4): associationoA] B&H objecto] 7+& 2 191 F-2= AjgFslr] = gF.
oo} e O R A
oEd 27| EL]
1 LLUoHA 1 (4EhH
#* 0 E= T 0jak (0 d=h
0.x 0= 2o
1% 1E= 3 o4
0.1 0E=1
2.5 20§|M SAt0[2] 2t
1,26 1EE202E6
1,35 T= 3041M 5At012] 2

2.4. SSD

2.4.1. SSD

1. SSD

SSD(System Sequence Diagram)&
A ZF2-S PR O 2 modelingsl o2, E
AlLpe] 9 & P, SSDE= F 2 use-case analysis o] o] 18],

System Buventy= A|AEIVFO] 40 2F-85 L15] actoro] o5 2
TR+ A H o 2 R5l= A o] Q] (ex. enterlnfo).

Use Case Logsn

Actor User, Manager

Purpose User2} manager?t Al=HI0| H&317] Rl 2201 @ 4 AES 1. Login
ID/PW B 213 WO AT | RHSO LABHE B user or manager® :

Overview 279 s}
XS AWo| g Fe 229 =HE et

Type Primary 2. Logout
Functions: R 1.1,

Cross Reference (i Cooee 3. Make Account

Pre-Requisites N/A
(A) : Actor, (S) : System

Typlcal Courses of 2, (A): 21PIE 2ABHL,

Evants 3. (5): YRvhE Nl@el UEX HA 5 BN sHE Z user or manage® 4. Identify Balance

He 20 ko
Aiternative Courses'of 5. Recharge Balance

Exceptional Courses of

ot E1. ¥XohE AF0) Bl AS B BEl

6. Request Print

Namining convention for system events
* Should be expressed at the level of intent
* With a verb + an object like "enterinfo”

8 Identify Paper
9. Recharge Paper

10. Identify User
11. Identify Maoney

System Operation<
erations2] oS System Interface2fl 3F. SSDoJJA] A|AHIL
HIAISE system event?} system operator& S &0ofo] FZFgl.

15

A|AHo] public interfaceE Eof actoroA] A-&sl=
black boxZ FHGE 1, actor]] 9]

SFLEO] use-caseof] Tof] actore} A]AH] XFo]9] system event I
g use-caseo] YOJA] actorel A|AH] Afo]oj ofH o]]
EZF 95X mpolspr] ek 1@l ojnf YukR o2 SSD= ofid use-caseo] THof main success

J5l= event®. system event O]E

Name of
Actor-Activated Event

lenterinfo -
regLogin
reqlogout
reqMakeAcc
enterAccinfo
reqAccount
reqBalance
enterfFee
reqRecharge
enterSheet
reqPrint
req Identify Paper
enterPaperNum
reqCharge
reqUserlnfo
reqManeyinfo

operation©|1l, system op-

Process Sale Scenario

loop J [more items]

"*-—i-_gThese input system events invoke
- "ysystem operations

The system event enterItem invokes a

i
|
|
1
i
|
i
|
!
e el e i e
|
T
|
i
|
|
|
|
H

system operation called enterItem()
endSale() In OOP, we say “the message foo
N e : invokes the method foo”

SSDE AJAHE], actor, A|AE] oHE R ZAE. UMLC] SSDE cFea} ZHo] 1.

Use-case
e Process Sale Scenario

Actor

makeNewSale

1

]

]

loop J [more items] enterltem(itemld, quantity) _J:
condition -1

|

description, price, total i

Ecocooooo F_)__--E _______________ ‘:.

Frame :
endSale H

(Loop) >
I v 1 :

Message with
makePayment (amount) / parameters
> (system operation)

<-------- O E e e S e L e L e r
Return values d

]
]
]
|
i
|
|
|
|
|
|
|
Al
]
!
i total with taxes
I
I
|
|
I
1
I
I
1
1
1
|
I
i
'
! (optional) i~ Lifeline

o actors= stick figureZ, actorofA] A]AH Z O 29| system operation(event)= A4 SFHEE,
AIAEA] actorZ 9] A &2 F 4 Q}é}ﬁi 2. lifeline2 o2 7.

o system operation(event)Z} return values= S 9Jof] ZFY el system operation©f parameter7}F
o]0 shA ZFAJ).

ARA— 1=
o HFERO loop AFZFE-S 12|17 conditionS A9 gl
o ZAEL alt(alternative) AFZFH-S 12|31 conditions ZHd gk

2. SSD vs. Sequence Diagram

analyszsof]/(']_J modeling9l SSDE actor@} A|AH] 7Fe] Ao 28-S 22 02 HEofn A|AHC]
L 2Fof] Fl==5F BFAH designoj] 412 modelingQl Sequence Diagram-2 actor2l object 7F] HJA]X]

S maslH,] i Faol §5

:System)
I Register | ProductCatalog } :Sale
Cashier p— |)]
o entertem | ; i
enterltem(UPC, quantity) % .l\f""‘“‘D‘ quantity » i '
endSale() Costier T s somiD: E
— —™ 1 i |

addLineltem(spec, quantity)

Y

makePayment(amount)

System Sequence Diagram in OOA Sequence Diagram in OOD

2.4.2. Operation Contract

16

Operation Contract(2F¢] 79F)i= system operation®] 52 & Ao} 272 Y5 A9, K| AH F2o]

oieh o ARt EEE flol Z-Jofl, o] designojA] object M= é"zf/ Alell g8 + A&

SSDE ZF4YsFo 2 4] domain model9] Y-S HIZFSIALE, operation = use-caseQ] TS 1 3F5]
Sl & o] o
= T ARET-

operation contracts= £7% system operationo] fjal S} Z-2 AIGFES ZH 9.
e Name: operation®] o]E1} parameter.

o Responsibility: S operationo] 7FX]= 2],

o (Optional) Type: operation2] type(sw class. interface 5).

a5 operationof] oot reference oL}, A SFE]E use-case 5
5l operationoj] tjjgl HjH.

o (Optional) Exception: exception cases.

o (Optional) Output: 3 operationof] S]] A|AHoJA] o] H 2 HAGE= &5,

o Pre-condition: 3]g operationo] AaPx]7] Q3] HQsF ZH E= AFAFSF.

o Post-condition: 3|5 operationo] 2tEZ ¥ & X AH Fl X AFefo] HiS](ex. obejct/asso-
ciation/attribute XY /24). F2 operation 5 & gt oA Lol LFEfo] HSIE
g o2 2ot ex. A SalesLineltem was created).

