A2REE I (F5E)

Lee Jun Hyeok (wnsx0000@gmail.com)

June 15, 2025

1.1 System Programming e
1.1.1 System Programmingo
112 Co oo e e
1.1.3 Pointer e
1.1.4 POSIX . .
LLE I/O oo
1.2 Memory Representationo L
1.2.1 Memory Representation L L o
1.2.2 C Structure L e
1.2.3 Byte Ordering e
1.2.4 Integer e e
1.2.5 Floating Point
Linking
2.1 ELF . o e
2.1.1 ELF . . . e e
2.1.2 ELF Format e
2.2 Linking
2.2.1 Linking e e e
2.2.2 Symbol Resolution
2.2.3 Relocation.
2.3 Library Linking oL
2.3.1 Library Linking
2.3.2 Library Interpositioning oL L
Process
3.1 Executable Format
3.1.1 Executable Format
3.2 Loading e e e
3.2.1 Loading e
3.2.2 Memory Layout L
3.3 Process ... e
3.3.1 Process . ..o e e
3.3.2 System Call
3.3.3 More Environment oL L
3.4 Process Lifecycle e
3.4.1 Creation and Execution
3.4.2 Termination L e

WO 00 00 ~J O U i i i i

I/0

4.1 T/O . oo
4.1.1 File e
4.1.2 UnixI/O . ..o
413 CsStandard I/O oL

4.2 Pipe and Redirectiono
4.2.1 Pipe . . . o e e
4.2.2 Unixo|A9] Open File 2] e
4.2.3 Redirection e

Shell

5.1 Unix Shell e
5.1.1 Unix Shell e
5.1.2 Builtin Command e e
5.1.3 Variable e
5.1.4 Globbing
5.1.5 Pipeand Redirectiono

Memory Management

6.1 Virtual Address
6.1.1 Virtual Address
6.1.2 MMU e

6.2 Virtual Memory e
6.2.1 Virtual Memory
6.22 VMg oz I

6.3 Paging e e
6.3.1 Page
6.3.2 Page Table e
6.3.3 Page Hit/Fault e

6.4 7]EF Memory & Z|HE e
6.4.1 COW . .
6.4.2 StackT} Memory
6.4.3 Multilevel Page Table

Function

7.1 Function
7.1.1 Stack Manipulation
7.1.2 Stack Frame e

Signal
8.0.1 Signal e
8.0.2 Signal Handler
8.0.3 Nonlocal Jump

Synchronization
9.1 COoNnCUITENCY . .« . v o v vt et e e e e e e
0.1.1 CONCUITENCY . « « v v v e it e et e e e e e e e
9.2 Shared Memory oL
9.2.1 Shared Memory e
9.2.2 Explicitly Shared Memory L
9.3 Raceo s
9.3.1 Synchronization
43
9.3.2 Critical Section
43
9.4 Synchronization®] TF& L L L
9.4.1 Atomic Operation

9.5

9.4.2 Mutexo 45
9.4.3 Semaphore

46
9.44 Deadlock e e e 46
Thread e e 46
9.5.1 Thread e 46
9.5.2 pthread e 47
9.5.3 pthread Synchronization 49

1. 4=

o] W7 x86_ 6404 Zolrte linuxe 7]8to & 3

-

1.1. System Programming

1.1.1. System Programming

System Programming2 TIE softwareofA] AH]|AE A-&5H= 0S, DB, virtualizationZ} Z-2 low-level
software platform= 7fEol= HoFQ].

| —

e

Hardware

Z7] system programmingS assembly2 ZFAE]QX]OF, UNIXO] 53 o]e2E C2 AYE 1T L.
A= C L]o] = C++, go, Rust 62 2% ZFFH. 5& FE assembly 70|42 &S o]dflofl,
Fol gga 5 Qlojof g 9lF 501, 059 booting YTFE-S ofefe} Zro] assembly 5ol A TFH.
ol hardware?} A &5l 755 & g-&ofal, Eok X2 ofsl7] 213kl

Power Initial Kernel
Boot ROM Bootloader Loader

Assembly Assembly Assembly
User System Kernel and
Applications Services Drivers
C, C++, Go, Assembly, Assembly,
Java, Python, C, C++, Rust, C, C++, Rust,
Rust, etc. etc. etc.

1.1.2. C
1. C
CE system programming= 95l A= programming language®]. os kernel:& T2 c2 Eo]g]

e YF A2 ¢ O] Rust & Al=ofl -9 512 AJgh ofdo] ehe] tiAolA]= Zofal §l

o
= -
o
= -

Included
Headers

it}

Pre- "
|
.c source CPP processed Compiled

. .s assembly
.i source

Linker

Object
.o file

Assembler

Executable

External
Libraries

2. C Toolchain
C toolchaind A& 7}56t ¢ X2 78S 7hdls)7] 95k 2T EQo] B9l o] olafe} ZHe LZXE
7H.

1) CPP(C Preprocessor) : FA2]7]o] w2} header fle F7}5)5, define] 48 SAIhs 5]
preprocessingS Foh= BB, o] 2] ¢ mfz 4 ofdS Aol

geco| A= -E §40 2 CPP7IR]F 3 = 2.

2) C Compiler : .i IF¥9 ¢ T E=F machined]] £=221 assembly(.s) ZEZ H2lol= BE. o]
HZ O 2 gssemblerE &3] assembly(.s) TEZ object(.o) files e

gecof A= -S S0 2 assemblyZ7}X] 2l Hlglel 4~ QJEO

3) Assembler : assembly =5 machineoA] A& 715k instruction(7] Aol)2 Blekol= FE. dof
9] compiler toolchaino 4] assembler—= T3] 7]7-‘]]1,4?_7 11 HeluRe ~glg},

gecof| A= ¢ 94422 object file7}R] Gk H3FeF = Q1S

4) Linker : object fileS executable file2 &X[+= 1‘;‘7_ 2F object file5-2] symbol tableL T3, un-

solved symbolof] |G E]= HEo] CFE object file T E}OIE’_EfE]Of] ZEAsI=x] BFolgk. FEoF symbol
referenceE concrete addressz2 H2elgF.

<

¢ S compilee = ofe o -2 SHS F 7 5. 5] -Wall(warning all), -Werror(warning
as er 7”07“)74]] el = 77’] HE ?3,;}.

* -Wall: Turn on all warnings

* -Werror: Treat all warnings as errors

* -02: Turn on moderate optimization

* -g: Include debugging information

* -std=c99: Use the 1999 ISO C Standard

* -0 helloworld: Call the output helloworld

* helloworld.c: Compile the file helloworld.c

olof] u}gl gecc 55 E-§5= compilingS CPP, compiler, assembler, linker2] step O 2 3%

Qg o Y olgo] =2 ()2 A2} step=, compile optionC 2 F& step= X]/’S”Q =
& stepE AFFA] O A0 7] 0 & linker7}x] B o).

3. Object File

object fileS oS} S PG EF}L g, ol7]olA Symbole W FrYS W £l
A

translation unitS 3G object file22 o]l 4~ Q2.

1) Constant Data : B}FX] &= (constant) #1-5 % ol= 2
2) Static Symbol : locally-definedo] 12, globals}A] FHZo] B et HoF ehg X3fsl= B2
3) Locally-defined Global Symbol : globalo]—77’] HLo] Zl5oF1l, S5 translation unit 9Fof] FFSH
HolF ZASE W9} BEE P PE.
4) Unsolved Symbol : globals}A] 20| 7}s8lX] 2k, Gt translation unit 9Fof] LA SH 2l 7F Z X3
2| g ol ohpE A ohe L
windows®] WSL(Window Subsystem for Linux)o]| A& POSIXE X €g A == posixs A QsHA]
ISkt ool el os2 RS Lol Ak 5] BHge] EABLE,

posiZh A7) g AL Tefsjor A, A2d HE WEe S Aok &

1.1.3. Pointer

1. Pointer

Pointer+= memory locationof] TSt address2} a5 locationof A 2] types Eglol= 7HH o2, g
addressof] S5 type 0 2 FHLE = QT2 oF coAl= ofgoF Zo] pointerE {]?jo]] srgsl 4~ 9lo
java, TFO|R SoAl = 17}714?_7 pomter EH/W object referenceZ FAFSF 7]-5S A-E9F.

char *str = &a;
a = *str;

const char *str; // oY locationO| constQl ES

pointer= assemblyZ2E] S2f= HO 2, oA pointeri ofgfo} Zro] o]dlEa]o]o} tf-SH.
Address of x

MOV RAX, 42 v
MOV DWORD [0x1234], RAX
MOV RBX, 0x1234
MOV DWORD [0x1240], RBX

int x = 42;
int *px = &x;

Address of px

null:& pointer go] EAo12] G55 el 7| YER, coflAl&= 05 gle 2 71y, o= T2 £7]3]
Hog ARgolet, AAE F27F 09 AFS JZ2Y o5 YoBE giil -12 273517 3hfd
28

2. Dereferencing

cONA] pointer= *, ->, []of] &3] dereferenced = 1<

olujl pointer+ [[ZX dereference’} 7Fs-ol1l, HE o] &2 A A Y+EF 7F2]7]E= pointerZ A zFet

4 QIX]5, oFd o] ex|g} 2o] A2 pointers} H]FL A2 thE Y. pointert B GEE She
gre i de Yok AR flo|HEE 7YE] Q5. o]l waf pointerel HiES 2§l A2
F4 2.

a = ptrli]

a = x(ptr + i)

char arr[] = "string";
char arr2[] = arr;

“error: invalid initializer”
char arr[] = "Hello World";
char *ptr = arr;

ptr points to arr[0].

E3F pointero]] = G4/ WS HEal ol pointer] AR FTE F4 S o]FE = A
pointer= A HloJEZF o] H=] o] o] aigt AkmF o] | uef Hlo]EE . %
oo mpE Q-FAS WA5E] 9lel thE EFY 9 pointerE pointero] SgolH eFE HAAZE=,
castingS & °|& HEY T Us-

o

3. Dynamic Allocation
ofg| o} ZFo] dynamic memoryE allocationd}1! freed = Q1.
#include <stdlib.h>

void *malloc(size_t size);
void free(void ptr);

oJuf free()= 5 pointer] 7}, 712717 Y HlOJEE +oh7] gk olof ulat free() o] F ol
pointerof T4 gho] gof Qle B2 sl memory &7Hof ol o] Hlo|EHE gk 5 A H=
A7 7], o]& Dangling Pointer Problemo]2}1l gf.

1.1.4. POSIX

1. POSIX

POSIX(Portable Operating System Interface for UNIX)&= application®} os AFo]ojlA] Q] interfaceZ,
UNIX A 0so412] portabilityE et Q). oju] POSIXE apiZ 7]53fEZ, o] POSIX API
2l &F =, cpu E o0s9]f EE}E]' Q5= HRFo]L} system callo] Gl 4~ 9l o2 unix AlY POSIX
A AEO AL POSINE EZ APLZ Al25}= Ao].

POSIXE library®} shell FE o] 5of tfsl interfaceE 7 LJoF1l, system callo]LF binary format(ex.
ELF)E ZolslA] ¢kS. B2 POSIXOJA ZoJsl= ghrEo] A2 system call:S YLz mfjgs}7]
= 5ld)], of= POSIXF} oso] tht apil walstel HFelsalg.

POSIX APIE &§3] ZE& 51“'“}’3‘7 COFE A2 H oA & sfjgt T EE recompilesto] HFZ HPA]Z
T U2 G e POSIXE | Yehctal s e HAZ cpu?t E}Ez:} T ApoflA]o] 240 1 9 5}%]
GOl compile ThA] SJoF APAZ - U2,

POSIX X]/“EWO;’]H,_ ¢ libraryof]A] POSIX APIE F&gF. o]uf c¢ standard library2} ¥H POSIX
functionS HA|E= HEo] Exfg}.

Applications

POSIX: Library and shell interface

ﬂ

OS Kernel (System call)

2. POSIX API 94
POSIXofl= ofefjo} 22 g0 tf2l interfaceso] 250l U5

1) open() : file open.

2) fork() : process fork.

3) connect() : network connection AJ4.
4) exit() : A process EE&.

5) tesetattr() : termmaloi] fst A4 =]3.
6) time() : EA] AlZF vFgt.

.1.5.1/0

C9} POSIXo4] 2] I/O *]a]-& opH }.

1. Stream
POSIXOJA= file FEJO] streamZ X QEl streamS XFE G o] FILE*o]1l, B E POSIX process=
stdin(0), stdout(1), stderr(2) stream(file)©] defaultZ2 F&f U=

stdout© &2 ZeSF mli= £8 WuE ALgoh=y, U7 A7 flushopd H]REZX]o]B2 EX A7k
L e i o o i i ﬂusho}L Ao 2 E26 stdout O EE gLt Zgo] ofd OFE,I]/(J Ziz
& 2ok o2z} Fif e 4k gt *’Xflﬁ H 7] of] Lfﬁx} o ALl Qs BHH stderr=
H;_lge}; § o}Xl of vpE spEo]]9k oo upef tjHjZjoli ZIg et oj2lE EFd o stderrE
A ° =

2. 1/0 §5 oA
C9F POSIXE T}9Fst 1/0
HE A5,

0

ol

&5 Al

oK
K

T YR N2 F. o] g5 stdio.ho] E3H

1) int puts(const char *s) : s Boj NFEAE F7F61o] stdouto]] &8¢l
2) int fputs(const char *s, FILE *fp) : s& &9l WYEXE F7FoFA stream fpof] &8 g

3) int printf(const char *format, ...) : formatS stdoutof] &2 ¢ 1 2]] 7]29] conversionS EgFet
QL= formatting BE3 7 YL, FEE EAHO] 72 VI,

4) int fprintf(FILE *fp, const char *format, ...) : format-& stream fpol] &

ok

. =8H 2219 &5

ukals},

5) char *gets(char *s) : stdinoll 4 ¢12]9] Zo]o] EALL QLS. 1] QHZ2e HoFgo] ZA
SFO i AFQBIE Ao] HRFER] 92,

6) char *fgets(char *s, int size, FILE *fp) : stream pr]]/('] s& H O size-1 HFo]ETFE o] [ineL
Geiere. ojg) W Eof null F7I5k end of file TL 0 FL nullg WES, H Ao
s(z-]xl-a _A,_) = H]-_g]—o]—

]:]0[!

7) int scanf(const char *format, ...) : format-= stdinoA] EERS. FJFEZH o JHURL conversion

o] A+ .

8) int fscanf(FILE *fp, const char *format, ...) : streamofJA] format5 Y 2EFRS. JFZ o2 ¢JgEroe
conversion®] 7J~& BFalg}.

I/O #2] A& ¥WA-& memory mapped i0E Ahgot= AT}, instruction AEoh= WACR s 4
T)2 o]u] memory mapped ioS ARSI A FAE &85 vra]E ZZSoF SR pointers
g ofor o

1.2. Memory Representation

1.2.1. Memory Representation

memory+= Th o] HIE O] L (syntax)o]1l, ofig HIEHS o] B s &]oh=X5 &dol= AE Y (se-
mantic)& 2IZEGoJoAo] dere] = 4 IEo]oAE memory representationS 5] gk,

1. Word

Word= a5k A|~H] o) A1 2] native integer sizeZ, A|AHJo] 22]sl= Hlo]E]o] 7] thele]. o= A]
28] 9 cpuol SOl 2 AUHE H el BEE AL HAAE vord B FL 1 o
G912 Ho]EE XelsHe Ao] AL 2. o]l Wl memory word®] HTCE o]E FE Gle.
wordZ2+ cpuZ} ¢F Hlof] A g]sl= djoJe] Z7]9] cpu word(A]AH word) X ZEAJSFX]EF, memory bus
O] width?l memory wordT= EX&F. XA|AH O word= widtheF ZTFHE]O] 9111, cpul] wordE register
=719} gelslo] ole.

