=2 79 o) (F5T)

Lee Jun Hyeok (wnsx0000@Qgmail.com)

June 7, 2025

L2}
1 PL1
S T
LLL AR
1.1.2 Von Neumann Architecture
1.1.3 program ASY X . ..
1.2 PLOHEEA | . .
1.2.1 PLO HEA . . .
1.3 Syntax and Semantics oL
1.3.1 Syntax Description L
1.3.2 BNF . .
1.3.3 EBNF
1.4 Lexical/Syntax Analysis e
1.4.1 Lexical Analysis
1.4.2 Syntax Analysis
1.4.3 Top-down Parsing e
1.4.4 Bottom-up Parsing
1.4.5 Bottom-up Parsing : LR Parser
1.5 Name, Binding, Scope e
1.5.1 Name o
1.5.2 Variable
1.5.3 Binding
154 Scope
1.6 Data Types o L e
1.6.1 Primitive Data Types L
1.6.2 structured data types
1.6.3 Pointer and Reference Types Lo oo
1.6.4 Optional Type
1.6.5 Type Checking e
1.7 Data Abstraction L
171 ADT . . e
1.8 OO0P . . . e
1.8.1 OOP . . . o
2 PL 2
2.1 CONCUITENCY . . .« v vt e e et e e e e e e
2.1.1 CONCUITENCY .« v v v v e e i e e et e e e e e e e e
2.1.2 Subprogram Level Concurrency o v vt it
2.1.3 Semaphore e
2.1.4 Monitor e e e
2.1.5 Javao A9 Synchronization

N OtWwwwWw

2.2 Exception/Event Handling 32

2.2.1 Exception Handling 32
2.2.2 Exception Handling in C+4+ 33
2.2.3 Exception Handling in Java L 34
2.24 Event Handling 36
2.2.5 Event Handling in Java Lo 36
2.3 Subprogram e e 39
2.3.1 Subprogram e e 39
2.3.2 Parameter Passing Method oo Lo 40
2.3.3 Local Referencing Environment 00000 42
2.3.4 Calling Subprograms Indirectly L L oL 43
2.3.5 Overloading and Generic o 43
2.3.6 Closure 44
2.3.7 Coroutine e 44
2.4 TImplementation of Subprogram 44
2.4.1 TImplementation of Subprogram oL 0oL 45
Functional/Logic PL 48
3.1 Functional/Logic PL e 43
3.1.1 Functional PL 48
3.1.2 Logic PL e 48
71€ 50
4.1 TOY . o 50
4.1.1 TOY . . o e 50

1. PL 1

PL(Programming Language)©] T3l &otx =t

1.1. A=

1.1.1. 2

1. PL FEwvaluation Criteria
PLoj djsl 7l 7]F& ofa] 7}x]7} 511, ofgloF Zro] Readability, Writability, Reliability2]
BN B 2.

CRITERIA

Characteristic READABILITY WRITABILITY RELIABILITY
Simplicity . * o
Orthogonality e ®
Data types . .
Syntax design . .
Support for abstraction .

.

Expressivity

Type checking
Exception handling
Restricted aliasing

o] 7]l A] Orthogonality= 7|4 21 A5 2 EAolal, Y= o]& &gl Bhs + 355 2]

2. PL &7
PL-2 Imperative Language, Functional Language, Logic Language, Object Oriented Language® = J
A ERE BT T UL,

obejct oriented language~= imperative languageE 7|HFO 2 ZEEH 2 ZHZ O g2 imperative2}1l

T g 5 Q2. EE imperative language2} FE 0] gl pure object oriented language EXJeICl
1 ’,ﬁ_l'uj functional language, logic language= imperative language@l= H g o] <.

functional language= program= gF9] 290 2 FZA5E= languageE TeF.

PLE ofiz]aF RZoJl= HTML 52] Markup Language”’} 53¢l &2 o]& languageof i program-
ming 7]&°] YB SR 7| = sl=1], o]# A& Markup-programming Hybrid language2fil gF.
HTML-E hypertextE 9SF markup languaged. L = Bl of2] 4 2], o]ojz], HL]Q =& X9}
ol hypertextS g-§oF1l, o] fIot ZAo] HTMLY. ojujj o]n|z|= Tl 2 e 1], 4 2]= quanti-
zation© 2 LEFLA] H.