I P P T

e Cross Reference:

o (Optional) Note:

Post-Conditions

1. Login 1:enterinfo() 1:enterinfof) R11 System Access Event
2:regLogin() 2:regLogin() R1.2 Make Account Event
2. Logout 3ireqlogout() 3ireqlogout() R1.3 Identify Balance Event
3. Make Account 4reqMakeAcc() 4:reqMakeAcc() R14 Recharge Balance Event
S:enterAccinfo() S:enterAccinfo() .
ST T GreqAccount() R2.1 Request Print Event
4. Identify Balance 7:reqBalance() 7:reqBalance() R22 Check Balance Hidden
5. Recharge Balance 8:enterFee() 8:enterFee() R 3.1 Identify Paper Event
greqRecharge(gireqRecharge(R3.2 Recharge Paper Event
6. Request Print 10:enterSheet() 10:enterSheet) -
11:reqPrint0 11:reqPrint0 R33 Identify User Event
8 Identify Paper 12rreq Identify Paper) 12reqPaperidentify) R 3.4 Identify Money Event
9. Recharge Paper 13:enterPaperNumi) 13:enterPaperNum())
14:reqCharge() 14:reqCharge() SYSten_.' functions
10. Identify User 15reqUserinfo() 15:reqUserinfo() (requirements)
11. Identify Money 16:reqMoneylnfo() 16:regMoneyinfo()
Resposibilities Q2| & X Pict
Type System
Cross References R21,R22
Notes
E = * QI HC] oo 9| 1
Exceptions o;gg: U= * RS HCH SO 2l7) FEE| x|
Qutput Q12 Z 3}, Userbalance H3
0| e
pre-Conditions 2I21E! €144 D27} Qlofof sict.

A8 20l el 0]ojof Bt

AH83H 29UBHE A8 XISl ZHOf0| 24 ETk
@leigl ol of§ £7|9 Bict.

3. OOD - Structure Diagram

Static Modeling®]] €]t diagram?l Structure Diagramo]] tfjsf &o}x A},

17

3.1. Package Diagram

3.1.1. Logical Architecture

1. Logical Architecture

Logical Architecture= software classES package, subsystem, layer 52} Zro] ©of &2 =2]%

T -
At A, o]nf logical architecturel= Ba]& o] Qx]L} vz a6l &1, =g & o] 72X
Aor EFEa]Fol HES 1785F 72 Deployment Architecture2fil gF.

logical architectureo] tjet modeling A]ofl= E2]2] 2] modelS 4jo] 12]x] = Aol

,
8
[

b
EVY

{x
do

°

> Domain ‘ !

Sales ‘ Payments ‘ ‘ Taxes ‘

Package diagram
2. Layer
Layer(Al5)&= -&8E A -S 7} E class, package, subsystem 55 -2 21 Y.
G2 2219] Y2 AL ole] Ao layer LT, 49] layerF 5] layere] AlH]
AE DY 7 J=F FFY 7 S (ex, OSI TAIF). o] wlef BEY, AAEFS e 7 Q1
© upst & 9l
= =2 T ART-
00 system-2 YEFH o2 r}ou} ZHe A= (object) +Z&E 7}F. £3] Ul layer?} technical service

E
layeri= o|n] & o] x]o] Qli= 7g-27} ol Baof upef g-gopH HX]TE domain layer+= -§-§° m2f
o2 &&Fo] "Waspr] o] ZEe analysis ¥ designo] F R}
o Ul(Presentation) Layer: actor2l2] ¢J& (user interface)S Yol layer.
o Domain Layer: requirmento]] gjel domain¥} -&-§ 2Z&-S HHst= layer.

o Technical Service Layer: DB 914, 273} Zro] 7]&2] AJH]AE A5l layer.

18

Storyboard, HCI, Web interface
design
ul .
not the Java
Swing $-... | Swing libraries, but Web
our GUI classes v
based on Swing \
\\
//’ \\
. ‘t
> Domain V{tl E
1 1 1 !
Sales Payments Taxes //
,/
/
U4
// ,’/
! //
1 P
Technical Services \l(_ e
1 1 " [
Persistence Logging RulesEngine
Java application packages, ODBC library, ...

3.1.2. Package Diagram

1. Package Diagram
Package Diagram-2 A]AHIS packageo] F]

ko 2 LFEHfE modeling BFA] Q. =, package diagram
© 2 logical architectureZ modelingeF 5= ¢1-S.
package:= U537} 2] package o5& Z-golH, nested package’} EAE 7 QU5
Nested package
Domain
[Sales |Package : [Pricing |
1%l 01 i - : PricingStrategy «interface»
- api | i Factory ‘ |ISaIePricingStrategy
ServiceAccess Payments
? «interface»
common Class |CreditAuthorization
actory ServiceAdapter
Inventory POSRuleEngine Taxes
interf R interface»
Package E7[H ’ IIn:el:tZrya:::pter | ‘POSR“'EE"Q'“F"’C“S ‘ ‘ |TaxCalculatorAdapter

package diagram-S 18l& 7L of2F 2.

1. class& packagei 2o ol classi= =Y

F=

& Yol 7Z—X777//7' 7]77,3, use-caseo] £5h= A7jal 2o
9117, class o]EL OOAZ EZF domainsS £ .

19

Core

Sales

Sale .Sales ‘ Cashier ‘ ‘Customer‘
Lineltem
Products

Catalog Specificatiol

2. wertical layer(UI, domain, service layer)E packageZ 18], $F layer oAl ¥ & 2] Q] package
=2 horizontal partition© 2 FE3] 52 packageE 1222

package AZ} package BOJ gt dependencyE ZFCHH(AZF B AFgdl= 3-2), A — BE {4
SIAFIT = 1%]

=1 =

UI layerof A domain layer2 Q%S Jgst=g], oo UI layero]A] HiUl= Q%L SSDojA]
actor7] A2 5A] B AT Ao T P 9.