AT E ol conventiono] TFEF wordof] T3l semanticS Hojsfo] EF F2 o=
2. Word2} Bus

cpul} memoryE EOLF;H:— E}EQ]]OfX4O7 FZ2E olg] 28y ZHE. clock cycle o] 5of 93] cpu
o miRalEe Y AdEH + gl PCH(Platform Controller Hub)E]'_L 5l =171 Z"X] E35l bus
= dAZdH. #77077— PCH tj{l of2] 7]9] bridgeE AH& =], A& o= go]2] B 4517’ PCH
ofLfE A 2lgf.

or2 5F,

e
UO]I

System Memory
Bus Bus
Main
CPU memory
Platform
Controller
Hub
110
Bus (PCH)
Peripherals

Z 2 72l O] A4 GBS o, busi= o] HIE F lineC 2 g5 0] Q. & £°], line
o] 87 bus width-—= SH]E Q. cpu”} H= memory2] word size== memory busQ] widthl. system bus
2F memory bus®] 7|7} Bropof 5 2|57} “370;}}] FAGE LA 2 system busof H7’5H memory
busZF o ZFS 4= =t o] —ro—°77~ PCH %E+= bridge’} 2F3] fetchol= A2 o] $Agh =,
memory=2-2E cpuz GJoJEE 7IA-E o EﬂO]Ef% memory word(memory bus width) ”,_7',—?‘1,7 fetch

=, of'g dlo]ElE<S cpu word widthFFE4] cpu] registerol %1

9] architectured A= caching 5= ©]-5%2 memory word sizeZF cpu word size 2T} ZCF1l 3
=5] 2252 -837] 95 641FOIES] 2 gl erhT B

o

3. Exploring Representation
ofgiel &2 FE 2 B B2 memory representations BFIer 7 5.
o] ZEL HolE Tl FY w4o] HEYS Feigh

#include <stdio.h>

L2
1o

w

A | =
T Q= AAE,

A 22l

void dump_mem(const void *mem, size_t len)

{
const char *buffer = mem;
size_t i;
for(i = 0; i < len; i++)
{
if((i > 0) && (4 % 8 == 0))
{
printf("\n");
+
printf ("%02x ", buffer[i] & Oxff); // & Oxff2 sign extension= 112
3 219
}
if(i > 1)
{
puts("");
}
}
int x = 1923;

dump_mem(x, sizeof(x));

|m
m\l

BER

rr
=
i
>
il
N
ku
>
oo
bl

16315 5 A= 8H]

filo

Uherdl o

2, word 5 H|E %t
1

1.2.2. C Structure

1. C structure
C9 structure(FZ 7])= SFLF o]4F2] primitive type L 2 FAE= HEeF 2fg g o ofge} Zro] Z o]
ol AFEE = QU
struct Mystruct {
int value;
struct Mystruct *next;

struct Mysturct tmp;

struct Mystruct *pc = &tmp;
(*pc) .value;

pc—>value;

2. Alignmnet

structureof Al Z} Bla= WA S36l= A7 E B2 & F425 7IX A B, HaE2 Y (alignment)
H. oju] FEE Qo 2} Hio] Fas o AR P Z7] 2 LHo] Holxof gf. 5J g Al Hl=
3L7Fo] /(7‘77]?57 paddingS &%

ofH Haof gisll, 7 g oz Lpro] WolR|Z] o= FAE ARGl YR tlo]E] RzFo) o=
Z1& Unaligned Accessgfil gF. g2 E o] X AH oA unaligned access+= errorZ 2] 2]%E. E ol ZLo]
7%%0;fﬁfﬂ ol HJo]El= memory word W& fetchE] B2 F7F FHRE] 2ol 7F-¢ of2] 79
word§ fetchgl 5] 55 G PRE AASe S A DR ST} L

1.2.3. Byte Ordering

wordE-2 memoryof 4] HFo]EER 24X =0, Byte Orderingo] 2]l s Hfo]EEo] o]l A2
FER7E AYH. o= osof Ol FLE, ¢ A= I FJEE Tl = jlS.

g E A 2l byte orderingof= big endiand} little endiano] }—X}]oﬂ.
1) Big Endian : @42 2}a]40] Fro] e Ziof FFEL KA A SAF2 R 4]0}

g

2) Little Endian : =2 2fe]4=9] gro] e F4of 2jzFe]= dhA].

0 1 2 3 4 ff

Ox 00 01 7f ff 98303
it Endian: % =
Ox 00 01 7f 98303

1.2.4. Integer

1. Integer EH

signed F4+= 2GS HIE (sign bit) 5 Ao Lo & LY. 2 9] B E(71EF 9I&Z H[E) 7 2T
=2 AL, G P8 HIEL 0, S 28 M (914, wnsignedshe] 45 317]7] 919
¥} 0, 77’ 107 Zle]. oJm] 9] HEQ] B HIEX= MSB(most significant bit)2} 7% 511,
Zs}9] H]E = LSB(least significant bit)2}11 = &F.

= ol %’E¢L‘ Heo] ol E UEYH Heg, S 19] B, 29] B H

ofe] HH]%). BE FLfo] B BFENAE 29) HAE AEF B2, of7]elH Bl HEol

g5l AL gl

a1

BIEZF ZAIAIE, AA =2 ARF Ao Fo& Heehs A o]l

2o
I EE XJE]O}X] O*O}E H. &, F2u gl ARkEe o] 3ol H.

. T
MIEE 3 HHNOT Aeh e f G0} £47F HHES EI]ohe Y 1
Complement Representation) O]E]- st

19] B2 eI o) HE 104522 e o=, ThE BE HE 220 gleiis g2} Sl
29] A BAIFO2 AN, A9 HES] A —2W 412 AFE 4

=
19] Ho e 0& EHSHE dHo] 00...02F 11...1 &7 7}x]o| B2 EebHgk
g & Eof, 32 0011, -3-2 11009].
3. 29] H

Lo
k
I
ke
gl
IS
2

10

ot
o
NS
L
kx
4>

HES F3 HIYNOT G 12 O He 1] Fo9f 247} QHES Fo]eht o
HH(Two’s Complement Representation)o]2F1l gF.

19] B2 EpdH o]RlE 1032 e mj=, ohE B H E 2fe]oj fjsjiA]
20] A EARO R Aleli, 9] HEC] o= —2V 2 AT 5 918,
WAl e SIS Z1A17] wlel 00] 00..02.2 SetA] T,

O

E

rr
Q.

%
o
ol
e,
QL
Y

4. Sign FExtension
29] Ho2 Aol B i H4E o
W 25 H|E7} 2Aps|o] %o 2IFE. o]

S35

sign extensiono] &-§-5]1E12 29] Haol] thgt W W dlgke FUASHA +PH F.

o2 Eof, 00102 0000 0010, 1010 1111 10102 #ZF=.

o] v =go] Ha2 sk Awct o 2 F7o] APl
£ sign extensiono]2l1l g} o]of ula} 29] H-7F Ao 2

1.2.5. Floating Point

Floating Point= floato]Ll double2 HEEE. IEEE 7540 4= ofgje} Zro] o]& g o]3}.

IEEE Standard 754 defines a

If a floating point number is x x 2V, in IEEE 754:
= A number (float) has a 23-bit x and 8-bit y
= A number (double) is 52-bit x and 11-bit y

Each has a one-bit

31 0

float

double [TV X |
63

0
[sign []significand [Jexponent

2. Linking

linking¥} ELFo] djs] o] 23] oot

2.1. ELF

2.1.1. ELF

1. Binary File
binary fileizi= oo} ZE AEo] UG,

1) Relocatable Object File(.o file) : 4|2 C}Z relocatable object fileZ} eFA X executable object fileS
FAE =~ Qe FEI 2 codeQ} datas A= file. SFLFQ] relocatable object file2 SFLFL] 24 A&
ot (.c file)Z TFEO]F].

2) Ezecutable Object File(a.out file) : memoryol EAFE]o] BFZ A= 5+ Q= FEHZ code2l datad
2] %5k file.

3) Shared Object File(.so file) : memoryd] load=] o] load time F= runtimeof dynamicslA] linkd <
Q= EoF FE] 9] relocatable object file.

2. ELF

ELF(Executable and Linking Format)= relocatable object file, executable object file, shared object file
< 5k BEolE HE file format O 2, F2 UNIXAE 0sof|A] E-89}F. ELF executables2]S4 = &
S Qo] ofdje} Ze = 71A] HRE EEe

11

1) 3% objectE Loadslil executedsf= fjof E-§ol= FH
2) g objectE linkol= tjof] g-&ol= FH

ELFE T2 executable2 ELF fileo]2}1] B}

3. ELF Structure
ELF fileo] 7[X]11 Q= f]o]El = sectiond}F segment2 E-gH. =

EejHom L 999,
2) Segment= loader”} S5 ELF file3 loadd}1! executed)7] HoF
ol memory] load=l= TH .

olof] m}e} ELF file2 ofefo} ZHe 2R E 714,

1) ELF header : sfj5 fileo]] tfot FH (endian &)& &gl
2) Segment Table : segmento]] tfj gl X4_.’=i,:_, ZSF5IH, loader”| o] &
3) Section Table : sectionof] tjer HHE EgFolH, linker/| o] &

ELF Header
Segment Table

Sections

Section Table

. ELF file2 27} viewS x]-Yg}.

[e]
1) Section-& linkerZl 35 ELF fileS linkings}7] QJoF JHE ZEH5lD, ELF file YH2o] gloJEE

YHE Lo, ELF fileo] YYE

= 5}.Q 5
= 2

A

2.1.2. ELF Format

ELF fileQ] format2 ofgfje} Z+2.

ELF header

Segment header table
(required for executables)

. text section

.rodata section

.data section

.bss section

.symtab section

.rel.txt section

.rel.data section

.debug section

Section header table

1) ELF header : word size, byte ordering, file type, machine type &

12

2 oot 1

2) Segment header table : segment #¢E HHE 2]7Zol= 2E. page size, segment_J virtual address,

segment size 50| Z]ZE.
3) .text section : code(instruction)E *7Zol= FE.
o

4) .rodata section : non-code data & read only9l A8 XZFel= HE. o& £9], constant, string©|
olo
olo.

5) .data section : initialized global variableS *3ol= ZE.

6) .bss section : uninitialized global variableS *Zol= HE. o] ZFS 7IxX|x] gong A&
FIHE 2fR]s}= o] section tableoTF 1 FJHZ] AZFE. =, bssi= fileoA]] o2 EA51X]
oFro
5=

7) .symtab section : symbol tableS *|Zol= HE.

8) .rel .text section : .text sectiono] TfF relocation FHE =7}
address7} 2. gJHREO] call 4] FA2 Eo] Qli, o] FL& =
2. ST g HAHE KE F 5 Grf FaE Ao o 4
section9] Y H 7} 2-g=.

9) .rel .data section : .data sectiono] tjgF relocation FJH-E Zol= ZE. B data59] address”}
1.

ol . B instructions 9]
Z7FZ] o] relocationo] R 51Z]
Fgo] & =], olnf i

¢

10) .debug section : symbolic debugging= ¢JoF FJHE =3 6l= H2.

11) Section header table : section H& FJHE *3ol= BE. ZF sectiono] tiF offsetd} Z 7|7} =%}
=]

-

l"

2.2. Linking

2.2.1. Linking

1. Linking
Linking2 object fileEZ} & libraryE= 2 ¢Folo] 51Lt9] executableS A4 5= 2174 @, compiler?}
AA AR object fileS AASHH, linker7} o] & E-g35] linkingS 39}

linking2 o} 9} Zro] = 1A 2 L 5 YIS

1) Static Linking : object fileZ} & library HA-E HF L5l 5o = X Q] executableS A4
Sf= HFA] 9] linking.
main.c sum. ¢ Source files
Translators Translators
(cpp, ccl, as) (cpp, ccl, as)
main.o sul.o Separately compiled

l l relocatable object files

[Linker (Id) |

Fully linked executable object file
(contains code and data for all functions
defined inmain.c and sum.c)

prog

2) Dynamic Linking : object fileZ} #& library BFE Zglol= Rl linking Ao FFZ5F 8},
Al A]of] & QSF shared libraryE memory9] loadsF= 2HA] 9] linking.

2. Linker

Linker:= linkingS k= 2L ERJo] . linkero] AFg~2 ofefjel £ 7 71X SH 4] 2] o] o]
ole.

1) Modularity : = 785 ofe] 7jo] 22 fileg = e gk 4 Ql1, library &5 88 7 U5
2) Efficiency : ofH E': HE2 compilesl= Oj4l, YEBF compilesr 5~ OB 2 G879 Eof
libraryE AFEe O, executable} memoryd) HA| 2 S-gol= 2ol 22 g-gef -+~ 9|2

linker&= 241 symbol resolutionS, ©]% relocations Y sF= 702 linkingS 2] 2]}

13

ASHA & local symbol< local variablet= T2 7@ Q. of % 9] local variable2 linking 2 load A]¢] file
memory©] ZA|5}4] ¢3-2-. linker= local variableo] Thsj &2] 23t

3t local variablex} local static variable A2 THETH)|, local variable2 stacko]] #%AFE] 1l local static
variable-2 .bss X .datac] A=,

A The o] ZAISHS 59 local static variable® A% T2 memory 27+ 7HA7A ¥, symbol
tableo|&e. A= thE o]F o= A4 .

we, ofl

e

2.2.2. Symbol Resolution

1. Symbol Resolution

Symbol Resolution2 ZF object fileo] 7}l symbol tableS E3f symbol reference2} symbol definitionS
mappingSh= ZHE Y.

Symbol G, W, Ze5 £ AR, ELF fileo] A= symbol tableo] Efsto] 127 Fefz
symbolE2] o]F, Al 9], A7] & A3k linkerof Al -3l symbol:2 ofgf o} Zro] 37| 2
s 2 9.

1) Global Symbol : E7 moduleo 4] F2oJE 1 T2 modulefAE FXE o &= symbol. & &
staico] oFH &F=2} global variableo] ¢{-=.

2) External Symbol : % moduleo 4] FFZE=d] tFE moduled 4] 2= symbol.

3) Local Symbol : 57 moduleof 4] FZXE]11 35 moduleo 4] 2] El symbol. =, YA 027k &g
= symbol®]. qJ& 9], staticS AFgsf 2= gF2F global variable®] <.

2. Duplicated Symbol 2]

linker= symbol & SF=2f initialized global:Z Strong, uninitialized global:2 WeakZ FGgF. linker=

duplicated symbol (5 215 O 2.2] symbol)ofl T3 o]ef T2 A2l ~Hr], 7 7H L oot 2.

F-2]E QIS linker errorZ} YAYSF.

rule1) o] 719] strong symbole HEE . Z, 5 o1& strong symbole Frpe EAT 5

oz

rule2) strong symbolo] SILF, weak symbolo] &]2] 7ol -2 weak symbolEo] 3l strong symbolS

2ot gl

ruled) weak symbolTh of 2] 7] ¢l -2 ¢lo] &2 Spl-E Elsto] Ln||i= offig symbol:s FZFotct 7 Hk

. ol compilerol we} F34o] Gebd 5 9.

geci= -fno-commono] 7121, o] §410] o] Yo rl rulesol APl 4 072 AelE

strong, weakE 40] AX] @l FeolA H7|oh= Flo] 5. 50| rule29] o)Al strongd} oH

weake] 32 Fo] LHE A9, 2711 rule3s] PG ZF weake] HEF| HFE F5 LHERS 5o

BAZ] SR glof EO FEAS AR 1 727} chErhE A7) o A

2 AESEALE, external global variableS R G)oF = F-2 externS &

FAJoH= Ao] F5&-

—-

0|

taticS £ local

S
H plol o x= foy XX
T "J‘]'E]E lle]——zl—%pe

£
fo0

2.2.3. Relocation

1. Relocation
Reloation& o] 2] object fileg50] 7FR]= ZF section5S &4 SFLFQ] section © 2 BFHE11, ZF object file
of thaf Al F2EF 7FX]= symbol2] FaF HA] memory LIR]of BHA] A2 5= ZHY .

14

Relocatable Object Files Executable Object File

System code -text 0

.data
System data System code

Headers

main ()

main.o .text

sum ()
main () .text

int array[2]={1,2}] - data More system code

System data

sum.o .data

int array[2]={1,2}
.text
.symtab

.debug

N/

Relocation entry—= Q@ HAE 0} ifofJA] B symbolQ] referenceZ} A memory F2

Hhd] E9 el 3 H Q] o] rel. text., rel. data.oj] A3,

2 HaEE

linker relocation2 4§ }FA|qF, loader T3} relocation2 5~ gt linker7} 495 = 2rg-2 A& 2 %=

=
sl 2= 2oL, loader7} 48 5h= 2F Y2 o] & H R ol &3 ff random Hj]S 1%t re

2 W e R,

2.3. Library Linking

2.3.1. Library Linking

loaction table

library linking3hs HHEels oo} Zo] 2713] WAo] 9L,

1. Static Library

Static Library= & object file5-S L1 fileZ §FR]= HFA 2

file)2F1l @F. archives index FJHE Egoll QoA HH]'% ERio] Zlsolctal gF =,
HE object fileS linkingdl= static linkingS 2]-&3F.

libraryS T Tof] 245 ALF SFX] & 07'0 o gio] o HolZ.
cOAIE libc.a(c standard library)2}F libm.a(c math library) 0] U=

addvec.o multvec.o

stdio.h

main.c vector.h Archiver
l l (ar)
Translators l o .
(cpp, ccl, as) libvector.a libc.a Static libraries

Relocatable hain.o addvec.o printf.o and any other
object files modules called by printf.o

| Linker (1d) |

Fully linked

O
prog executable object file

2. Shared Library

© Q5

= 10 &I-

1) link timeofJA1 Q] dynamic linking

link timeolli= object filed]] A ZEE F7Fol= &l symbol tableTF 53¢l

2) load timeof 4] 2] dynamic linking
shared libraryE memroy9]] load$f. linuzof A= ld-linuz.so2l= linkero] 9] +~dJ =17
library(libc.so) 5©] dynamicslA] link%E.

15

A]o]. o] HA] =ZF5F= libmry§ Archive(.a
A4 library2]

linker—= X] & oF obejct fileT} archiveE 22 E] unsolved symbolof] et referenceE& 211 d|GHE]= archive
E linkg}. o]oj] ufzf GHsIA = lz'bmryoy’] B 5l7F BEAISIEH CFA] compiledf|oF 5Fa1, HA] archiveE link
Sol 3 @ APk 2 7 bl Go] £ Egl FHEH0 2 linkers} FHH fileS AT SHIohm],

Shared Libraray~— #2 object file5S load time FE= runtimeo A X 5202 loadsl linkdl=
AlQ]. o] & A FZFoFE libraryE Dynamic Link Library(DLL. .so file)o]2F1l gF. =, dynamic linking

1/, standard c

3) runtimeofJA1 9] dynamic linking
shared libraryE runtimeo] memroy9j] loads}o] &8¢l linuxoAl+= dlopen()o]2l= €2 runtime
of] dynamics}A] linke 4~ <.

main.c vector.h
$ gcc -shared -o libvector.so addvec.c multvec.c

Translators /
(cpp, ccl, as) libc.so

libvector.so

R‘-”Df"t”‘{’e main.o Relocation and symbol
object file table info
| Linker (1d) |
Program
prog
_ libc.so Process
libvector.so
Code and data
Fully linked
, l Dynamic linker (1d-1inux. so) ‘
in memory

memoryofA] shared library—= stackZl heap AFo]oj] xJZHEl.

Kernel I
User stack
(created at runtime)

+—3%rsp

1 (stack
pointer)
Memory-mapped region for
shared libraries

I brk

Run-time heap
(created by malloc)

Read/write data segment
(.data, .bss) Loaded from the
executable file

Read-only code segment
(.init,.text, .rodata)

Unused

2.3.2. Library Interpositioning

Library Interpositioning2 library € &3 AR F9O] $F2 redirectdl= 7] 22, compile
Lt

time, link time, load/runtimeof Al &2 5+ QI&. memory profiling, debugging, security 5= Yol
AL

1) compile time : MR 2]7] 5 gl 2~ FEE ZZ9)
2) link time : linker®] symbol tableS Z2Fel. dl& &1, ofgfe} Zo] _ wrap_malloco] mallocs
HA5HA] B2, malloc2 real malloc O 2 SZ3}7] H.

#ifdef LINKTIME
#include <stdio.h>

void *__real_malloc(size_t size);

#include <stdio.h> void __real_free(void *ptr);

/* malloc wrapper function */

int main(int argc, char* argv[]) void *__wrap_malloc(size_t size)
{ / {
void *ptr = malloc(0x1000); void *ptr = __real_malloc(size); /* Call libc malloc */

printf("malloc() = %p\n", ptr); printf("malloc(%d) = %4p\n", (int)size, ptr);
free(ptr);) return ptr; llbe.so
return 0;
} /* free wrapper function */ void * malloc(int size);

void __wrap_free(void * void free(void* ptr);

{

__real_free(ptr); /* Call libc free */
printf("free(%p)\n", ptr);
}

o) e (==

16

3) load/runtime : dynamz’c linking= &-gsf X&Fel. oJ& 5o, LD_PRELOAD environment variable
ol 2F0] e $HESIE YL - 218

3. Process

3.1. Executable Format

3.1.1. Executable Format

zF Executable(“oy Q])& Ezxecutable Format© 2 X]7Z1E. executable format=> oo Zro] Alaof
_UJ_Q_ —]- X—]E ;1&07-07-

1) programof HQ g} environment
2) program code2} tjjo]E]
3) Z]EF metadataS

ezecutable format© 2= UNIX9] ELF, windows2] PE, mac0OS2] Mach-O 50| $l=.

2Z+719] executable format-& T3] raw memory= A o] A1, ©]E w35 memoryo] EASH

3.2. Loading

3.2.1. Loading

Loading:2 &S 9ol executable E+= libraryS memoryd] &2li= Q. linuzo A= ELF exve-
cutableZ} libraryo] tjsf tjgfz] o= ofaﬂg]. 712 2412 loadingo] S35, o] mFx]aF TAOA] pro-
gram®] A2} 2] Z:& Entry Point2k1 g}

1) kernel(os loader)o] ELF executable®] oJ&] BE2-S memoryo] &d.

2) kernelo] loader(ld-linuz.so)& memoryol 2&.

3) kernel©] loader& S -&3}1, loader+= memoryol] S} HEo] fjjsf of 2] ZFY-S gl
4) loaderZF program @] AJZF X]H 0 2 jumpsl= gF.

F]z 2 erecutable2 memoryd] S 2l= AL AHY9] os loaderQld], os loader”F loadingS 2 %] 25}
7]l & overheadZ} AHA] ©]Z ld-linux.soof 7] o] &JeFS Q]QlsrFal oF.

3.2.2. Memory Layout

1. Memory Layout

executables2 process2A] A2 AP E]7] Q5] memoryof load=E=t], o]uj loadE process2] memory
layouto]] fjaf] erofHZF. fjHEE O] POSIX A]AHIOJA] process2] memory layoutS ofgfloF Zro] ELF
sectiond} QAFoF e E 713

ojof grjj AJAEIo] AL ELF fileof= L ENLFR] &= shared libraryE memoryol] EEFA]Z] 11, Z} section
o] YRIE randomizedst= 52| XelE &-&5F7]+= 0‘- 51|tk o] ol ke Z} section®] A= & Y2,

17

Ox AT (e ol

Process Stack

——————————— t— brk

Data

Text and ROData
(program code)

0x0 (NULL) | Unmapped
1) Unmapped : 7} -2 F4 BEL n]o]Qle. o] ufaf nullo] invalid pointerz2 T2 4 ¢S

2) Text : ELF fileQ] .text7} 12 g5 52 o]af loadero]] &l 9IX7} XA EE= 529 27}
295 2~ glo

3) ROData : ELF file9] .rodata”} 12 %}%.
4) Data : ELF file9] .data”} 102 &

5) BSS : ELF file9] .bssof] g]-&EL BB, oFoji] t}Z A Y fileoA] BSS section& E2] %02
EA5I] &l loading Ao memoryo] &7)

2. Stack/Heap

stack/heap2 B memory F7Fo] growd (Eold) 5= 5. o]of o2t 1 AFo]ofl unmapped F o]
=gk

1) Stack : gF SZo]] MHE local variables A3 8l= stack F-7FC 2, loadero]]3] 74 H.
stackS gl S =] ofzf downwardﬁ(%]—?zi) ety skrl 22 EH Fo]E=g], o] L kernel

o 9oJ3f automaticcl7 HalE. Z}F & —roﬂ EHOH ZEASF= memory RS Stack Frameo]2f1l
st stack frame2 pec, argument, local vamable S LGFSF

Base of Stack System Info

main argv

Saved PC (main)

arguments
function |F----------
called by
main local variables
Top of Stack|-——————————
(Stack Pointer) |

Toward Heap

2) Heap : explicits}A] GGE dynamic memoryE o= F7HC 2, loadero] O] 74 =.

Program Break-2 unmapped@} heap AFo]oj] Ex5lo] heapo] & X HE YEFYl= 749 memory 5
29 kernel2 o] &-£351o] heapol A AFE 7Fsol 7S LFEFY. dynamzc memoryE explicits}A]
gt o i program breako] stack £ 2 520 heap F7Fo] oY

18

main argv

Saved PC (main)

arguments
function (F----------
called by
main local variables
Top of Stac

(Stack Pointer)] [
Toward Heap

Unmapped

—————— T - ----1brk

3.3. Process

3.3.1. Process

1. Process
Processi= 48] =91 program@] instance®]. program©] T3] instruction®] FgFo]2lH, process=
5l instruction}, memory, system 2|25 53 I oFgF

Process Environment= process’| AP == FoF et 4~ Ql= gloJg|ef 473 59 275 02, process

environmentZ-+= system call, file system, szgnal So] 9

UIE

2. Kernel Service

7H*E UNIX processi= cpu®l memory A E FH ol AF§-0l= X8 &2Fol1, A= &5 & E memory
FIFS ZFR] 21 Qo] (memory isolation) TFE processi#"lEf HSE o]g] 2o sFEglo]z o] 2]l
o] Haslil, sfEgo]o] et X2 kernelo] OJofAe +~dH 5 15, 7N processof Al system
callZ kernelQ] services e-ggF.

=2, kernel:2 Supervisor mode(Kernel mode) 2 -&2F5FH memory, file, sSF=glo] ZFx]of tfer 218 2] 9l
2] & =3l5lal, 79 process~= User modeZ =2ZFoFH kernel serviceE ©]-§&¢8F o] 2] kerneloj] 2]5]
A E] = process environmentE Userspace2f 11T gF.

O]
Rl

supervisor mode2} user modeS EE0] Protection Domaino]2}1 ¢

3.3.2. System Call

1. System Call

System Call:2 user modeo 4] A @ == process?} kernel serviceS 2§
interface .

system callZ protection domain AFo]Q] o]&Fo] £3lr]r], o] SLELJo]Z o] z]¢lo] Q35O Z
system callS EZF5l17 H]-go] Bo] &=

2

£ QI 2 kernelo] A|35l=

286__64 linuzof A+ interrupt E+= processor instuctionS &-&3) system call-S SZE5FA H.

2. Invoking System Call

YEFRI O] ofpi= T & A9 argument% registerLf stackol] g1, HAY peE Aot F o g2l AlEF
AYe pe gl 4—%4%‘ o]% otrrF FrEH VLS registero] Y11, Aol peE &9} oY
A= FZopgh o]el] system call:S oFF2F o] F2Fgk.

1) o2&
system call:2 T & (inovke) A]of system call number2} argumentE registerof] ¥il, int 0280, sysenter,

19

ok

syscall 52 instructionS T&¢F. O] cpus protection domains W Z 5l system callof] TFE E%

QIR 2 jumpeF.

2) &

system callo] ZR2E]H HIEIZFS registerol] Y1, iret, sysleave, sysret 52] mstructzona D ZE5} o]&
cpu~= protection domains HZSF1 system callS SE&¢F Yol Y22 jumpel. o]u kernelol user
8] dgo] Gonz B HEE 2 AT o WH-S Hel 4 HoFlry §

oJuf system callo] AF§3l= instructionS processor instruction.© 2, o] processoro] 42191 in-
stuctiono] B2 3FF o] wlaf galal o= QL.

o]HA system callof] goF &3 £HE= EZoF S 7FIXIE2, C library= system callo] tjjgt
wrapper functionsS A-ZF. o] function —g—g oJof] Ha]st TfA-S ths] xJEofeF A ¢l

3.3.3. More Environment

process enviromentZ+= F oJH Z1Eo0] Qli=x] Qo[HZ]. o] L3} kernelo] 2]af *]z]H.

1. Current Working Directory
H-E process+= current working directory(cwd)”} ZA&F. of e} 22 system call = gFE SE5
B YBE oA Y - U

1) chdir() : cwd =] 7%.
2) getcwd() : cwd BF2k
3) getwd() : cwd ¥Fel. S}R]GF HOF AF 9]G] A o] glo] A&l oF H.

2. Environment Variable

HE process+= environment variable2 7}F]. o]= environo]2R= global arrayof] ZJ3FE o] ¢S, ofzjo}
25 Grg T Bl AVE DAL AHE - UG,

1) getenv() : environment variable BF2F.

2) setenv() : environment variable X]7%.

environ2 fork()of 9] EAFE.
char *a = getenv("HOME");

3. File
kernel:l& B-E processoj] jal] stdin, stdout, stderrE file2 &g}

SloflA] A HSFAXIRE ZF file2 file descriptorglil Sh= integer ZF 0.2 FFEEE=T), stdin, stdout, stderr
= 2k2F 0, 1, 29]. FESF ZF file descriptord] o] ZZ read/writeE +3eF JRE o=
ﬁle descriptor<= fork()o]] QJal BAFE] 1, read/write Y X] FH = EAFE. exec()oi]/@] close-on-ezec flag

Z 25} exec() Ao EBAFSFHE TRl A2 processo| A= B2]S 5~ 912, o]n] stdin/std-
out/stderr'f— tr5]z] oFL.

3.4. Process Lifecycle
system call2 &85t proess9] lifecycle2 A X A},

3.4.1. Creation and Execution

1. Creation
7l 0 2 UNIXOJAlE processE TFEE= HFH O 2 fork() system callZHS A-&-%F.

fork()= ol system call:& AR&SF processE ofefjel 22 IS -Fof HAofr, FH (E) process
ofJAJ= child proces®] PIDE BFelsl1l XA (A 2-2) processof A= 05 Ylslgl.

1) M 22 PIDQ} kernel structureS A4 gl
2) A 22 processol gk memory ¥ <GS ek

20

3) AAJSF memory 7| 7]&E process®] HE FHE COW(Copy-on-Write) 2 ZAFEF
4) 5 process —,Zfoi] o5l returngt.

ojuff ¥tz T=&F 7 process 5ol H7F WA AP E=A]

2. Process A& X

fork()E AFE3HA] processE AHAHS wf, 7]Eo] A o] processE FH EE/W/“(Parent Pro-

cess), AZ2 MAE processg AR EZA]A(Child Process)E]-_Z g} HE process= parent processS
/(

ZER| 21, fork()U posiz__spawn()S AE-HTFH child procesk 714,
g

root process = initS PID7F 19] process=2, OSofJA] 22 APE]= process]. processE-2 AHlZZ]
FZE JIREd], 0s YHO] HE processs-2 intit2] child process$.

J[)h
nek

!

To

A
T

el

Mr

3. Execution

fork()2 A2 processE BFEH parent process®l &FFs] wYUoF S A HEE, exec()
system callS AFE3l % programs APl E & + & FE= POSIXOAE posiz__spawn() I
A8 TR

exec() AlY system call:> QIF HY "] Sof ofalA] execl() execv(), execle(), execve(), execlp() 5
ofe] Z[x| 7} EAgk. o]F TZ5FH 7]& process®] imageE A ZE+2 programC] Z1 0 = TjjAjok.