Ol

ul
Domain
Domain
 e—1 —
‘Core Elements‘ | Sales | | Products |

Core Elements«—————— Sales

\
Verfical

\
Lot | \
Laers | Services ™

‘d
Relational Database P Object Database o Dependency
e e ‘ ‘Cammunltaﬂon‘ Interface Reporting

Harizantal Partitions

2. Model-view Separation

Model-view Separation(2E-HF 22| &%) X é’(domam layerQ] object)o] F(UI layerQ] object)o
e Y A4S AL oF Hoke B39, ol A2, T4 £el(mode HolE Az,
viewl AR} HOlY) 5] S|4 FF g,

53], 52 model& 7}R]2 of 2] viewE THEOJoF Sh= 8 (ex. pee} HHFY)o] EXol= F-F7F
mog o]zl FLE QA model-view separation©] -7 9].

3.2. Class Diagram

3.2.1. Class Diagram

Class Diagram-2 A]2HI9] class2f class ZFO] FIAIE modelingeF Z1¢]. domain model:& conceptualdl
ZH oA domain objectef ZFZFo] FIAIE tIETHA, class diagram-S software ZH o)Al classeF ZFZF9]
PAE O

dynamic modeling?l sequence diagram= X9 class, method §°] &8 =, class diagramI} se-
quence diagram-= FAJof] HHEZ] 0 22 T2 softwarel] FZ2 ZF designsll oJ&e 4~ Q1.

3.2.2. Class Diagram Notation

1. Class

Class+= attribute2F operation2] FeFel data type . classQ] intanceE Object2fl 3. Attributes= class
o 775 548 sl tlo]E 2 objectu}Th ThE g 7Fd 4+ L, Operation classo] W95
LFEFE A0 2 E objecto]] s 5}

UML9] class diagramoJA] class= T2} ZHo] class name, attribute, operation s=AJ=2 X4 SF.

20

Class name Course

Class Object of the Person class name: String
N Attributes semester: SemesterType
Person maxMiller:Person hours: float
firstName: String firstName = "Max" o -
lastName: String lastName = "Miller" getCredits(): int
dob: Date dob = 03-05-1973 Operations getlLecturer(): Lecturer

getGPA(): float

1, AAE] e S Qs & choket 7] Ho] EAR.
Aol £

Coarse-grained Fine-grained

Course

C .
ourse + name: String

+ semester: SemesterType
(I - hours: float

Course iz:‘:‘er - [credits: int

+ getCredits(): int

getCredits() + :
getlecturer(): Lecturer

getLecturer() + getGPA(): float

getGPA() + getHours(): float

+ setHours(hours: float): void

2. Attribute Syntax
UML29] class diagramO]A] attributeo] T $F syntar= Cl-=7F ZH2.
o Name and Type: attributer= CF-23} ZFo] name:type FJEIZ ZHSF o]nf data type primitive
Q] 1= Ql37, user-definedd % Q2.

Person Person

firstName: String firstName: St
E ame: String lastName:
lob: Date : Dz
String[1..*] {unique, ordered}
String {readOnly} 8
e int lage: int
sword: String = "pw123" password: String = "pw123"
Number: int personsNumber: int

19[1..*] {unique, ordered}
ring {readOnly}

Name Type

o Visibility: {2 X]ZR}Fof] ook visibility= T3} ZHo] attribute SFof] +2 public, -2 private, #
© &2 protectedS FHA]G

Person

+ firstName: String
+ lastName: String
dob: Date
address: String[1..*] {unique, ordered}
~ ssNo: String {readOnly}
- /age: int
password: String = "pw123"
personsNumber: int

o Derived Attribute: Derived Attribute= G classQ] TIE attributeo] 9J5)] o] A EHE= at-
tributeZ, attribute name 9Fof /& £ FE7]QF Eor A F 02 {readOnly}E =07 & ¢

21

Paraeh Patient Library Book

- - title: String barcode: String [0..1] {id}
firstName: String givenName: String name: String

T middleName: - String borrowed: __Date

add‘ress: String[1..*] {unique, ordered} | familyName: String j::angﬂtm.]d' ::r;tt.:.ger (rzzgi(l)nly)
ssNo: String {readOnly} ' name: FullName ; . 3_5{_“33_ nly}
e birthdate: Date isOverdue: Boolean = false
password: String = "pw123" admitted: Date
personsNumber: int lage: Integer

dob:= date of birth

o Multiplicity: SFLF2] attribute”} 7FX]= 9] 704 data type BFZ Fof [min...max] Z2 ZHA]
5l1, Ajgto] gL *2 UEY. default multiplicity 7= 1¢. o]of wla} list 5o AF2FZE

T & oF A& o
HId + U5

Person SoccerTeam
firstName: String goal_keeper: Player [1]
lastName: String forwards: Player [2..3)
dob: Date midfielders: Player [3..4]
address: String[1.."] {unique, ordered} defenders: Player [3..4]
ssNo: String {readOnly} o
fage: int SO
password: String = "pw123"
personsNumber: int {#team_players = 11} [ﬁ

o Default Value: attributeZ} 7FX]= default 4= data type BFZ FHoj =gt 22 HAJE

Person

firstName: String

lastName: String

dob: Date

address: String[1..*] {unique, ordered}
ssNo: String {readOnly}

/age: int

password: String = "pw 123
personsNumber: int

o Property: attribute]] tfeF Property~= F7F2 Q1 EA oL} AJoF 2 A4S @i, attributel] 7}
Zof GAek of2] 7]9] propertyE ZFx]+= F-¢ ol 2] Z|E A Rl propertyZ= ohSaF Z2
Ago] 9.

{readOnly}: attribute gt 78 &7} (final).

{unique}: alig attributeo] of2] gk 7F F5S 5] §312] gl
{non-unique}: S attributel] & g 78 2S5 5]-§¢
{ordered}: G attributeo] of 2] g 7F <A17F EX]gF.
{unordered}: 3G attribute] oJ&] gt ZF «=A17F EASIR] Y=
E5t o] g P8 7} AEAEL e} Zo] YEY 5 9.
{unordered, unique}: set.

{unordered, non-unique}: multi-set.

{ordered, unique}: ordered set.
{ordered, non-unique}: list.