3.4.2. Termination

1. Termination
processZ| terminateEl= A3 ofgljof Zro] 37} 71 gk

1) exit() system callS T&ol= Z-2. o] BFaIZES exit()9] integer argument Y.

2) main()©] returnsl= -2, o]uf BFelZES main()2] integer HFEFZE Y.

3) B4 signal@ +AWSEET] o2 catchh 4] £ 2. ol WEFLE signale] TE 545 9

2. Child Process9] &

child process7} Z2 E]H parent processO A= reaping©] =, 4=
=

B} (reaping) child process”7} &
E] 0] % parent process7} |G child process@] &2 AE|E HYH=E 7

1 ojnjal. 22 A2 ke

parent processi= Sl child process2] system resources HFgoF.
wait() system call:S B3l reapingS e + U2 wait()S SESFH child process?| =22 Wi7pz]

7]} 1, o]oj miaf 2 /‘70” = A]7F deterministico] &,

Orphan Process+= parent process’}F H=] &2 child process®]. parent processZ} Wz £2E]H or-
phan process= kernelo]] OJ3f intit2] child processZ =], 0] reapE. inito] F.Q ZF¢ o] orphan
processS handlingdl= Zo]2f1l gf.

Zombie Process~—= Z2E] X9 parent processo]] 2]l reaping©] Y E]] AL processd]. child proess
£ ZE2 A% zombie process?F H. zombie processi= system resources X"O]-m =3

4.1/0

4.1.1/0
1/09] 3l & ZHAH5] 2ot}

4.1.1. File

1. File

Unizof]A] file:2 BFO]EQ] L}F oI, A2 HFO]ES LJHQl A QoI device, service & 2 A
file2A] 2=,

file2 7 ko] w}a} reqular type, directory, symbolic link, device 5 o] type 2 FE=

1) Regular Type : fJo]E]E Eglol= 7] EZ] Q] FE]9] file. application TFfA] reqular files2 text

Mo

21

file(ASCII, unicode &)3} binary fileZ2 FEE 5+ Y=d], GHASIA L kernel:2 o] 52 728X &S
fileoflA] read/write =91 E7% QX]E Current File Position®]2F1 gF.

2 text fileof Al EOL(End-of-Line)S WEE A O 2 uniz AlY osoAl= LF(\n)E, windows
oAl CRLF(\r \n)& AR

2) Directory : CFZ fileo]] tfet linkE 2 Y file. ZF directory= .2} ..o tjgl linkE 7] EZ=Z 02
ZIR]AL Q& directoryo]] oAl /2R E] AR o= Al AR 7} EAoFL, kernel:& ZF processoj T o]
cwd(current working directory)E 2| gl

fuiell

2. File Descriptor
File Descriptori= E7 processo| 4] open HE]Q] fileS LFENHE integerd]. HEF file descriptorZ=
stdin(0), stdout(1), stderr(2)7}F 1, o] 7|22 02 HE processof s A
3. File Mode
ZF filex2 owner, group, other(Z]E})o] Tisf File Mode2l= Aot FHE 713, o] rwrrwzrwz2} ZHo]
read, write, executeo] T & 97112 mode bit2 HEE. T ofgof Zro] 3HIEX Hojx] 8F4=
hepd 5 L8,

750 (111101000b): rwxr-x——-—

-> User can read, write, execute; group can read and execute

others have no access.

664 (110110100b): rw-rw-r--
-> User and group can read and write, others can read.

4.1.2. Unix I/O

POSIXo] <Jaf F2J5= Uiz 1/00] ta 2ofua.

1. File XZF
oo 2L BHER filed T UL, YT £ 5 2.
1) Opening

open() £ creat() O 2 fileS F + U= o] gF-E2 A 1A 9] file descriptorg HFeFgl.

#include <fcntl.h>
int open(const char *path, int flags, mode t mode);
int creat (const char *path, mode t mode);

flag2 = ofef el Z& A5 A8 4 915 O_CREAT | O_EXCLZ} Zro] HIE ARz} or2 of 2]
flagE X]4gk oJuf O _CREAT | O _EXCL2} Zro] X351 S &56]= system callo]] O]3] file openo]
atomics}A] A 2] E]H, exclusive accessE FHE = Q2.

The flags parameter controls how open() behaves:

* O_RDONLY: Open read-only

* O_WRONLY: Open write-only

* O_RDWR: Open for reading and writing

* O_CREAT: When writing, create the file if it doesn’t exist

* O_EXCL: When creating a file, fail if it already exists (Exclusive)
* O_APPEND: When writing, start at the end of the file

* O_TRUC: When writing, truncate the file to 0 bytes

* O_CLOEXEC: Close this file on exec()

2) Reading/Writing
read() 2 files 9]11, write®Z filed] & 5 =

[e]
read()= B8] raw byte 9]0] AE. oS byte -5 ¥HEISL, BOFO]H 0.2

r

Tl
o

#include <unistd.h>
int read(int fd, void *buffer, size t bytes);

22

1

ok

write() ESF T3] raw byte2 & ZFY el byte & HF2l

#include <unistd.h>
int write(int fd, const void *buffer, size t
bytes);

3) Closing
close() files 25 5+ = E"Qﬂ descriptorE& &-g5F2 11 5FH errorZ} BRAJSF 26 file descriptor—
o]&of thE fileo] o] thA] E&E + U5

#include <unistd.h>
int close (int £d);

4) Current file position X]7%
Iseek() 2 current file positionS X ZE + U=

2. Error /‘?-]E]
uniz I/O G0l A] error7} BHASHH, &gk $F& negative integers
errno2fil Sl= global variableo] ={73FgF. 0],_ errno.hE includedfo] g

[e]
IESF perror(), strerror()E AF§oF] errnodl ti-§E= A 715t HFS stderro]] &8 ol & o

P
if ((bytes = read(fd, buf, sizeof (buf))) < 0)
{
perror ("read"); € read: Input/output error
exit (1) ;

}

if ((bytes = write (fd, buf, sizeof (buf)) < 0)

{
perror ("write"); € write: Input/output error
exit (1) ;

T HEE 9] system callo]| A &= error7} ¥HAYS}HH negative integerE HHelst

4.1.3. C Standard I/0

C standard I/09] tjjs}] rofH I},

c standard I/O9 A E file descriptoro] tieF wrapper?l Stream-S g-§¢F o]= X9l file descriptor
Fspoto] @7 A2, buffering 9] ¢HY-JF HOlJE AF 7 streamsS FILEYS ARk

1. File &
otz o} 7*3 ATEE files 1 YL, o0 & 5 S
1) Opening

fopen(), fdopen()C 2 files Hil streamS YL + QIS fopen()L H<=5] streams Ao},
fdopen ()2 QIxl=2 2] file descriptorg wmppmgOfoi stream-= AJA] el

#include <stdio.h>
FILE *fopen(const char *path, const char *mode);
FILE *fdopen(int fd, const char *mode);

Sl A1 ofls) 2o] moded A F5Hol e & 5 918 o]l truncation2 7] -2 75
< 2ok ¢ standard I/09 A= 7IEX4OE fileZ text file2 FHGdlo] EXFE 2 171 ALg], mode
bE &9 binary file2 FHGold ¢ & 5+ Y& (uniz I/OJ A= R binary ﬁleE HFek)

write= Yol modeo A= 7] 2Z] 02 fileo] £S5} of0 M A4 s}

7}
A
of

23

e "r": reading
e "w'": writing, with truncation

': writing, without truncation (append)
"r+":reading and writing, without truncation
* "w+": reading and writing, with truncation

o o

2) Reading/Writing
fread ()2} fwrite() AR 5] binaryi o] & == QL. item9] sizeQ} P FE X]F el o]& AL £

itemo] 7j5 Hreoral, EOF9] % 02 1Fg)
#include <stdio.h>
size_t fread(void *dest, size_t size, size_t nmemb, FILE *fp);
size_t fwrite(const void *buf, size_t size, size_t nmemb, FILE *fp);

q&h

3) Closing

fclose()E A&l streamS T, ZgFolal 19 file descriptorg& B bufferE A&

2. Error X g

¢ standard /O A= error7} H"/Wo;ffq 0& BF3lSl =, error= EOFQ] 329 EQloF HESIZFS 714
Olol/ E}Ef feof ()& AF&-5Fo] 2] ek streamof 4] EOFZF 24 gi '—XI = SelopAL, ferror()E AFE-oFo]
Z]ZoF stream©f|A] error7} HHHoU_x]E ol &= Q5. 22k EOF ferror7} YAHOH true(non-

zem) Hketolal, BPASER] Gt O false(0)E H]' ek

*int feof (FILE *fp);
*int ferror (FILE *fp);

feof()/ferror()&= EOF/error YA Alojfl] = stream9] statusE 2Folsl= gF9ld], clearerr()=

ELF /erroro] gt statusg 5_7]2]-%7',
*void clearerr (FILE *fp);

3. Buffering
system call:> HJ# Zgjo|ng mE Qzeo] tfel ufi system callE g-§sh= A2 HEEHY.

oo e} ¢ standard I/ONAE read, write ZFH ol diel bufferingS Z-§¢F

1) read A]9] buffering
fread() 502 o} A readd uf, $F Hlof] o 2] HFO]E (full disk block)E ¢]o] bufferof #]%Fgh o]&
HFgloF

B B2k bufferollA] SFA A P
2) write A] 2] buﬁering

furite() &2 2 writeeh o SA] fileo]] 2=], Y7 buffero]] oy Yl-§-S &l FH7F bufferF 7F
= AL flush()felose()E 5 Z5Hd AR fileo] . ool wkeF of] #1o] read furitee]] Aol

24 G4 = 9. fush()= buffero] &5 SA] 27] 9ol Al§sh= gl

int fflush(FILE *fp);

&

POSIX 1/0-& bufferingS e-85Fx] &

4.2. Pipe and Redirection

4.2.1. Pipe

1. Pipe
Pipe= file-like abstraction© 2, file descriptor2 #2]E ™ uniz I/0 g

writes}FH HIZ Zojl 4] &lgF fo]E]-E readT o~ -2
pipe= IPC & 5fL}¢]l. IPC(Interprocess Communication)Z+= pipe, socket, shared memory, signal,
environment variable 50| Zj el

55 92]9] file descriptoro] HEE == 5. 53] stdind} stdoutof] HZ5}o]

ARg-el oFE & Hlo B &

Wl

pipe= redirection<

24

SIE processQ] 28 9] pipe2 HAE CLE processQ] ¢Je oz o7l 2 o &~ QI8 uniz AY 0s9]
shelloflA] |2 A &3}= pipeZ} o] @7 7¢lF.

2. 55 97

il

pipes= O} Zro] pipe() system callS AR A-Fet 5 Uss. pipe()= 7 79 file descriptors A
A]] pipeo]] st read/’wrztee ~offel o~ Q-2 of A HlA] file descmptor% read-onlyo] 1, = H&]
file descriptors= write-only] (stde‘]— stdout 2] —v—k]ﬂ- =Yer)

int pipefd[2], rval, wval = 42;

pipe(pipefd);

write(pipefd[1], &wval, sizeof(wval));
read(pipefd[@], &rval, sizeof(rval));
printf("%d\n", rval);

Output:

42

pipe= G file descriptorZ FHZE= kernel bufferd]. =, read file descriptor—= read pointer& 7}
211, write file descriptori= write pointerg& ZFg. read= bufferofA] g pointer QZ]o] tjo]E]E
221, writes= bufferofl A1 S pointer 9]2]°] HloJE]E 7. o]i= off 17y} Zo] F2FSpR]Tl,
AA 2= o circular queuedtil gF.

///7 7”\\\
pipe‘ fd 0 | Kernel buffer | pipe fd 1
(read) X (write)
N e
writeo]] tfgF open file tableo] ©o]H (7}2]7]E file descriptor7} BF 2¢l.), piped] tjel read A]o]

EOF7} vlghE.

3. Deadlock in Pipe

piped] TSt read/writer= 7]HEZ S 2 block operation®]. =, pipeQ] buffer”} E 2}l O0H write A]of
blockXE] 17, buffer} H]o] QO W read A]of blockHE. 0]07’] EE]-E]- I H O read/writeo] 2 wj7Fx]
AL blockE]E deadlocko] A8 5= . (B2 YYUSHAE deadlocko] ofU 1 T block¥.)

ofefol Zro] fentl() e+ (file control)E 53l pipeS nonblock© 2 X ZFH deadlock-S BFX]eF = ¢l
=. o] 27 nonblock 2 X]H5IH read/write A]f blockE= T]&] negative integer& HF2lsl1l errno
o] EAGAINZF 2|2 H.

#include <fentl.h>

fentl (pipe[0], F_SETFL, O_NONBLOCK) ;
fentl (pipe[l], F_SETFL, O_NONBLOCK) ;

4. Safe Pipe Usage
fork() Aol olefollx] AE el descriptor tableo] BALEE 2 parent2} child7} 2= 5 pipeo] tfoF
file descriptor& 7}X]11 M’—g—

ool w2t obes} o] pipet HIHA A& AL writedl FAAE read BT, reads
= ZoAE writeE Y= Ao] ¢HIE fork()oll ol of'd pipe] FE Eof tigt open ﬁle entry=
Teference count?} ZFZF 1% So]iL}A] E]E 2 pipe’} ©5]X] oL

25

int pipefd[2], pid;
char buf[6];

pipe(pipefd);

if ((pid = fork()) == @) {
’close(pipefd[ﬂ]);‘
write(pipefd[1], "Hello", 6);

} else {
\close(pipefd[1]);\

read(pipefd[@], &buf, 6);

The child process closes the ,and
the parent process closes the

4.2.2. Unixo] A ¢] Open File 37

unizofAl= ofgf e} Zo] descriptor table, open file table, v-node table=- E-§ 35} open fileS #2]l.

Descriptor table Open file table v-node table
[one table per process] [shared by all processes] [shared by all processes]
Parent File A (terminal)
fdo — File access
fd1 —] N —
File size
fd2 File pos .
fd3 refent=2 File type
fd 4 ~| g 7
Child File B (disk)
__——— | File access
fdo —] -
fd1 File pos File size
fd2 refent=2 File type
fd3 = 4
il e |

1. Descriptor Table

Descriptor Tablex> ZF process’} 7[R file descriptor& *]7%6l= tableZ, ZI process= 7J& 2] 9l
descriptor tableZ 7}, Qo] 22 oA} ZFo] file descriptor= open file tableo] gl indexZ, open
fileo]] Tiel ZHY A Q1 -5 Xk

stdin, stdout, stderri= 7] 0 2 terminalZ 7F2]Z.

2. Open File Table

Open File Tables2 open fileo] e metadataE %3 ol= tableZ, processsof tieF global tabled].
current file position(current pointer. cp.), filesystem, disk location, file mode, reference count -5°f
et PRE ZEE

open file table:2 ZF open fileo]] T2t Open File EntryE 7Fg. AFEAF7F file $Fofl Al ofE AR 7 of7]
oA fileZ2 = file(disk), terminal, pipe 50| EAgF. FEol TGt file(disk)o] Tisl A2 TFE open file
entryZF EAe 7 U

reference count+ ol open file entryE F 79 file descriptorZ} ol Y=XE LEFE 1.
reference count?} §LO W SFLFe] fileo AT} file EroliE elZo] BlH e BA} Y.

fork() Aol descriptor tableo] ZAE D2 &Gt open file tableQ] entryE 71E]7] 7] H. =, parent
9O} childE= current file position 5 open file tableo] Z7}X]E= file & JHE F-F5lA H. o]of] ulz}
parent2} child9] read/write’} A2 IS T4 =H.

3. v-node Table

v-node= inode 5of] gjoF abstractionO 2, HE EF9] fileS FEZ o2 Xa]s}7] 9ol A,

v-nodeZ} ZA}3FSF= inode= A disko]] Tl metadata s EEFSF.