22

Person

firstName: String

lastName: String

dob: Date

address: String[1..*] {unique, ordered
ssNo: String {readOnly

lage: int

password: String = "pw123"
personsNumber: int

3. Operation Syntar
UML2] class diagramolA] operation©] fjoF syntar= C}-21] ZH2.

e Name and Type: operationS Tl-22}F ZFo] visibility name(parameter-list) : return type {prop-
erty} 22 2k olufl visibility7} AEFE] 1.0 H publicO 2 F ¢l
parameter— name:type Z2 KA, in input parameter(AEFSL7] = &), out-2 output pa-
rameter(parametero]] Azl ZZF), inout2 input Y output HFEZE AFEEE parametery.

Person Person

+ getName(out fn: String, ou g): void getName(out fn: String, out In: String):
+ updateLastName(newName: String): boolean updateLastName(newName: String):
+ getPersonsNumber(): int getPersonsNumber():
parameters return type
e Class Variable/Operation: class variable/operation, = static variable/operation2 H&EE H

)&k

class Person {

Person
public String firstName;

] N
Cfa_ss' PR s public String lastName;
variable_ [ione «—> private Date dob;
“_ |#address: String[*] protected String[] address;

* private static int pNumber;

o |* getPh
Class ~~ |+getDob(): Date public static int getPNumber() {...}
aperaa‘ion public Date getDob() {...}

-~

Azl 2 ZE Sl oF sF=r], HE attributeo]

o Getter and Setter' getter2} sette % 215 EH—%E,’ A]
e U= dH] oz 405 UML toololl&= getter/set-

terg A1 —ZZZ‘ E’% i7’];<]7]' %’Eb— 28

o Abstract Opemtz'on/ClaSS' abstract operation/class+= italic© 2 ZFHSFALE, abstract property
£ R SIALL classQ] G2 «abstracty E =] E7|gF.

= Classname = Classname {abstract} <<Iﬂb5f'35f>> ‘
classname
+ field: type + field: type
+ field1: Type ‘
+ method(type): type + method(type): type {abstract} + method(type): Type {abstract} ‘

g 71812H4 protectedis 319 class Y59}, A classE A4S subclassel g He] 7H5 .
G2 default gh2 gH& T2 2| A5kA] kS o] ghe Wl
112 attribute name©] pNumber©|H getter?} settere] AH 2= getPNumber(), setPNumber ().

23

3.3. Class Diagram Relationship

3.3.1. Class Diagram Relationship

class diagramol|A] class/object ZF] C}Fet HAE H

Weaker Class relationship

Dependency

& o5 go] 571X #-7E A

Stronger (lass relationship

Association Aggregation Composition

e

e — | o— | —

Dashed Arrow

Simple Connecting Line | Empty Diamond Arrow | Filled Diamond Arrow.

When objects of one | When objects of one | When one class owns but When one class When one classis a
contains objectsof | type of another class

class work briefly with class work with shares a reference to
objects of another dass obfjecrsofanotherclass ohjects of another class another class
or some prolonged
amount of time

3.3.2. Dependency
Dependency(2]& A)= oF class9] objecto] 4] TFE classQ] object&
ol A=, FH spHEE #H7]ek

9 5°], method/parameter ZF2] data type O 2 F-golAL,] BHE2Z AF

QR A O & (temporarily) A&

o] 2

oln
o

§oH= 42

3.3.3. Association
Association(HH THA])& GF class2] object’} TFE class2] object@F ZF7]7F k=] o] EZ5l= HHA 2,
Aldoz FrIeF ESH = classof 419 associations Binary Associationo|2fil oF. O] FA|F o2 =
23} Z+o| association= LFEFY.

Axo| et (Student?t

Professors %)

Navigability Association name Reading direction

\
’ / Multiplicity
L . _—

v
givesLectureFor p *
Student

Professor

+lecturer

/
/ Non-navigability
Visibility —Role

Professor?t Student0il A ZZE!
off OfE LOIX| QA

1. Navigatability
Navigatability(7}54)-& §H2o0] t}2 o] tf g A of 4
gabilityZ} ZAf5l] Ak BE &

7F EAjo1H Hhes] Hdo s

2. Attribute 873

24

navigability”| ZAloFH
role ©]50] attribute name©] H.

o] & altributeTr O & LFEFY =& Q117
ARgsl LFEFY =2 QL. datad] lgrols AL attribute 2, association BA] S LFEFL] 7]

RELAD

assocation lineofJA] S}4FE,

class@] objecto] A ZFZ A classQ] objectE

multiplicty, roleZ2 LEFY

attribute= 7}Z]. oluj

S 9]

= =
—27 EILE
= .. . T = O
st 212 association line 2 LEIflE= Ho] &2,
using the attribute Register Sele
text notation to 5 2
indicate Register has currentSale : Sale |
a reference to one
Sale instance
OBSERVE: this stylek Register [Sale
visually emphasizes 1
the connection T currentSale/,
between these classes
[using the association notation to indicate
Register has a reference to one Sale instance
thorough and A Register ' Sale
1

unambiguous, but some
people dislike the
possible redundancy

currentSale : Sale
currentSale |

3. Association Class
Association Class= association ZFA|Jof attributef operation=

classz2 FEEoF Z¢].

£ Eof, Student class@} Course ClassZF ¢l-S uj] o]®H E
7 class 5 ol oft] e}, o] A 2] XL,’EI ofoF s}, o] L lZof Hojx] AL o

oro.
Enrolls * ,7
Student -students H -courses Course

Enrollment

Z7FsF D Q7F QS O, associationS

-grade

o] & association class+= CF21} Zro] HI 9] class2 EHe = Q2. o] A2 XA EH classe= CFE

= classo] jgF objectE attributez 71F.

StUdent -student -

Enrollment |,

1
— Course
~course

-grade

3.3.4. Aggregation& Composition

1. Whole-part Relationship
Whole-part Relationship-2>] 7 o] sfgol=
7ro] A 2, E=~oF e 9] associationd]. £ 5]

=T
2) o]® classZ} TFZ class&= A7 T (own)
ro

whole-part relationshipof] QigjAl= cf-2x} ZF2
o Transitive Property: A is part of Bo]1l, B is part of CO]H,

class(whole) 2}, HE Ff o] digsl= class(part)
) o]™ class”} E]—‘E' class_J 2B wf(is part of)2},
Ze gl 8] 75k
Feleh 0] 241
A is part of C¥.

o Asymetric Property: A is part of B} B is part of A= Ao Zd &+ 1=

UMLOJ A]+= whole-part relationships AL 2 o) cfor 7] o) whaf aggregationd} composition

25

o7 723

Aggregation Composition

s ug uo Fe

- TM| HAI7E ATEOHE FE WA= AEOE - TH| WH7E AT 2E WHE AT
x| or2

Weaker ownership

- 2 W= TH HAof ol 2T A7
&= W2 ooy, ZREAL MAEE &+

o]]

A

Strong ownership

- T WAI7H 2 Wl HHHY MYy

(MM e/ A S 7HE o

_{
I

mlo rir

Shared resources
- OHE OES0|E WAI7t FESEZM OE ®

oM 021t At2&|ofor & of RE

Encapsulation
- FE20| TH| HM|2| W2t LHof| M2 ALSE
ofop & of /RE

2. Aggregation

Aggregation(Y@ BA)S Fi2o] FA o] kot (use) 5= FAY. hollow diamond (%] T}o]o=E)
olIE 2 FI|sl=d], AAof sigsl= classoj] hollow diamondE 7 8. o]ju] HE.C o} iFutglo]
=HHoz EATG 5 Q5. S, YA objectZF AFRFA E BE objecti= X 5 Y= BAZ, HA2L}
o] AYEI} o,

aggregationS association9] -Eo]X|at, whole-part relationshipo] B2 FZof hollow diamondZE 1
g] AL A2 oF2 HFeFO] = hollow diamond SAFHEE 184L oF .

& 5], carS} wheelo] FAZ o]agF 5= S

4.

Car

&

User

<

Wheel

-wheels

Address

-addresse

*

3. Composition

Composition(gHy 2HA])& F-E2o] A ZFolAl(own) £ol= A Y. filled diamond(XF = TFo]
oOFEL) ol EZ HZ|ol=r, HA dllgol= classol filled diamondE 1%. ojuf FFEL A
STEEo] ZHH o2 ZASF = Q5. =, YA object”F AFRFR]H BE objectZ Afepx] 11, AL HE
o] FEHFII7F L5

qlg £91, buildingZ} room2] #A 2 o]alel 4= Q2.

-rooms

Chapter

Book
-chapters
J
3.3.5. Inheritance

Inheritance(¥1<: A, AEFst A= subclass&2] 5% EAS super classZ YUFS]or TA 2,
SRFEZ FE7]el subclass= private?] Z-ES A 2J5F1l super class] BE HS AF<HFO 1, subclass

W2 Z71Fo] £48 712 4~ Qle. o]of ulal subclass®] instancei= super classof Tl 7HH & ¢l
instance /.

Person

[

Employee Student

Professor Secretary

abstract class= 1 AF| 2 instanceSFE]| A= ESFR]EF, subclassQ] F-E E4HS ZXgF o] subclass
= AFHEL gbstract methodE H&= & foF instancedlHE 4~

o]
AR
& 2ol inheritanceE -85 class diagram= T 2|32 o] 1L olsfistr] fA Z1E 4= QL

o

{abstract}
Person

Student
| p>{name

matNo

I
Prs;E.::'m }0—{ Course ‘ | Faculty * ssNo
A

1x * N 1
enrolls
<~°b
enrolls teaches v?e& isAssigned
& VS. Employee * 1
StudyProgram Faculty
. e . - = isAssigned
Research Administrative . A
Student ;
Associate Employee
name name name
address. address address
dob dob dob
ssNo ssNo ssNo
mathNo acctNo acctNo
teaches
1% | |
I ResearchAssociate ‘ | AdministrativeEmployee

4. OOD - Behaviour Diagram

Dynamic Modeling®]] €]$t diagram?] Behaviour Diagramo] tjjsf] &ro}x =},

4.1. Interactive Diagram

4.1.1. Interactive Diagram

1. Interactive Diagram

Interactive Diagram-2> A|2H& FJ5H= objects5o] o] BA] £ Aol messages T om Fo
2FgolE=x]E LEIE diagram . interactive diagram-2 E3] class_J method& &ASF1L, exception
JZE mpefob= blof 50| H.

o 7] o A= interactive diagram & sequence diagram} communication diagramo] gjsf 4w,

2. Communication Diagram vs. Sequence Diagram
communication diagramI} sequence diagram-2 EYoF JHE X2 Cl27] FEdgl

sequence diagramofAl= AJZFe] B0 2FS WET AFHO] 2SS 788 E, AR AE o

5117 use-case Z7]HFC 2 FEeds}7]o

=90

communication diagramofJAl= object 7F2]

glo =
1 — = 1= o =
= o = == 0 = . = = =0
Ao 2FE Fil TEE network FEZ T8 B2, object ZF BAIE 1Feto}7] o F5.

ay By

Sequence - AT #ME Ao Petoy| =9 - B He: MER WHPE FIMEY QX o2 &
- HIAX 22 242 UE 20F22 WA 2k | Zoks R0l IHIE
SZHE o[ofot7| A8 =

- WHle] ST BAZS A TR 2
o

- *HE-E- —.X1I7f FHEIS o S Y

[]E=X
=

Communication

- OAIRIS] &ML EE2 ¢
=l
]

ohzofl wtetot=7 o2l

4.1.2. Sequence Diagram

1.Sequence Diagram

Lifeline: objectZ} XA~ Hlof] Ex]5l=
Activation Box: objectZ} G435l Eo] AR =
Object: boxZ H7|gF.

objecto]] gjsF boxol lifeline FJH 7} F7FE]o]
mjet F7F JES 2ol ok

=/

28

Message: 5] o] ool Sa-Ee #7)5
Ajzke 2,

Sequence Diagram-2 E7g use-casel} operations tjiF 02 slof, X|7Fe] S Eof ufa} object 7FO] 4F

o2FgS oxpRoZ ’/]'EH_H diagram$J.
UMLOJA] sequence diagram-2 Tf22F 22 notations 7FF].
Ob'ict
Register lifeline : Sale
T T
doX i ‘
N § doA o
8 H
Found do >
message s .
< doD
Activation box
Message

1

ZAfo] mhe} Y g

HHdoez x7]gl

=9 H7]op7| = ¢

A7Ee &2 lifelineS wraf ALz}g o2 H7]5)