4.2.3. Redirection

26

dup()Z} dup2()E 2873 file descriptorg ZAFeF = Qlal, o] & &85 redirections F+de = U=

#include <unistd.h>
int dup (int fd);
int dup2(int oldfd, int newfd);

dup()= QIxF2 YL file descriptorg EALS) AZ2-2(CIE H59]) file descriptorg BFalgl o]uj file
descriptordF E/(]-WF AHolB 2 gt file descriptor£L = open file entryE 7] 7.

dup?() = A g2 ZEFSE file descriptor@] open file entryE F BHAZ X"HOF file descriptorof] &
AFel = ’j?’XZHE ZFASF file descriptorZF o1®H open file entryE 7}2]7]31 UIACHH, 7]&E9] 9_1730]
go{xlﬂ A2 open file entyrZ ZFe]Z]A] H. ofelli= 1 A Y.

int fd;
fd = open("output.txt", O_WRONLY|O_CREAT, 0666);

dup2(fd, 1);
close(fd);

puts("Redirected output!");

shell commandofA] A-§-3]= pipe(])= oFef el Zro] #EE. =, stdin¥} stdout= pipeo]] tiF open file
table2 redirectiongt.

Descriptor table Open file table v-node table
[one table per process] [shared by all processes] [shared by all processes]
Parent PIPE(read)
fdo File access
fd1l File pos File size
fd2 -
fd3 refent=1 File type
fd 4 : E
. PIPE(write)
o Child] File access
fd1 File pos File size
:gg refcnt=1 ile 'fype
fd4

5. Shell

5.1. Unix Shell

5.1.1. Unix Shell

1. Shell

Uniz Shell2 uniz Z|F o0so] djeF primary user interfacel. shello]] gjsjAil= ofgjof Zro] = o2
A ZFSF &~ o] O

o1 =2 T RI-

1) Interactive Shell : shell:2 interactiveds}7] prompt—a— o]glsl 7 =A] HaJel. EoF command He
et a&4& gHHol7] 9]5] alias, history 59 7|65 A58

2) Programming Environment : shell: variable, loop, procedure, exception 5= X]-&5lH prgramming
environment2 X 7|53}

2. Word®2} Statement

shell-& %7*2,;7 string= whitespaces T2 U==g], LpH o ZF stringS Word2Fal &F. command
ojj el A HA word= S command’} o]H ZQIX]E LFEIY. whitespaces T2HEL LA =2
escapeg_} £ olo,

27

shell script YoJA] Statement= ©]Z command HIZ C}FS2E] newline/;/& 77]—X]_J HBEol shell:2
shell script& statement T2 parsing$t =, ZI statement”} ofgf|} ZHL 7] &7 Sof] o]EH Ao
&of=X] Tel

1) variable assignment

2) builtin command

3) control statement(ex. if, while)
4) external program

5.1.2. Builtin Command

Builtin Command~= shell WFE o ZFEl command®]. oo} 22 o] 22 shellof A= builtin com-
mandS g3}
1) efficiency. oH fork()o}al exec()of= F1:S H]-E-0] Ho| .

2) shell®] internal stateE 7 ofoF &F. O}EH_?—]- Zo] fork()eF & 2GS
HIA] 7] o] 8-2(cde= HAZ builtin command°7,),

g
1)
N
iy,

7} shello]

current directory: /home/user

exec()
o current directory: /home/user/test

builtin commandZF oFH External Command+= fork()2} exec()S &5 gk

fork()

5.1.3. Variable

1. Variable
shello 4] variables2 string®]. ESF variable2 globalo] B2 FOJE]= il HIZ VAR=value &
HZ g& 2ol g-&ek olh = Y 2= 3 F27F EA6FR] grofoF 3.

shell2 ofgflo} ZF2 special variableS X]{IgF.

The shell recognizes quite a few special variables, including:
* S0: the name of the current executable

* $1-$9: the first 9 arguments to the shell (or a function)

* S#: The number of arguments $1-$9 that are valid

* $* and S@: All of the arguments to the shell (or a function)
 $?: The return value of the previous command

* SI: The process ID of the previous command

* SPS1: The prompt given in interactive use

« SIFS: The input field separator used to determine if an expansion
creates new words

oJu IFS(input field seperator)= string= word2 HeJsl7Lf HEE 2 E2S o AFg5l= 722 2X

2|4 H2l. [FS9] default -2 newline, tab, Hul Bxzlol o2 Eof, argument”} oo} ,757’0]

X]XCS]-‘:’]]E—‘E”; IFS* 2|gsfo] 11 - FAFEE o Edez2 g gl
$ VAR="argl arg2"

$./writeargs SVAR
argl

m[m

?10

arg2

2. Interpolation
variable:2 VAR T ${VAR} O 2 T g5 commandofA] &-8a = Q& ${VAR}2 EXFE &5
= 0] A] AFgole= -7 S yariable o]22 wals] LHsl7] 95t A9,

28

commandx $(command)Z 1 7S TFE commandofA] g8 + =S
3. Environment Variable

Environment E= Environment variable2 key-value 4. BE POSIX processi= environmentZ
ZEZ] 31, parentQ] environmentsS 4<EERS

variable2 7]E 2 0 2 shellof] sl privatedtd], export builtin command& A-E3f environment=2 5

T TT—
=01 globalo}A] ALS-0] ZFs%l. export VARZ] Zo] Z1g %

env commandS AFE3] environment 225 Z8eF 5~ Q]

to

5.1.4. Globbing

Globbing2 shelloflA] fileo]Ll directory ©]E-S pattern matchingS E5f YHZ 02 2| Z5F= 7]H Q.
shellof| Al o2l 2F 2 globbingS |13}

1) *: 9o]o] FR}/HolE ZIX= FAFE I matching. 2 E o] Ho]7F 00]o] &= matching.

2) ?: ¢]ojo] B2I 17§29} matching.

3) [] : I eF HY Yo B2} 1712 matching. (ex. [a-z], [ch])

5.1.5. Pipe and Redirection

olefol 2+ 7| Z 2 pipe(pipe())2F redirection(dup2())S &8 + U=

1) | : pipe.

2) < : stdings X]X‘VOF fileof] HASF.

3) > : stdout-Z X[ZTF fileo] AASF 7] E file Y-§2 2FA]¢E]

4) 2> : stderrg& 1]14—51- fileo]] ?_47;;70;7' olojo] HE 2] 5] o]]%f file descriptor2} HAe 4~ g2,
5) » : stdout= |79l fileof] AT 7] E file Lﬁﬁ 7/]07’] 2L SF.

6) N>&M : dup2(N, M)E $.Z35}9] file descriptorE 51/(]-01 0] E4 commandof tjsf ZHJ5F=1],
o & 59 Is /invalid_dir 2>612F Zro] 2FJe = QIS

pipel] F-2, emdl | emd22} Zro] 2Fgel oju YR A 0 2= pipe() 2 pipeE A o;]- cmdl1, cmd29]
ojst fork()7F == H, dup2()2 ﬁle descmpto r& 9Z¢ o]% exec()OE A % 50”0]-_2 Z=go]
o]glof] A4,

6. Memory Management

6.1. Virtual Address

6.1.1. Virtual Address

1. Address Space

Address Spacei= processoll 4 FEE 5 i 740 ¥el F= gl ofo] et Yol AlxHa]
wfal 2=,

HHFE] K| AH o A] AL-&8]= address spaces= linear address space‘,’:,7 =, 02 E X|ZF5= non-negative
integer setQ. GHSHAE nijo] HIEE AFgslH= F-2 {0,1,---,2" — 1} ¢/,

2. Physical Address vs. Virtual Address
Physical Address(PA)&= memoryof Al Ee]2] 02 A2 &= AA] F£40]11, Virtual Address(VA) B
Logical Address= process T o)A A= 7FFe] F£49].

27 A|AH o A= ZF programsS compile timeo]] PAZF BYE[5. o] A0 =2 of2] program<
EA[memoryol loadsk=to] StAZF Y=, 271 AFEEHE MS-DOS 2+ os= CLI 7]k
oJojA]l EAIZ} S9l-S. windows 5 GUIZ}F S536lH multiprogramming] QA o] M7zl VAE
AFgSE7] AJAHS. oAl g HE O] X2 AAH AL VAE AL, YE embedded microcontroller

oF 22 "t ALH A= PAS AHSOR | .

29

|

PAS} VAo] Histe MMUZ} £33},

6.1.2. MMU

MMU(Memory Mangement Unit)«= VAZF PA 7F9 address translationS 5~35l= sFEglo] 2R 2,
cpu o] I3

cpu’t VAE Z&ol 5% —,':l—E'- | FZote g wjnfcy MMU= of'd F45 F7H 712X PA= vl
511, cpure PAE ghg-ofl oA . memory H22 BRG] YAol= 2Fo]HE MMU= 459l
o x]= FIFol F-

MMUE H oA AEHE page tableS -E5] translationS -3}

Main memory

CPU Chip

Virtual address Physical address
(VA) (PA)
CPU MMU 7
8100

NP WNEO
S

Data word

6.2. Virtual Memory

6.2.1. Virtual Memory

1. Virtual Memory
Virtual Memory(VM) F-= Logical Memory~— VAZ 4% Z7F40] memory=, ZF process”| &-§5]
+= memory Y. ¥FH Physical Memory(PM)<= PAZ 4= memory2, 4] sL=go] o2 ZExfs]=
memory .

VME] A1G-2 oS} e ol o] ZAHF-

1) VM& PMHET} o 2 Z7]5 71 4= Yo 82, main memory(PM)2] E2]2Ql
o]= lazy allocation(demand paging) © 2 &=

2) ZF process+= ZFZF & Lot FEf 2] memroy viewgE &

&
3) process H2 2]l memory IS ZIREE o 4 §l

&
X
M
1l
d

w

process7F 7FX[E memory layoutQ] ZSHOJA], ZF process= FZ|| memory spaceol] HZ 7F53lJoF 5},
CFE process2] memoryol {2 4+ glofoF Of_ﬂ, dynamic library= of2] processEO]]O] Ky EoR oy JES
Glolo} B of= B VMe] SJof EF.

RAMO] ZFR] &= physical layout®] SHOJA], Y7 FIL FHEo] E7F5ofoF 6Fil, memory] £
2po] st Sjgro] GalA 9l 4 Uil 2} AILE U o2 2709 RAME J1D 5 9. VIS
ZF programo] o] & physical layoutof4]2] /‘f/—'rj— AHRFS 12folz] s o =& kemelof’]/‘f = oJF
of 5] 122ffoF gF.

30

Virtual Memory(4GB)

Virtual Memory(4GB) \hysica Memory(4GB)

—

@

@

a[qe], aSed

Virtual Memory(4GB/

@

2. VM H 73

VM H 37-& oS 25 ZF processi= memory = Alo] VMol 25l= AL &2 7)ol &2F

3l VAE A8l VMo 7‘410}5#_ oI, MMU= page tableS AF§-olf o VA2 o g = FiZo] PM
7 Sofel J=XE gelgk. PMo Eefef 10 W (page hit) translations T+ & oL, Sofe)
UR] gFoH (page fault) o5 BE-S PMo] ¢ H translations}o] &gk

6.2.2. VM &89 o3 74

VM| g-g-2 ofgjjel Zro] of 2] o)A o] o]F o] ZAjgl.

1. Caching

PM& A[gtE]o] QloB g2 VM-S E3F cachings F-§oFH PMS 85082 AFEE + Q& =, VM
2 damand paging 2 HQSF pageTrS PMoj] £2]11, D8 = pagew= disk2 Y2]l= 2] & £
_&gx‘“’] caching= & gF.

Working Set:& E%] A|7F 7HA FoF X 6F page numberE B2 ek, (Fgfo]Bz2 FE L8 7}
X|Z] 9k) working set-2 locality& L,’-E}LH working set2] 27]7}0] PM_J 7] 3k ZchH localzty7]-
ZF -8 5]9] page fault7]— o BASE Aol 1, PMHE T T page faultZ} o] BHAIGE Al o 2 o]glgr
T A TR -7 thrashingo] BAAAS 5. Thrashinge process®] FA] L AJZFolA] 2F¢
AIZHE T page fault zfa,’ AlZke] B 71 3ts Y ?Zf-

2. Memory Management

ZF process H &2 page tableS g5 2 2 2l memory ES &8 o+ A2
ggol o~ glo L fragmentationS Y 5 A= ZF processF 71Z] pageE
ol mappingsFof process IFo] code/data 75 IHFsHA e + QU5

3. Memory Protection

process H2 ZZ ol memoryS &g
Z7}6lo] o] G713 02 memoryE B

3 PME &7 Z7fo]
=5} physical page

o tx

&F 4= Q17| &= SF]Tt, page tablel] flag bit= permission bitE=
kel] o
=

6.3. Paging

6.3.1. Page

1. Page

Page F= Virtual Pagel= VMOJA] address space§ Helst= el vrHo) Frame E= Physical
Page2 PMojA] address spaceE He]ol= THeJYl. = VMJ/} PM2 Z}ZF page2}F physical page©]2F=
2FH = memoryE LFFO] 7

YA Q1 g A|2HIoA] page2t physical pageo] 2 7] 4KBY. o]t page®} physical page, “12]17
disk 2] £9]°] 271 FUF (FLobA] erehd elo] HHAT.)

page2} physical pages= fully associativeZ mapping®. =, ¥9]2] QX7 pageZ} H2]2] 2]2]9] phys-

ical page2} mappingE 5 =

31

O]
=~

HASIAE pageo]] -&%= A dlo]E+= PMoj Eete} & +% 1 (pageo] physical pageZ} €
%] /U-E,l]g}_ﬂ o]-'); dzskoﬂ o] o O AE o] o O

2. Page Number/Address
Page Number= process?F 7FZ page ZFZFo]] Hoj¥] MG &2 ZF pageE 2517 YgF 5 Q. Page
Address T Page Offseti= B3 page oA 2] 52 $af A-8aHe F49.

cpu’ #aloleE BE FA2E page number@} page addressZ UHE. MMUE VAE page number2} page
offset 02 HaJslo] PAZ H2elg}

page] Z7|7} JKBo] L F4 SHI7F 18F0] £ Z7]o] Yl & 21270 £} QLOHE, page hHO] T
= Q54 page offset 0 B 12bit7F L RSF 519 12bitE A|e]oF L} X] bit= page number2 A-g-E
ol& 59, pagel] Z 7|7} JKBo]1l F& SFLEZF 1byteQl 32bit systemof A= page numbero] 20bit7}
AEE] 1, page offseto] 12bit7F A-&H.

6.3.2. Page Table

1. Page Table
Page Table2 Z} process & page FJEE ZZSF= tableQ]. processE-S ZFZF 7 2 Q] page tableS
7. page tableQ] QAL page numbero]il, 1 -2 PTEY.

2. Page Table Entry
Page Table Entry(PTE)+= page table®] 2|7 E=(E)¢. PTEE page base address2} flag bit 59 &=
Zo mslst

= ==}

Page Base Address T-= Physical Page Number= 35 pageof] &GH=l physical pagel] AJ&F FA4 9.
physical page number?] bit = PA2]] Zlo]oJA] page addressTHE-2 w). o]uj ':7'0:70]-7]]5
PAS] 3] Z1ol PMe] Z1719] SJaf JaA] 1, VAS] Zol(32bit 5)Sf= o}E 5 913,

Flag Bit= 85 pageo] AFEE LFEN = bit=2, CFQFol ZAE0] Qlx]at 7]%1,42E AR = valid bit=
oSt pageZ} physical memoryol] EAsF=X]E LFEFY]. 10]H Efol= A, 00]H EX512] Q= A Y.