9l AL Lifeline Boxgl1l

of. o5 go] Bad

2. Message

message syntars= CF2XF Z-2. o]of messageS A2l 1= AeFslr] &

return =

0|S0| 2% %2 Sale 22HAY instancs] s12] 01S0] 22 Sale 22HAY instance?]

lifeline box lifeline box
:Sale sl :Sale
T T
1 1
1 1
1 1
1 1
1 1
ArrayList<Sale>2| nomed instance2] List0iM £7 Sale Instance lifeline box
lifeline box
sales: -
ArrayList<Sale> sales[i] : Sale

;.

ok

message (parameter: parameterType) : returnType

messagel= TFET} 2o] ol FFIF 2.

o Synchronous Message: sender?} response messages H-S mjj7}x] 7]cl2{oF 5l= message =, X}

AR

g2 Zrjglh

o Asynchronous Message: sender?} response messages BF2] grof CFE ZFQlS & 4~ 9= mes-
sage=, The SFHE HI|GE

o Response Message: -SHof] dl5ol= message2, 41 SIFEZ HE 7|4

S oo oo o

o Found Message: HWH AFgfo] F=7I2] H 2= message2, FOJA] A|ZoH= SIAFER HI)9F T2

REED]

o Lost Message: H= AFgho] =it 2] B 2= message2, FoJA B+ 31 HEZ F7]9
o Self Message: AAZ2 A BUUE message 2, SFFHE O] £S5 7] XFLlofA] Hi,

o Time-consuming Message: 2 2]of] AJ7Fo] ZE]= message=, 3FIHES S thad] L= A]
Hofl Hul. o]uf] messageSs H YA Br= glof] dE]l= X7FS Message With Durationo]2F1l gF.

- P T

found lost self Time-
consuming

o qcreatey: G objectE AGSH= messager= F-EA 02 FHH SIHE «creater E HE7] gl

o «destorys:
7] &k

|G objectE AFAJSF= messager= H-EF 02 FHH SFFHEO] «destroys 2F XE E

29

nole that newly created I\

Register Sale objects are placed at their

H H creation "height” : Sale
H 3 <<create>>
L I e e » : Payment
makePayment(cashTendered) _, | e ate s L £
- ~~p : Payment
T »>
authorize .; «destroy» »
Instance creation Instance destruction

3. Gaurd Notation

Gaurd Notation© =2 messageof tjel X AT} BFES]34k 4~ Q1.2 A 72 55 conditionS Tt
= messages {Eol= A 0|12, UHE9] F-2 ofg conditiono] TFEF messages o2 Bl HEol=
ol

A a-

ko3l Zro] 2AEL [condition] message2] Zro] FE 7|51, HFHE L *[for loop condition] message
o 2ro] B3

- Message
2o '
: ——
: i 2: Return() |
[price > 10000] Bi] 222 2| . '1;
H 3:* [for each product] addllem(product aty) |

»
)
Iteration

Conditional message [terative message

22 sequence diagramo]| tjst A2, o] producte] tjsf AL &2l5t1 FES}= use-cased.

gk

Object

sd Place Order

Message Anong;j:";
v
: 1: <<Creale>> :
Ty H
s]
2: Return() | equence 1
e —— T number i
H I
3. * [for each product] add ltem{produd, gty) : ‘. :
A 4: checkAvailable (product, gty) 1
Iteration

5: return done

e —————————

= Self- . 6: addProduct{product)
reference

7: reduceStock(product, qty)

Focus of
=== trol
conwo 8: return done
e e
A 1
9: return done H]
e 4 H I
T Return !
10: save() 1
H |
|
|
11: return done . o |
ke - Object lifeline ==+
|
I
1

4.1.3. Combined Fragments in Sequence Diagram

sequence diagram2] Combinded Fragment= Z} @ 45 153}6l17 Ao 82 G717 0 =2 modeling
517] 95l A5l FE7]Y. of2a} ZHo] frame 2 2 11 operator, condition 5=

30

I I 1

et | |

[I I

f f >

| &s—
....... |-=====-4=====---}--{separator

oop ||| |

[| |

s |

|

t

I

o Operator: o fragment9] E7FE LIEL.

=l
o Operand: ZH4J9F conditiono] TFEel of ~ollEl= Z7EO0 2 conditiono] GCFH SR o=,
frame QFOJJA] FH o2 7RG}

e Guard Condition: 5~ T HES HAJgF A

1. Branches and Loops
w7]eF B o oot fragmentZ= e E-2 Z1E°] s

o alt: XA ufz} cfE ZFYS e uj] AFESE fragment. operand @ 2 guard conditionS Zf
Aopar ol Aut =gl 271o] HXRIR] grofof 5Fal, elseQl -0 oAl [else] 2 2P ot

switchZ3F ALl
o opt: X7lo] F mjut 85l fragment. SHEQ] operandFF Z A}
elseZb gl ifitF FAFEE

:Student :StudemAdmln :Database
Systern

register(matNo, exam)

l"

»
>

alt

|
|
|
| F
| status = enter: status
' I o 1
|
t
| [status == ok]
|
|
|

register: "ok"

register: "wl"
R L
|

opt IJ [register on WL == true]
|

register(matNo, exam)
enterWL(matNo, exam)
enterWL: "ok”

|
|
|
|
|
| register: "ok”
lpoo_Iogsiectal 0 }

o loop: BHE-S a5l R Ao] 7] R19] -2 vHE-S ZThslE= fragment. operatord] loop(min, maz)
EE loop(min..maz) Z=2 BHE 3I+F X]XS]?’Q'(}?’—AL mingls, [t max¥hg 9 £7.). *E A

gol 4~ Qlon HiHE J]+2 X7‘/“70}X oo A0 default= *07 guard condition© 2 BFHE X AHS
e+ g

31

for&Z3} AL

Max .