3. PTBR

PTBR(Page Table Base Register)S flG processo] tfel page tabled] tjet PAE *7%d}= register
. page table®] Fxof VME Age == Y OH 2 page tabled] teF PAE X|Z6l= registerE

S e

4. Address Translation

address translation2 CF21} ZF2 135S E5] 4~ H. MMUE= VAE page number2} page address=
2a]dl1l, PTBRoJ A= ii page tableoz’] EE-I_] page numberE QldIAZ PTEE ZH-2. o]&
PTE9] flag bit 55 &Fl5lal a5 physical page numberE page offsetZ} Zglole] PAE Hh#ﬂ

Virtual address
Page table n-1 pp-1 0
base register 4{ Virtual page number (VPN) { Virtual page offset (VPO) ‘
(PTBR)
Page table
Valid Physical page number (PPN)

Physical page table
address for the current
process

Valid bit = 0:
. |
Page not in memory Valid bit=1

(page fault)

m-1 p p-1 0
‘ Physical page number (PPN) l Physical page offset (PPO)

Physical address

6.3.3. Page Hit/Fault

32

pages= Demand Paging = Lazy Allocation® 2 X 2]E. =< HE pageE PMoj Z2]&= tj4l, HasF
pageRS PMof &g]. o]of mjaf o] H pageof H2E mff o5 pageo] -5+ F-20] PMoj EA5FA]
s 7 A5 ol page hit Ei= page faultZ}F TS 5 5.

1. Page Hit

Page Hit(DRAM cache hit)2 page numberE indexZ page tableo]] {ZH=t] PTEZF PMoj EXf5}
= 2 (valid) Y. =, paged]] G ol= FEo] PMo Eete} Qli= AY. o] -7 Hd] translations
Tola 1 AHE cpuolAl YATH H.

! Physical memory

Virtual address Physical page (DRAM)

number or o
Valid disk address o3 PPO
PTEO| 0 null P 7
L o VP4 PP 3
> 1 —
0 «
1 .
0 . "> Virtual memory
0 o S (disk)
] EE A N
Memoryresiden~ s
P s T]
(DRAM) AN VP 3

2. Page Fault
Page Fault(DRAM cache miss)«= page numberE indexZ page tableo]] HZU+E5 PTEZ}F PMoJ
ZAY3}2] h A (invalid). %, pageo] SGal 22o] PMo] S2fe} 7] e A,

page fault7} BAYSIE of o] Fo] <),

1) diskollA] page°] oG == &5 5.

2) ol pageoll free physical pageE e el

2-1) free physical pageZ} UTHH G physical pageE AF-&gF
2-2) free physical pageZl GITFH page replacement& T ¢F. =, victim physical pageE PMOJA] disk
2 2] (swap out), page tableo 4] s physical pageE SFFEFTE pageE invalid A 2]

3) 87 paged] WGFEE LS disko 4] empty physical page®] =& (swap in).

4) page tableo Al R pageE valid *]2]gF.

5) process2] ZFY (instruction)< AAIZFg}.

6) page hito] AL,

Physical memory

[irtoat sadress | omberor (oRAM)
Valid disk address / zs ; PPO
PTEO[0 nL o
1
" — VP4 PP3
0 «
1 oS
0 - X Virtual memory
0 . < |- (disk)
PTE7 1 N Sa. 1

—h.

Memory resident"~ _~~. s

pagetable s v TN
(DRAM) AT

O]
T

o]t} page replacement P72 F-2 T BoA SFEGolH oz FHH]E olFkL @

33

6.4. 7€} Memory & 7|HE
6.4.1. COW

COW(Copy-on-Write)-= & processOl 7] ZEE memoryZ} EA6}H Z} process&-2 memory 3
& read-only2 F256Fal, 0|5 7 processol 4] olsh memory FZH] Hio] writes A|&ZolH o
memory FIF] Ul-§S FAlGlo] A=22 FIhs eohs Z|HE Wl o]F &l fork() ol =
memoryS HoFS - 912,

2, oefo} 22 3Ye A 9.

1) o™ process’F £ PMS F=Xo110 9l

2) oF2 process’ |G PM-S &2 51H & Cf read-only2 2|7 =.

3) 85 PMoj] writes}2]1l 5} protectiono]] Q]3] page faultZ} ZASFTL handler?} T &4.

4) handler& page faultE GHHAIZ] processol] e, s PM 3-7FO] Y-85 ZEAloto] A 22 PM<S
slchst

= O -

5) page faultE YAIAIZ] instructionS CFA] =3¢l

Process 1 Physical Process 2
virtual memory memory virtual memory
- —"""' :l.s(;ﬁ\)xop-write

:d | Write to private

o0 - ™+ copy-on-write

page
Private
copy-on-write.object —————

fork() Alefl page table] WG HALE T St PME 7] 4] Hit), oji= COWZ F2p3).

6.4.2. Stackid} Memory

process9] stack ot VMO2 Ha]d. =, process 44 Alof kernel-> =& stack Z7]7Hg page
tableo]] PM-& SHetsf] read/write”} 7158l 2] ol =5 o] stacko] RFe}1 page fault7} 'FAsIH
A 22 physical pageE ggl

6.4.3. Multilevel Page Table

1. Multilevel Page Table

Multilevel Page Table-2 page table paging® -&F7Foj] XZFol= 7IH Y. =, page tableS of2] 7§29
ZF2 page table2 LF17, level:S Fofslo] Alg 722 g9k

multilevel page tableof A= ZF page tableo]] gjot PMS EQeF mjojct ergtslo] memory AMFES &
A5k multilevelo] oFYH page tableo A= page table FX|E PMoj =8, HF'H multilevel page table
A= level 1 page table?hE PMo] &3 =11, BRE Wt} page table UHg. PAHS U2
ofgllof li= 2-level page tableof 4] 7]}

levelo] T T2 page table 2-level page tabled} FoF fajz2 2}
LAl E-8-5F2, page table®] 275 2| sFok.

0k

o5, VME 2} level] o]

34

Linear address:
40|39

mﬁi]Zis'[gnie€'e%d%diliil|HH\H\H\\HH\H\H\H\\HH\HHH\HHHH\

9 P 9
5 —PHLs table page-directory-

4095 pointer table

page directory

page table

PML4 gl
entry POP o
entry 64bitPD @

H entry 64bitPT @[
0 . 0 >l entry

4K memory page

Page table
base register ——> CR3
(PTBR)

*) 40 bits aligned to a 4-KByte boundary

2. 2-Level Page Table

2-Level Page Table2 27]19] level-S 7}X] = A= 9] page tableQ]. 2-level page tabled]= level 1 page
table(page directory, outer page table)Z} level 2 page table©o] QIS o] HFAlL F 2 32bit AJAH|OJA]
ALgeE ofeflo] He 32bit A|IAET} JKB2] page A7]E 7FFeH A 9.

2-level page tableofJA{+= VA2 page number(20bit)E 10bit%] LFo] ZFZF level 13} level 20f tjf gl
ol A2 RI-ZSF ZFZFS page directory index, page table index2f 1T .

page number page offset
‘ pi | P2 d
10 10 12

level 1 page table2 FA|7F PMoj] 22F2} 9l-2. o] table2 VAQ] A M 10bit ZH-S QlE A= S},
level 2 page table9] frame number& gH(F+&d Ao ufef tlE =+ 07 =)oz gk zF F7]7F JB(PA)
Q1 2" o] HlZEE ZIX B2 F JKBO] A7[& 71y, o] 27]& fmme ofLte] 5775311 Yz]o1B &
Q-E-X-I(ﬂ

level 2 page table2 T Qe wjofct PMoj] A%, o] table2 VAl = HA 10bit ZFS QlE€l A2 511,
Fole= PA9 frame numberE gFO 2 oF. o] tabler Of7}R]| 2 2z} F7]7F 4Bl 210 7)9] glaEE
7|22 & JKBO] F7]E 7}

MMUE VAE dto i TLBE HAFEL, ufjE o] 91 0™ PTBROJ &% PAE AF&3] level 1 page table
o] HZek A HlA] 10bitE g~ level 1 page tableofA] level 2 page table®] PAE ¢-2. o] =
T:HZI]] 10bzta oldI A2 [evel 2 page tabled]A] frame numberE& H-=. o] frame number2} page address
E 07-7;]/(—] _PA Ezol-'

7. Function

7.1. Function

7.1.1. Stack Manipulation

1. ABI
ABI(Application Binary Interface)= binary levelofA] programo] o] BA] A}5 ZF-85]=X] o] T3} spec-
ification .

ABIE cpu instruction set, calling convention, system call, object file format 5= F2JgF. calling

conventionof| A= stacke] &-gof oot y-& = IFESFef.

2. Stack

Stack2 memoryofA] downwardZ (52 addresso| 4] B2 address2) AFefil, push/pop RS B
g9l LIFOZ &&Fol= X272 Y. o] stack(3lG stack frame)Q] 7} o2& (=2 F4)L base
pointer(rbp) 2 7F17] 1, TH 91 (RE F2)E top pointer(rsp) 2 7Fl 7).

35

31 :
Padding

0
< base

«1
«d

top - + pos

Low Addresses

rbp@} rspi= function callo]] mef ofell 2w} go] o= Bl

Stack

Example

stackZ implicits}A] EFgHE. function callZ} automatic variable2 stackS 2-g3%F.

3. Automatic Variable

Automatic Vaiable == Local Variables2 function Y ofJA] 7 O] %] variable .

variable?] #91:& memory locationof] o]&3 Zo] Ao]7|X FX]at, compilero#] stackS reserve
SHER Sl Aol §-

automatic variables o]k 2|5 FXE]7] Hoj SgE=0], A2 sl function = blocko] AJZ}
e gy, o] ol Tt function = blocko] ERE]7] 7FX]E= validg}.

automatic variableo] ol SFg QJ2] 9} A= compilere] Y e]Eof os] AYEEZ T2 J8o=
o 5. ok memoryZ} oFH el registeroliF X FE = QS BE XA §9] F-¢ T 72T
HZEH,

Valid Valid
High- -
int i; Low ,
struct { High Invalid

ig
int x; int y;
} pos;
Low

H11 2 stacke]] it popAlol HoJHE A2 = &1, Teo] AT 2.

7.1.2. Stack Frame

1. Stack Frame
Stack Frame2 5FLL9] function invokationS 9ol FJHE HSFSF= memory block O 2, ofgjo} ZFe
FHE ZGg

36

1) saved processor register.
2) local variable.

3) arguments.

4) PC.

Stack Frame

From previous frame{

For this frame

Current frame

For next frame

Function CallL 7] EZ o2 AZL location 29| jump, function code execution, calling location
oz9 jumpE oJgfler 4~ Ql2. EE 9] J,]-Z‘7° ILSISFO] wariable &g, T CFE function9] ié,
register 5 of 2 2L 1:—] Sol5l=g)], o]8l o= stack fmmeol 27'—9-57. stack frame2] &g
o}2f, function-< 77‘ functwnc S s=xpH o2 SEofal, oF Hof 5l functionTr &8 QIS

stack fmme— SH25t function call®] 7L ofgfjo} Z-2. olof pushdl= I}FEYL prologue, pop L
memory=S ._7"/7’0]-—— _L]-X‘7 S epiloguefl .

1) caller®] PCE stacko]] pushgl.

2) calleeZ} ‘-8 argumentE stacko]] push@rl.
3) calleeE 2Z (jump)et.

4) calleeZ} local variable 55 ¢JeF memoryE
5) callee2] 2F¢jo] —,—0”57

6) calleex= memoryE YFgolil, PC 45 popdll ¥ao] S22 jumpSF

stack frame2] ZF @ &0f tjsf ©] 2w HL.
2. Local Variable

A2 functionof] tjel B-E local variableSL oF Ho] gt functiono] E%H stack2] topHE]
local storageZ TQ5F OFF-L Slgjukyl, o]S o] 7] T H.

olmf funcation9] local variableEo] tjsf &= memory =]5 X-IX}E]X] oFz]at, ZF local variableof]
&l stack top Q. 2EE Q] Aa]E A e)E1 o]E SH&el X

3. Argument

186-64 A AEJOJAIE function T& Alof] & 6702 argumentE registero] X6k, 1 0]%9] ar-
gument=-2 stacko]] 213} o]of fet fiF2o] functiOnO] ZIR]= argument5-2 registero]] e
olmf oFE argument’| 7} Q2 JFEE argumentEL GO0 2 stackoj] pushE.

F712, o]Z function9] HF2FZlE register(rax)of *]7E.

st

g

b

caller= argumentZ stackof] B, calleeE S&8F 0]% callee’} EREH calleri= argument passing
of &= A F-EE clean upet

Caller Callee
Before Call Before Call

Arguments Arguments

Automatic
Variables

37

4. PC
PC(Program Counter)& processorZF @Al Al 521 instruction9] addressg& LEFHE= ZHY.

function call A]o]] caller®] PC ko] stacko]] pushE] 1, ©]& callee’} &%, return AJo] o] PC kS
popll 2] IR 2 jumpet.

8. Signal

8.0.1. Signal

1. Signal
POSIXOJA] Signal-2 asynchronous message=, IPC & sFLIQ]. ZF signal:& HSE 714,

signal-& = processer’F ZFX]= instruction YRJOJA] FERS £~ Q131 HYE signalS proecssE
terminateSFALL, catch®= A, blockX] 7L ignoreE.

signalZi= ofao} 2+ Aol 9.

1) SIGHUP(1) : terminalo] disconnect=]™H <% (signal hang up)
2) SIGINT(2) : ctrl+cE F2H HEH. (signal interrupt)

3) SIGKILL(9) : process & Alof] F4%. catchT = =

4) SIGSEGV/(11) : invalid memory access Aol 44

5) SIGCHLD(17) : child processZ} exiteF Z-2 H4%H.

2. Sending Signal
kill()2 E7 process9 signalS A4 = Q2.

#include <sys/types.h>
#include <signal.h>
int kill(pid_t pid, int sig);

3. Blocking Signal
signal-2 processof Al block®E 4 QL. signalL G signalof] tfjgt handlerZ} o]n] A8l ol ZHL
implicito}7] blockd 4= 911, olef el Zro] sigprocmask()ofl 2l8fl explicits]A] block/unblockd = U=
sigset_t mask, oldmask;
sigemptyset (mask) ;
sigaddmask (mask, SIGCHLD) ;
sigprocmask (SIG_BLOCK, &mask, &oldmask);
// SIGCHLD is blocked here

sigprocmask (SIG_SETMASK, &oldmask, NULL);

// SIGCHLD restored to its state before the block
// If it is unblocked and pending, the handler will run now

signal> ofefje} 22 TR7F EAE.
1) Reliable Signal

2) Real-time Signal : H|o|E & 23
signal2 schedulingo| A &= &&= 4 Q)
Explicit Scheduling}, IPC 5 &-8-6H= Implicit Scheduling® 2 W 4= 913

St 4~ 9l+= signal.
[e) KX
=

w0
@)
=
le)
o,
=
=
[0}
Tlo
o]
<
@]
o
(¢}
@
2
4
<
»
i)
)
rO
w
>
fol
i
o
offt
é&
>
o2t
i)
rr

8.0.2. Signal Handler

1. Signal Handler
HYE signal2 signalo]] Ojs)] H2]= Signal Handlerof] O] Z]2]=. ZF signal-& default handler&
ZIR =4, signalS FA]SFALE, processoj] tfgl stop/continue/terminate 5= T

signal handler= Z 2 = control flow=2A] F2Fg}. o]o] u}2f signalo] oJ$F shared data HZL 7F52

38

SPAIEL, signal:> Hd *l%" o] asynchronousdt2 2 2 FoIA] gls.

2. Signal Handler &

signal handler= functzon o &2 ofgljo} Zro] signald] 4j&] 528 4~ 9I-2. o]uf] SIGKILLI} SIGSTOP
o taiAl= =0 E7Fse o]nf sighandler ti= gl HEOIE] EFQJ O 2, typedef void (*sighan-
dler_t)(int); 2} Z-2. signal()Q] BISIZHE 7] &of EASFE signal handlerl.

sighandler t signal (int signum,
sighandler t handler);

oFels] 22 e signal hander?} HJ5]o] Y], o}E signal()e] handierd] YT 5 U2
1) SIG_IGN : signalS ignoregl.
2) SIG_DFL : default signal handlerg& Z &gl

signal()& A28 ma} default handlerZ 27]2}577-]1/} handler 2 =59] reentrance’} P ==
59] portability ZA|7F el o] o}2f sigaction() 5= 4l /l]-—Q-o]-7]E 5},

3. Signal Reception
signal ZGEro vl opfo} 22 Zejo] 4.

1) PCE stacko] pushg}.
2) signal handler2 jumpdsfo] 23JeF.
3) PCE popsl] returngh.