Min__
Guard ~__ e ‘ I:l Notation alternatives:
~_ |loop(1,*) J | loop(3,8) =loop(3..8)
loop is executed at |

loop(8,8) = loop (8)
it [E<1] ——> Geop = Toop k= decp (00e)
a<1 is true. fe— P P P g,

. break: Z710] ZHolHl S5 operand +t 7, H4l0] S fragmenti= B o) +FH] GL
.l higher level fragmentoj]A] o]o]A] ~dlS}= fragment.

break 25} A loop 50 WA A1 WS FEE £ YR, T 2o] o9

Aejolz Abgd 7+ 9

i

‘ :Student ‘

loop(1,3) J [incorrect password]

:StudentAdmin
System

login(name, pw) -

check(name, pw) N

error message

register(matNo, exam)

>
>

enter(matNo, exam)

:
|
|
|
|
|
i

t t
break J [incorrect password] :
|

|

]

|

|

|

|

|

|

|

|
|
|
<
|
}
|
|
I
|
|
|

|
t
|
|
|
|
|
|
I
|
|
|
|
|
>
>
'

2. Concurrency and Order
Al 5ol djet fragment 2= o7 22 AE0] &

o seq: operand 7] weak sequenceES LFEFY of AFESF= fragment. seq fragmentE A-E5F] &F
ol sequence diagram-> 7]E 2] 0 2 weak sequence® FZXFoIR2 R, o] F&2 CFE fragment2}
Zelofo] AFg-gk
Weak Sequences= -&QoF lifelineofJA]= messagel] cA]7F $JojjA] ofg| 2 BFEX] X[+ ={oF 5]X]
ot A2 ofE lifelineo]] HiofAli messagel] =A17F 411k Ei= A5 2ok

N = A
seq | i i
i -
‘r/a } } : Traces: ZM.a->b
. ZN2.a->d

o } ; Tol:a=»b-c—>d-e

e [[T02:a—-c->b->d-e ZH3. c->d->e

l 1 e ¢ | To3:csa-b-od-e 4 c>e

i J‘Q: i ZUS, b->d

| | ?%1

: : 71222 EXHL = fragmentE T2 EA|7}

2te|of o 2% seqd

o strict: A2 oF2 operand 7F A1 ¢123] 7] =% g w AR§HE fragment. O operand ZH
s Alof ol Ao 2, 5l operand YoJA]= o] [35] seqd.

32

B
B
B
=

strict /1 | |
I | I
I a | | |
> | | :
b 1 | | Traces:
I — b N - Tol:a=»b->c—>d-e
| I | |
I
| l&l |
| I I e |
! | H—

o par: A2 L2 oprand 7FH] A = (concurrency)S HEHY o AF-§5l= fragment. SFLFQ]
operand IO A1 9] Al XA ZXEE, A2 TRE operand 7Holl= wA1E 112{oFR] gF5-

Traces: D
T01:a—=b—=2c—>d-—e
T02:a—»c—2b—>d—e
T03:a—=c—=>d—=>b-e
TO4:a—»c—>d—>e—b
T05:c2>a—-b->d-e
- TO6:c»>a—>d—->b—-e
S — T07:c2>a—=>d-=>e—b
TO8:c—>d—-a—>b-e
& T09:c>d—=a—-e=b
t t T10:c>d—2e—2>a—b

»
-t ®
o)
o

l‘"

:

____,.
LI —|

|

L

Bl

e critical: critical region(atomic area)S E L W AF-§5]E fragment. G frame(critical region)
ol message50] @5 5 frame SJ32e] oF2 messagest 7]olEoIA £YE > g2 =, HF
frameo] 2FA3] £ 2 E]oJoF CFE message”F -HE 4~ Q2.

A B :.C :D
pa; y i i : Traces: AN

Y S T01:a > b o > dl[e]
I b I ! ! 'mZaarédtbaﬁ
--4- — bemee e 4-neonee- b T03:a-=fc2>dpre—>b
critical / | ¢ | T04Jc> df> a - b -[e]
| |y T054c - dp> a -e]> b

|
! e ! T06{c > db[e}>a - b

i i | e I

' | —

3. Others
ZIEF fragment 2= oS Z& AE0] SIS

o ref: CFE sequence diagram= 7F2]7]= fragment.

33

l sd AuthenticateUser ‘J
—
—_—

authenticate(id

1
. o doA » i . ‘:
do
—
1 — doM2 »

|
|
|
|
|

|
| |
authenticate(id ref /' authenticateUser]'
I

1
I I
— 1

[
; ref J DoFoo sd DoFoo J
! ‘."/ g :B 3G

| | I

interaction occurrence D L doX) i
. o [| |

note it covers a set of lifelines ! doY p
1]

note that the sd frame it relates to |,—(‘°Z_mML_.{
has the same lifelines: B and C ! !

o Iteration over a Collection: collection®] Z} 78 & A ofJA] messageS H Y= F-L, ooyl Zo]
collection] Q1EIA~E]Gl lifelined] messageE BU1l, i++S o= Ao 2 FHE 4+ ¢l2.

. lineltemsi] : | l
: Sale SalesLineltem This lifeline box represents one
I IS 1

T instance from a collection of many
t = getTotal SalesLineltem objects.

. A

lineltemsi] is the expression to
select one element from the
collection of many
SalesLineltems; the i" value
refers to the same “i" in the guard
in the LOOP frame

loop / li<liheltems.size]

st = getSubtotal

v

(e
i+
— 0

1 -

|
an action box may contain arbitrary language k
statements (in this case, incrementing V')

itis placed over the lifeline to which it applies

o Time Constraint: tf2-2} Z-o] {} & A&l message 541 A7}, duration 52 A|oFS E7]SF
2 0] o
T ARTE-

:Student :Forum :Lecturer

| I [
:r'< : {at(12:00)} i
: 2ORN) =: {t=now} ‘\
:H __Post: confirm __ _4:_ {t+5} }‘
i l inform(m1) }}
ARy i !_(post(reply) 1}
i{ inform(reply) ! {‘

4.1.4. Communication Diagram

Communication Diagram-2 22851 object 7] FAIE HE 5], o285 HAIX] 2 HE5}=
diagram$J.