A2 ofafof -2 FgFof kernel-2 signalS 99

1) kernel mode©l| A user modeZ Jol7l= 3.
2) processZF idle/wait stateoi]/(‘] run state7} T 4¢.
3) blocked signal@] blocko] &&

Ranl

shello]] |3 A] foreground job-2 £A| 2|7} 7F53%td], background job2] A EREE A|H 52 &
9lov 2 user7} o] At & %. olof wz} kernelS background job £& A]9] signal-& A4Sk

8.0.3. Nonlocal Jump

A~
T

Nonlocal JumpE= function callo] U2 Zloj=|= F- SojA o] o] Fgro] BRAlisHH R HEelsl=
HYE AR diz] @k Hlof] jumpSh= A Y. signal:2 o|e] 2 2]k B AFg-E=H], nonlocal jumpi
8 g ARger = QIS = contertE user levelo X %ol SHgof = oF.

ol setimp2} longimp 2 & H

1) int setjmp (jmp__buf j)= longjump O] Zo] o H S ZFE]o], return siteS 2] HoF == g} gt A F 2]
stack frame JHE jmp bufof] A%l ¢IxfZ H-2.

2) woid longjmp(jmp_buf j, int i)3= setjump O] %o TZE 0], io] == grs HFeH o= of1
Jmp__bufol] ZFE AJF O =2 jumpet

o]= ofefje} Zro] setjmp() 9] HFetgl o2 RS U Aelg 5 U

SREE[A] stack frameofl A o7l F-oll= ol X FH = jumpe o+ Yol= eHAI7F J—XHO

39

jmp_buf buf;
interrorl =0;
interror2=1;

void foo(void), bar(void);

int main()
{
switch(setjmp(buf)) {
case 0:
foo();
break;
case 1:

break;
case 2:

break;

default:

exit(0);
}

printf("Detected an errorl condition in foo\n");

printf("Detected an error2 condition in foo\n");

printf("Unknown error condition in foo\n");

/* Deeply nested function foo */
void foo(void)
{
if (errorl)
longjmp(buf, 1);
bar();
}

void bar(void)

{
if (error2)

longjmp(buf, 2);

}

error recovery 5Ol AFE&E 5 QIR]E, o] =

o} g

9. Synchronization

9.1. Concurrency

9.1.1. Concurrency

1. Concurrency

Concurrency= SFLF o]4F9] logical control flowEo] FAJo] EXE 4+ QU E o= Ao, o]uo]
control flowE Concurrent Flow2F1 &} concurrencyE A|&oF= system= ZF process’F dedicated
computerof] O]t logical control flows 7FX]11 E2F5H= A& =] 2] gk

concurrency~= 2] 79| processorE E-§ol= Multiprocessing© 2% FHE 5 YTk, A|7HS o]
7H2] time slot 22 L= context switchingS E3l SFLf(F= T}5)2] processors E-§F= Multi-
taskingC 2 &g £ Q2.

Multitasking

Multiprocessing
X Y

Time

2. Concurrency and Separation
concurrency©l ©JoF dedicated computer model:S concurrent flow”}F 412 unrelatedo]H EZFo]
A5k, related?] 9 BYHF. 2} 32l ol o2k 2] o] AT = Y.

AA
1) Independent, unrelated task : ZF concurrent flow’} =3 Zo]11 B&Ho] gl 2. thed] = 2]5lH

ol

=]
=],
2) Independent, related task : ZF concurrent flow’} €74 ZFQsle-2 HAE] X L]al A2 F-AFGH

ZFo]S Follsl= L. synchronizationo] Qe 4~ 912

3) Cooperating task : Z} concurrent flow7} $HA] Z¢Jste=2 HA % F-2. synchronizationo] Qe
A 0] O
T RET-

40

9.2. Shared Memory

9.2.1. Shared Memory

1. Shared Memory

Shared Memroy= oJ2] concurrent flowo]] tjoF -5 memoryE AF&5l, 5 &9 memoryo] Hjsf
ol £og2x ERIsHE HFAQ]. shared memory—g— gr-g o= HFA] (type) © 2= oo} Zro] 37Fz]|7}
o] o

AR A

1) shared memoryE SFLF2] processQFof Al of 2] 7] thread?} A2 CFE X|7F F9F &-g5l= 72
A2 ZA7F fS

2) shared memoryE SFLFQ] processQFof Al of 2] 7H9] thread?| 22 A|7F E9F E-85)= -2 memory
£ 7|2 o FHopna Hro] Helzl Baska] ghs.

3) shared memoryE A2 CFZ process%ol L A 7F FoF gRgol= F-L. thread IF shared memory
oF 2], process 7F2] shared memoryES —,/ZOHK‘]f ofgj o} ZHe HFA]S BFQ 5o &F,

3-1) fork o] Zof shared mapping= ek
3-2) shm__open() 2 Z named mappmg—g— AP AT ST,
3-3) memory-mapped fileS -5

2. Write Propagation Problem

shared memoryo]] TFE concurrencyoJAl= consistency”} 12 E]o]oF 5F11, o]of Hlst synchroniza-
tionZ el olah o]ofl= timing 52 temporal synchronization@ro] o2} caching 59| spatial
synchronizationT™ z]2]E]o]oF gF.

cache= A= FZ2E 7FH. ESF process5of Hloll caches 3257 % o1, A2 CFE coreE g2}
CFH coreof] el =% F7Fo 2 Eafel7] % &H(local cache). ©]of maf o] H memory 2-Eof writedh
Ayl ZA] RE cacheof] HFYE= 2] FRIZ 0 2 propagated. o]uf local cacheZ 9"—‘1 olctH o] =
CIE processof 7] Ho]zx] oFr=d], o]of ulal Z&HSE A2 instructionS A-E5F] shared memory=
SrgSlHAI L 7 yl-go] BFYE|x] 9S8 4~ Q12 o] & Write Propagation Problemo]2F1l &F.

3. Barrier

temoral synchronizationS register®] ZIF7F memoryo]] 24 =S E%o;}_ﬂ, 1 ZAI7L cacheZ} ofd
memoryj| HWE]%%% HZ}slE= o] Barrierd]. barrier= O]-EHQ,’- Fo zlo %]—L} O] AFS =35}
barrier= SFEgJo]ofA] X YSFE function© 2, gJEE 9] processor= o] &]
1) writegt Wf-§0] 2E coreof7] visibled W7}] AR coreE block¥r.

2) writegF l-go] HE coreof 7] m’sibleﬁ’ W 7FX] HE coreE blockerl.

3) writest H-go] H-E coredll A visibleer Wi7FX] £ locationo] s H-E coreE blockgl.
4) allgt instructiono]] th$F cpu instruction reordemng,i:? oro,

=, ot e Zol &=le.

b
uO]i

Consider:
1. Core CO executes a write for memory location m
2. The write is stored to CO’s L1 cache
3. Core C1issues a barrier for all writes to m
4. CO’s L1 propagates m to CO’s L2
5. CO’s L2 propagates m to the shared L3
6. Core C1 blocks because CQ is writing m
7. Core C1 executes a read for memory location m
8. Clreads mfrom shared L3
fork(), pthread_mutex_lock() & DZE2](POSIXS] BE) synchronization gF5L barrierE EZg}
3},

41

9.2.2. Explicitly Shared Memory

1. Explicitly Shared Memory

process=-2 Implicitly Shared MemoryZ shared library, executable image, kernel memory &= read-
only = =4 =2 7}

Ezplicitly Shared MemoryE 8517 QA= kernelQ] k-2-5 BFofoF &F. POSIXOJAlE= mmap(),
shm__open() system call:S A|-&¢F o]F &5}l shared memoryE explicito}A] AJ4sto] S -
ol

2. mmap()

mmap ()= ZF processof Al memory mapS ZTHY 7 YEE SF= system callY]. o] ZJEZ o2
disko]] EXSF= file=2 memoryof mappingdf &F. mmap() 2.2 shared memoryE
galL WYL ofeo} 2ol 2717 9,

1) fileo]] et memory mapS AJ45F1L, ZF processZF files 91 &

2) memory maps HASF H forkslo] parent2f child7} S5t &7F) ¢l 1 &.

&
o
o
2
4
%9,
5
Jn
Jul

void *mmap (void *start, int len,
int prot, int flags, int fd, int offset)

len bytes
start
(or address
len bytes) chosen by kernel)
offset
(bytes)
0 0
Disk file specified by Process virtual memory

Jiledescrintor £]

#include <sys/mman.h>
void *mmap (void *addr, size_t len, int prot, int flags, int £d,

off_t offset);

mmap()& 919} 2 AFL 7. VR

MG E memory F7H] A|ZF F40]1, ZF parameter]
oJu)= oFefs}t 22 ofuf mappingo] JE o] F ol fileo] AAHAE memory FIHE EAT

1) addr : mappingS A memory F2E X NULLE X]75]H kernelo] erofx] A7

9) len - mapping Al°] AT memory F7He] oIS vho]E Bl A%

3) prot

4) flag : mapping®] £EE or H{E ARIX()2 X4 ¢r. MAP_PRIVATE ¥+ MAP_SHAREDE
Z Sl}e BFEA]] FSOF 511, MAP_READ, MAP_WRITE, MAP_ANONYMOUS(file map
SRl oF5.) 6= AP T Us-

5) fd : mappingS G files AL files mapstA] Q= F-F -15 X9t

6) offset : fileol Al mappingS A|ZFek A& IR & vHFo|E Thol= 2ok

MAP _SHAREDZF X E L fork o] % child7}F 5 memoryE shared memory=2 Z-§8 4 9l
=, COWZE pageZ} BAFE]R] oF2. TS MAP _ANONYMOUSE]33] file o] % shared memory
2097 - 92 ofhe 1 A9

My o

int fd = open("somefile", O_RDWR);
void *mapping = mmap(NULL, 4096,
PROT_READ | PROT_WRITE,
MAP_SHARED, fd, @);
close(fd);

3. shm__open()

42

shm_open()<2 kernel memory buffer FZSH= file descriptor BFEFSHE system call2, file §1°]
shared memoryS &g 5 Q-2 gF

file2 8-g35}9] shared memoryE A4 SFH AFESH= process7F AL computerZF AL EE]o] =
Lﬂﬁol EA5tal, o] F g EolA A 7 5. o8 Yl FH weko A= fileo] HR5FR]
] o

A 0
T OART -

mlo

ftinclude <sys/mman.h>
#tinclude <fcntl.h>

int shm_open(const char *name, int flags, int mode);

shm_open ()2 2t 22 HFE 7F. nameofi= ol shared memoryQ] o]FL &2 FAFHS 2| %Jo}F
1, ¥9]9] process’| |G o]E O &2 shared memorydl {2 + QU o] flag2} mode= open()f
S ofa] shim_open()-2 buffere] GG 2ASHER, firuncate()& 5EH HA memory B2
o .

memory B7F g o] & mmap() o2 AT T Y-S

o] 2 A G E memory= computerZ}F RG] AL shm_unlink()2 o]& A|ASFI H-E processof A
mapping= HNOF AFEFE.

int fd = shm_open("/shm_example", 0 _CREAT | O_RDWR, 0600);
ftruncate(fd, 4096);
void *mapping = mmap(NULL, 4096,
PROT_READ | PROT_WRITE,
MAP_SHARED, fd, @);

executable2 disko]| 7= o] Qltt7}, AP f memory 2 load==4|, o]t mmap()©] E-&E. mmap() S
2 7} section®] Y8 FET 5 gl%_

9.3. Race

9.3.1. Synchronization

1. Race Condition
Race Condition = Races= 3FLf ©]4F9] dependent$F eventE©] EX6}1L, Ao E]R] Q-2 A of ufaf
error state’} T EE= AFglol,

race condition & Ae|51x] Z51Y programo] Ao A epolgel upe} A dHE 4 A,

ol go]Elo] tigt consistencyE HE 7 Us-

Data Race= shared data(shared state)of] 5]l SfLF o]4F2] concurrent flows©] read/writeS A &E 5}
+= race condition®]. ©o]of gt synchronizations F2 ZF flowsof et FZAZ] A& X F5l=
AL ofif1l, B8] ZF flow”} memoryof one-by-one L2 HLSFEZ SF.

2. Synchronization

Synchronization= eventQ] B Al E HAS) race conditionS J45= A ¢
gJo]Efojl ol 2] process/thread 7} %’EL%‘ mjo] 7 H A5 ek

)
U

Sol, 38

t

synchronizationS synchronization object-& critical section®] FAo)] == AoZ 4

9.3.2. Critical Section

1. Critical Section
Critical Section-& race conditiono] BAIer &~ Ql= FE gojoz oF Hof 5[Lf9] control flowTt
Hafol o 2.

critical sectionS shared datao]] HLoF= ZEE Eool= F-27F BF2. shared data2 Q] write2 o2

B29O] F2 critical section©]1l, shared data22] read:= critical sectiono] ofd Z-L7F HF2.

2. Progress Graph

Progress Graph concurrent flow®} critical sectionS modelingsF= graph®l. n7]9] concurrent flow
7} EA5F= 7H-L2 progress graph= nXFglo]1l, critical section ESF nXFgl J O 2 LJEIY, o] HL2
code line, 3IHF L= Aa9].

ofefje} Zro] critical section F A& LEIYS off oFof] 3} HE7} QIO H error7F BHYRS 5 Q= A9
o). oluf ST A= FH G o] Y oL BAEA] GhS. =, progress graphiZ critical
sectionof] oF Blof] 5JLt9] concurrent flowTr EOIHE=XE 2ol 4+ Y2 gt JHS nsrle=E
synchronizations 2]-8-3}oF &F.

T T2
2 5.*.%.%.%.
5.
I3 |3 T T
ale 4|e
|2 I2 T T
3le 3le ° ° ° °
I I T T
+ void setstring(char *str) { 2e 2le o o . .
int index = nstrings; lo lo T
3 strir_lgs[index] = str; llo—>e . . e T le——se—pe—e—me T
nstrings++; T 210 3 1, 413 S 1 T o 2 Iy 3 I & 1y 5 1

9.4. Synchronization®] &

9.4.1. Atomic Operation

1. Atomic Operation
Atomic Operation& oo} Z+2 EZL 7IX]E= operation O 2, SFEY o] ¢l XYL Eo] Lo,
ol 713k thoF Y H].9] synchronization).

1) interrupt®= x| &S
2) A Fof oFE operationo] Ao HYEX] of= ZRE AP H.
3) Aol fully successsPAL, FrFE FoF §l0] failgt.

synchronization2 synchronization objectZ critical section?] F Ao == Ao2 FZHEE=g], syn-
chronization object XFAO] el synchronization ESF z]2]E]o]oF §F. =, synchronization object=
atomic operationo]oJoF gF.

lock BH57] SIS atomic operationo] X1 21E|o]of FT}. SFEO] Ml x| S Wopo} Fch. 7]
3} object WFE9] critical section®] E£A6FH.. Qu]7] glob .