34

communication diagram2] notation-< sequence diagramd} A2 TGl AEE object= 2402 HEF
511, message= = object] 24 Qo] SFAFERl SFHA] H 7S FE S messageE H U= A5 message
oFel 7]%F.
first kl second k
. third k
msgl —» ‘ A | 1: msg2 —» | B
11:msg3 "
21:msg5 4
.2: msgd —» [c
fourth k fifth k
2.2: msgb
4
sixth k
:D
2.8 communication diagramof] oSt of| A] <.
name of owning element
frame heading enclosing namespace diagram frame
diagram kind ’
N ¥ LA
interaction Online Bookshop)
:Inventory
guard
message f
5 2.3 [order complete]:
1.1: search() ;
sequence f update_inventory()
expression iteration lifeline class
1.2 [interested): @M€ name
view_book()
e 1 *: find_books() —
ifeline b: Book
—_— - [
\-—;>- :Online
Bookshop
—_—=

1.3 [decided to buy]: i,- li
add_to_cart() fetine

RN selector
/

N
2.2 [not empty(cart)): 2.1: get_books()
make_order()

2: checkout()

sc[cus?omer]:
Shopping Cart

sequence
expression :Order <
lifeline

© uml-diagrams.org

4.2. State Machine Diagram

4.2.1. State Machine Diagram

1. State Machine Diagram

State Machine Diagram(3FE] Zo] tfo]o] 73)2 AAHIO] Lol stateZ} transitiono] Q] o] BA] B
BFoh=AE HEFH A Y. =, A2 objecti= T2 o] H Eo] {111 ofF o]HES] OJcf 1 e}
B 3loHA] E=H], o] 7FESHA modeling?h A ¢l.

state machine diagram-& TF23F Z+o] state®} transitiono] S0 2 78 £~ Q]

Oo

35

see opponent [defeatable]

Neutral lost opponent /l Attack
- p —
see opponent [undefeatable] lost opponent receive blow [health = 0)/pray
V V

(Panic \ receive blow (health = 0)/pray -../|‘ Die

o State(RE]): XA|2Hl fobjecto] E7 AFEN-E rounded rectangled} 1 WJ329] textz LFEL.
Z7] AEJQI Initial State= filled black circle2, ZZE AFef <l Final Statew= circled dot2 2 713,

state= passive quality2} active quality® 2=, o]H state’} Passive Qualityo]H 57'—,50] -2
O]HWE Z 7lt}le] = stategl= o] 1, Active Qualityo] ™ 1 stateo]]] 2= FoF X|£Z]o] TFES
FHSIE staterl = A, (ex. 7 vs. Ao R])

Internal Behavior= o]® stated] fjs] R o2] JoJ2 rounded rectangle QFof
Gt 2ol AT

1) do/behavior: 3G stateof] H-FEE= %—O]] =3 E,",—_"— 2l (ex. do/brew coffee). O] active quality

QI stateof] EXfE = Y om, o] L7t B F-ol= state’} He =& Q17 HSR] gFS &
2le.

2) entry/behavior: S| stateZ} actived o] TP E= F2.

3) exit/behavior:)G stateZ| inactived uf ~HE= HL.

EFy
.
oF 4~ Qlad, H AJeFel 4~ 912 Trigger

permitSFALF blockdl= boolean condi-

SIaFE 9] 9] o]Hl E = Trigger/Guard]/Action B2
L transition= H"/W/{]?] L event, guard— transition
tion, action< transition & 4P J o]l

o Transition(719]): statel] HZS SIHEL} oJHIERZ L}
=
O

Internal Transition< state YoJA] reactionS -5-2F5F= transition =2, rounded rectangle QFoj
cFSF 2ol transition o|HIEE ZF4 &}

(Attack h 1 3§ Brewing R
ntry/unshealth sword _ =~ [Interal behavior
gm?’:rg: " T dorbrew coffee
exit/sheath sword — = - :
T coffee pot removed / suspen:
_Enemy swings [distance<3 ft] / dodge =} = =| Internal transitions cuffee %t replaced / resstfmej

2. Composite State
Composite State= A &J&] stateE 7}X|= S oI, c}-21} ZFo] rectangle Hof] U=of 1.

36

[Installation]

finish

error

hardware test
Test Poris

software test

Test
Modules

i Final Test

O

Test
Application)

4.3. Activity Diagram

4.3.1. Activity Diagram

1. Activity Diagram
tial/branched/concurrent$t 2FS €7 LFEFE

decision
\

Activity Diagram(&-5 clo]o] 13)S X|AH o

N,

\
receive
order

37

kS 2ol activityE circle2, control flows SHIHEE 72]= 52 notation© 2 HE7] .

Start node Signal Sending

Single action or behaviour
Signal Receipt

A list of actions or behaviours ol Raclpe

Control flow - sequence flow

Finalflow node flow2| 2% (e.q. OIYH E8 &)

Final activity node

Decision node

Merge node 27H2| flowS OHLIS| flow® THE!

Fork

Join

£3-4 -0 |()()o

—— e e e b)))) s

e decision/merge
o] o
AR A

o fork/join© 2 concurrent flowE FEFE = U=
. final flow nodei= 9]% £2 49 52 tEF.

o signal Bl W ATE LD 5 9]
w7k control-S blockgl.

t

Used to represent the action of sending a signal to an
accepting activity

Used to represent that the signal is received

?

Activityl

e sty) Chemm) - Csctems)

2712] EA| FUElE activitiesS OtLEY flowZ THA!

L,

OS] flowS 27HY SAl £ 7HS P activitiesZ LHs

2. Swimlane

activity diagram-2 o] 2] classol j&]] HE7|5}A] El= F-7F 2L, o]& classE 2 swimlane = 18

A 0] O
T OARTE-

User Registration Subsystem E-mail subsystem

_Complctc validate data Send confirmation
registration form email
[invalid|data) X [valid|data]
~ Click — Activate user
confirmation link

3. Loop

activity diagramoj|A] loopE YENE=

38

=
e Loop Node: loopE SFLFQ node2 FEZ]SF 4~ Q1. setupoll= 7] X4, testo= loopo] HHE
ZAEOIH W), bodyole test} 52) £HY FEE I

_——— e e e e X -
wloops
Iterator = 1 |
Loop
ksetup

|
| Iterator = 1
| —_
| llem% e |
hest
| —
| Iterator
| <10
|

|body

I
| Iterator+ + Do action
Iterator < 10 |

Y

|

|

|

- '
Do action |

loccooooccoccmcommoomoanooaooo00oooacc s

|

|

|

|

|

—_——
Iterator
é >=10
212} Az]

o FExtension Region: collection®] 7| entry(g=)E ZF

cach G AesHe AL L] 415

ofe A& &7 + s =, for

Entry point ;
—---{0TF----- T o >

I

1
1
1
1
I
I
I
|
I
[
-
-
]
-
[
[
I
I
I
1
I

39