2. Atomic Operation A&
atomic operationS coJA] HEF 02 X RISER] k2. atomic operationS assemblyE AF&SFALL, library
G5 ARG, hernele] A4S Wolo 3

XCHG2} CMPXCHGE= 286 of7]E]=]ojJA] A|-&-6= assembly instruction®]. XCHGE= = operandE
W3el= ¢lrlo]1l, CMPXCHG= Compare and Swap(CAS) 94FC 2 dst@} targeto] ZH0H dst2f
sreg W2ol= ¢el. o]& c¢lol 2 LEFYIH ofefiof 25

void CMPXCHG(int *dst, int *src, int target)
void XCHG(int *dst, int *src) {
{ int temp = *dst;
int temp = *dst;
*dst = *src; if(*dst == target)
* src = temp;
} return XCHG(dst, src);
}

}

44

o1 B8] lockWhS Te- FH}E A A|E clol2 LY oFelo} ZE. g_lock FA locke] 2o
A=A E A Ag(1o]d BElE A, 00]W Hellx] g A.).

lock = 1;
XCHG(&g_lock, &lock);
if(lock == 0)
{
... // critical section

}

lock = 1;

MPXCHG (&g_lock, &lock, 0)
if (lock == 0)

{

... // critical section

}

LOCK-2 atomic 9IS #F5LE 2 2] Yt prefiviz, LOCK XCHGLF LOCK CMPXCHGS} ZHo]
e = g 20 ofF X FHx] Yok atomicHA] W HFL B

= machine instruction®] atomicdt AL o}y.

9.4.2. Mutex

1. Mutex
Muters= mutual exclusions F@ol= 2T EY O] EFZ2 lock unlockS A-&& lockZ} unlock2
mutex stateo] of2l tf2 7] g2Fel

Unlocked Lock Lock mutex immediately
Locked Lock Block until unlocked, then lock
Locked Unlock Unlock mutex immediately

Unlocked Unlock Implementation dependent

I 2 7] o] A2 ynlockedE unlockS = AFgFo] RIS o~ Ql =0, 2§ of wla} CF 2 X ok 14
FA[SL YolZkAL, o9 = @ FF WA 7| == g
mautexol] A= lockT} unlockE critical section 9FE 2 HojA]
2. Condition Variable

Condition Variable2 mutex2} $HA] AF-§5F= variable=, block Z]-§of tjoF condition S *]3SF.
ofee] =) 2ol AGE % S T Al e} blocksh, ol o G £ H 278] A
AFsl blocko] &&. o]ufl condition variableo]] teF =7 & lock/unlock AFo]oj] QlojoF gF. ESF signal-<
Huy] wait 91 flowE 7J& ¥ tA] XS HASH= Z& Wake and Check2l1l sF=4)], o]= spurious
wakeup (YA Z Q1 signal & o] 7jojv= &3 0] S FAek

Ol

FEe] ohte] flowdt FaohEE #

r

Mutex m
ConditionVariable cv
Data d
signaler() {
waiter() { lock m
lock m modify d
while condition on d { signal cv
wait on cv unlock m

take action
unlock m

}

mutex= % 7|38} gro] 121 semaphore@} =AU St.

45

9.4.3. Semaphore

Semaphores= = 79 atomic operation P2} VE 7}X]= integer B2, semaphores= nonnegative
integer= X 7|8FE] 11, Z 7|8} L critical sectionof] WX HZ 7F58F processQ] 74E oJn]gl.
semaphore(s)of] tjet P2} Vo] E2F2 ool 2. P9} V= critical section QHE 2 AFS$F.
P() :s7F 0B 3 s g5 1 9], s7F 00]H 02} A wf7}R] blockEr.
V() : block® flow7} QrlH SFLIE releases] i, Y TlH semaphore -5 1 59

PQO;

. // critical section

VO

9.4.4. Deadlock

Deadlock—,_— = process7]- Al2o] ZpYjo] R E 7S]cfe]1l QoW of
o= el o9& , O oF e Agro] EAE S

flow A: flow B:
lock mutex m@:::::::>_=:::::: lock mutex m1
lock mutex m1 lock mutex m@

do something do something

&
T
m

“pojo] £ w]A]

deadlocko] W1l oS} 2 Z7So] BEso} T
1) Aojx 5JLEQ] resources= mutually exclusived|oF 9F. 2) flowZ} locko] E2]4 Z]tl2]HA] lockS
=1 QlofoF gk 3) lock2 oY flow?} &7] A7IX= wWioks 5= §15. 4) flowE©] circularstA] lock<
Z31 gJojof 3

deadlock=e A 2= timer 55 AF§0A Y7 didet +& %’Xl’ih ofz]o] FHY A= s Eo] E7ls
5} ol deadlock-E E= A ofta} ogloF &F. locko]] Al E 5l deadlockS mjer 4= Q1. lockS
in-orderZ A1, unlock2 reverse orderZ dH EFE=r], B E ﬂowOi]K-] o] & Al7F EO’E]O{ 070{O]: 13
ofelof Zro] =417} tF2H deadlocko] HIAUSY.

ok

Ta
void do_something_on_T1() void do_something_on_T2()
|
Lock(Mutex_A); 3 R Lock(Mutex_B);
Lock(Mutex_B); I Lock(Mutex_A);
2
// Do Something ¥ C 0 . . // Do Something
I1
Unlock(Mutex_B); > . . . Unlock(Mutex_A);
Unlock(Mutex_A); lo I Unlock(Mutex_B);
}
R R |
lo |y L I3

9.5. Thread

9.5.1. Thread

1. Thread
Threads process Y]] logical control flow=, process Tl 22 TF] 9] abstraction]

HE 5l Q54 ot A 22 processE A4 (cooperative process)d||OF @F. o] F-% LP process”7| 2] 2]
IPC(system call. H]-go] F.)7F WQs}1l, ofdl process 7F2] context switiching®] +IHEHHEE Q©H
o =7} Z7] wiZof threadel= U] 2 G2 WIS A threadi= 5% process U[F 21 9]
i slo] 7)ol

SFLEO] processOl] £5l= threadE7]2]= memeory maps B8 conterto= stacko]]ZE=0],
ofe] 7] 9] stacks Z[oIH of 2] 79| control flowgs T+ 7+ S

46

Processes Threads
P1 2 P3
Kernel Kernel Kernel
Stack i T1 Stack
——
Heap Heap Heap
BSS BSS BSS
Data Data Data
Text Text Text

process 29| threadS-2 memory map 5 resourced F-7ol2 2 O W2 H|-§0 2 Q]S ~afel -
5. BIA]TF shared resourced] gt X 2|7} Zicpz & 4~ 3, =S AP} locks 8-§31o] 73 &7
oFoko I &2 thread-unsafeSf.

threads= & task AFo] 9] control AgFo] BIHGF -2, shared datao] Ho] Hel|oF of= F-%, ofLt9]
cpuof Al HIEA] P& = Q= b F2 FEof= G2 ol AFS-HE.
2. Kernel-level Thread vs. User-level Thread

thread modelojl= ofg]|o} Zro] = ZEX]7F Q1.
1) Kernel-level Thread : kernel Y2of] ZA51H kernelo]] 2]l scheduling== thread. kernel:& L}-529]

context blockS ZFX]| 1 §l1l, o]o] glgt context switching BH]-§-2 user-level thread 2Tl =2 kerenl
core7} ofe] ¢l 75 §E AYE 7Y

2) User-level Thread : library 3] o5 £& Y scheduling®]= thread. kernel2 |G threadE
olj5] ok, libmryel 4 A

O &2 threadE X[2]gl. o]of] wlaF context switchingo] & 7}
0, AHGAE flewivleh] schedulingS Pe]El 5+ 918, ol HAR SHEAIHY WYL o8]
Fol B2 5lLt9] thread”} block=H X—]x{] I block= =~ 9l-L.
Process Process
§ ; § 2 i 3
3% 3
- LY V.

User
Kernel

ESche%ulerg’ §
§75" ¢

3. Inter-thread Communication

tl5] shared memoryS EH8ol= Z 2o, pipe, message queue, signal 5-2] Inter-thread Commu-
nlcatlonOl]_X]]O]'. O].— IPC_Q]- %%76 H]‘X’O]X]u]— T:HE__J API= -—QJ'—Q-OHO]: 5;7'.

= =2 O

ofefor o] Aol thread S BEE 45 91

T T [=]
[]
203 310 821 619 1321 1563

x L

9.5.2. pthread

pthreads= POSIX O A] A|-&5l= threading APIZ, threadoj] ojoF A & 2 9f thread synchronization
= XYl o7l 1 ARE S YolE AL

47

R|AH”lof] wlaf cl2 el pthreadE compile/linkingel T -pthreadE 502 2] Z 5l FJoF &

1. Thread Creation
pthread__create() 02 thread& et = <

O]
Ml

o

#include <pthread.h>

int pthread create(pthread t *thread, const pthread attr t *attr,
void *(*start function) (veid *), void *arg)

pthread__create()9] QIXFE= olefo} ZH-S. o]F S &56lH stacks HEQFelH execution context?l concur-
rent flowZF AGH. o= user spaceo]] YHEAL, (linuxe] 7F-%) kernelof]] S 278 o] F
start_functiono] argumentS HYs5lH SZ&3F.

1) thread : A E threadE 73 phtread_t ZEQIE]E 2| ¢l

2) attr : scheduler, detach size 55 HE&Fol= attributeE X3¢ NULLS X]51H default attribute
7F A8 H.
8) start_function : -Gt thread®] flow?} S&e otrF ek A& &°f, oFefjef Zo] 23

o SF A&]
0|82 AT + U2

w

A
g
void *thread main (void *arg) { return NULL; }

4) arg : start_functionof] G argumentE XY EF
& =°f, oteliet Zo] AFs-.
pthread_t thread;
pthread create (&thread, NULL, thread function, NULL);

2. Thread Termination

threadie o9} Zre W02 FaE 5 98,

1) process7} E&2 5.

2) pthread__exzit()o] T&4H.

3) start_functiono] &2 5.

4) TFE thread?} pthread_cancel()S SZ¢f

Zp gy mIRoflA] thread?} detach®| X GFUTHH, F& A9 joink] 7] HZFR] zombie process2f 2=
HH7F .

3. Thread Joining and Detaching

threado]] jgtF joiningZ} detaching]] tjsl &roFHXL.

1) Joining

Joining:2 £ thread”} £2E wj71x] Z]cfe]E = sl= O 2, processQ] wait()ZF -FAFgF ofef2f
Zro] pthread_join()of QX2] SF thread’} £&2E w71R] callerg blocker H, oG thread7} £&
EJH exit statussS retrieved.

Z, thread”} synchronousdl7] A 2] F.

#include <pthread.h>
int pthread join(pthread t thread, void **retval);

2) Detaching

Detaching2- thread’} FRE QS o S F& 02 sfAoles HFol= AY. o] ojef F&E A
off zombie HER7F E]X] 2. thread A A]oj attribute2 X FSIAHLE, pthread_detach()E S&5}o]
detachsFE= = 2] %}

= thread”} asynchronousstA] 2] H.

48

9.5.3. pthread Synchronization

pthreadofA] A|-&-6F= thread synchronizationS 2FoFHEXL.

1. Mutex

mutex= pthread__mutex t F O 2 Z2]Sl pthreadofA] TFE threadofA] locket mutezS unlockdl=
AL errord].

1) mutex initialization
muter—= oo} Zro] PTHREAD MUTEX_INITIALIZERE A-&5= static initializer®}, pthread_m
AR5 mutexo] ol attributeE] F S 4 Q= dynamic initializer7} EX|EF.

#include <pthread.h>

pthread mutex t fastmutex = PTHREAD MUTEX INITIALIZER;

int pthread mutex init (pthread mutex t *mutex,
const pthread mutexattr t *mutexattr);

2) mutex operation
ofefet &2 wFpE R lock/unlocks & = Ql5. o]mf trylock ALFE @ SA] HIeHE =g, o[n] lock
o] A& ¢lom EBUSYE HFalsl1l, locko] e QX @O ™ locks}1l 05 HFatgh

#include <pthread.h>

int pthread mutex lock(pthread mutex t *mutex);

int pthread mutex_trylock(pthread mutex_ t *mutex):;

int pthread mutex_unlock(pthread mutex_ t *mutex);

3) destroying mutex
ofef| et Zro] mutexE AA 5 5. o] locko] H& i mutexrE A AHSH= Z:2 errord].

linuz ol A<= mutexo] tfet FAIZ] AAIE 5ol 2] QFRTHoRE A= Yoifz] ¢S), tRE A AEE
ofJ A= mutexo] Tt FAIA AAE ol #E resources Hhelok.

int pthread mutex destroy(pthread mutex t *mutex);

4) Recursive Mutex
pthread muterofAl= Recursive MutexS Xl 7|22 0 2 1L} mutexo] of
AL -2 unlocko] g2 B2 deadlocko] 42|28}, pthreado A= locko] = H
o]¢ unlocks = Bl of=5& of.
pthread mutex t mutex = PTHREAD MUTEX INTTTALIZER;
pthread mutex lock (&mutex);
pthread_mutex lock (&mutex); € The same lock!

the5] lockTF = W
2 Z1o2 Xalx]

of
Z

2. Condition Variable

pthreadojA] condition variable2 mutex2} SH7] AFESEE condition variable2 pthread cond_t ¥ 0=
=l 2] gl

1) condition variable initialization

condition variablel mutex] E = 7FX] HFH O 2 initializationd 5~ U=

#include <pthread.h>

pthread cond_t cond = PTHREAD COND INITIALIZER;

int pthread cond init (pthread cond_t *cond,
pthread_condattr_t *cond_ attr);

2) waiting
ofgfloF ZFo] condition variableX} mutexE X]F 5l waitsF== &F 4 Q2.

#include <pthread.h>
int pthread cond wait (pthread cond t *cond,

pthread mutex_ t *mutex);

49

tex_init()S

3) signaling
ofg| o} ZFo] wait 91 SF thread F= wait =91 A threado]] Tldl signalS HdEe 4 Q2.
X A= wait 591 thread”} GO H ofF °7E QoLpx] 92 muter= shared stateo]] T} Z-&X]
A€ Aok o
#include <pthread.h>
int pthread cond signal (pthread cond t *cond);
int pthread cond broadcast (pthread cond t *cond);

ol = waiting} signaling= EFol JA] Q.

Slgna I | ng Exa m ple void *block until done(void *ignored) {

pthread mutex lock (&lock) ;
while (!done) {

pthread_cond_wait (&cond, &lock);

extern pthread mutex_t lock;

extern pthread_cond_t cond;)

extern bool done; pthread mutex_unlock (&lock) ;

void signal_done() {
pthread mutex_lock (&lock);
done = true;
pthread mutex_unlock(&lock);
pthread cond_signal (&cond) ;
}

otall= pthread T Sl-S-S HI= 3195l oA 9.

pthread mutex t lock = PTHREAD MUTEX INITIALIZER;
pthread_cond_t cond = PTHREAD COND_INITIALIZER;
bool done;

int main(int argc, char *argvi[]) {
pthread t t;
pthread create (&t, NULL, block until done, NULL);
usleep (100000) ;
signal_done();
pthread join(t, NULL);

return 0;

4) destroying

ofg|o} ZFo] condition variableE AFA|e = Q2. waiting threadoJA] condition variableS AIA]SH=
AL errord].

mutexo AL} Z-o], linuzo A= condition variableo] tfer HA]Z] AIAE +~a5]x] Yr]at(ofE -
Qojifz] gk), oFE AJAHIEAIE condition variableo] teh BAI X AIAE &5 #& resourcegs
vkelol.

#include <pthread.h>
int pthread cond destroy(pthread cond t *cond);

3. Semaphore
posixz semaphore= thread2} preocess HF=of Tj5)] Z-go] 7 54F.

1) semaphore initialization

olg|o} Zro] semaphoreS AJAE = A=, semaphored] UISA]= static initalizer”} 1. pshared”}
true X YEH 55 sempahore= process {Foflie AFgo] 7F5¢F. valueZ= semaphore®] ZZ15FS
4.

#include <semaphore.h>

int sem_init(sem_t *sem, int pshared, unsigned int value);

2) semaphore manipulation

50

wait()2 P()9, post()= V()ol siFE. trywait()2 mutex trylockd FAFSFA, 5 iR F4F
SA] BhelE]=o)], o] HujjsfH FAGAINS Fleksfal, ol gJ&olH 05 Hretgl.

#include <semaphore.h>

int sem wait (sem t *sem);

int sem_trywait (sem_t *sem);

int sem post(sem t *sem);

51