3. Programming Environment

Programming Environment= £X E ¢Jo] 7jjd} E—?’-/] Hetel. o]= thd] file system, editor, linker,
compilerBFrO 2 ZAE £ 977 O] ofofel E ZEL Eolgkr 9l

=
UNIX, JBuilder(Java #&), Visual Studio, NetBeans(Java &5)2 Z<& programming environment
5] 9%,

1.1.2. Von Neumann Architecture

1. Von Neumann Architecture

Von Neumann Architectures= ZHHFE[E 9{FRS X 2]5l= cpull, Hlo]E /programo] XZFE memory 2
FLSF= computer architecture=Z, TjEE2 0] ARG FHEE] o)A AL-E3] £ computer architecture®]. cpull
memory~ busZ & E o] fo]E] /programS F I EFS.

== A7l BE AFE cpudf Al SfoF etrls B Ao, o] ulgf cache 55 E-& gk

Memory (stores both instructions and data)

Results_ of Instructions and data
operations

Arithmetic and Control)
logic unit unit ~<—> |nput and output devices

Central processing unit

cpuF memoryZ} THEE 0] 117 memOTin] o] E]2F programo] X 7gE B2, AXLS oAl memory
9 instructions cpu 22 (load) 5131, 7 AAE TFA] memoryol X%} (store)sJoF gF. o]of u}af
von neumann arhitecture2] &2F2 ofgflo} ZFo] }-2 0 & =3t instructions 78] 7]+= PC(Program
Counter) & g-8-3F Fetch-Ezecution(Instruction) Cycle2] BHE Q] o] = stop instruction©] & FE AL},
Alo] (control) 7} user2RE] os2 HolzF ufj7}z] BFEE.
repeat forever
fetch the instruction pointed to by the program counter
increment the program counter to point at the next instruction
decode the instruction
execute the instruction
end repeat

oltf] cpu= control unitZF ALUZ A=, Control Unit T+ Decoder+= opcode 55 &35} in-
structionof] th et decodingS sWol= FEo]1l, ALU(Arithmetic Logic Unit)2 /‘7X7’ RS ool =
H H o]
T o

IESF cpus registerg XL eFgl registerofi= PC, IR 59°] 2. IR(Instruction Register)S instruction
S fetchol|A] =] ZFSl= registerd.

instruction2 SiG instruction®] £H-E ENHE opcodel} o] H4EXFQI operand = 4.

2. Imperative Language

PL-& computer architectureoi] Zz4r]o] /“72]] 2 25 = yon neumann architectureS 7]HFO 2 A A E]

o], variableof] gF= erglslal 1 AElE WG A 7Z— 2k} © 2 3= PLS Imperative Language('d
Zgl olo])al 1 oF. x|FG7FR] AAE g REo] 9% PLE imperative language%.

imperative language= von neumann architectureo]] tfjgF abstractiono]2F1l AJZ2Fe = Q2.

Functional Language($t4d 1o)== F0]7 parametero] 45 Z-gdl= 2 F 2Jo 2 = PL
Q]. 0] &7 9] PLOJ| A= variable, assignment, iteration2 AFE3HA] L. B2 functional languageZ} o2}
248 7}A A5t von neumann architectureo]| A o]of thal] E5] &4 Q) AL 2| YsHA] BaEz dy
FeE2 ZHS.

o & 59, ¢ &L fetch-execution cycleoﬂ w2} imperative language®] 7|2 E&olgty & 4= Q)
assignment (4} 7 U) sum = sum + x - y& 7| Alo] = YEFH ofefet 5. =, load®t A4, store] ¥HE
Eg 2712 Aol RL junpR WEEL), jumpl PCZLE ML Qe 7k & 9.
load r1, sum

~

rr

oS

load r2, x
add r1, r1, r2
load r2, y

sub r1, r1, r2
store sum, ril

1.1.3. program 213 ¥y

PLZ ZFHE program program-S A2 *7"”0]'77 7‘]?__ g o 2= ofgfle} IS AE0] e 5, ©f
Z152 high level language(ex. ¢, python, java 5)& F-dol= BHH Q.

1. Compilation

Compilation2 source language(PL)Z 2} ¥ program-S HHFE[JA 2] HFAIZ = = machine
language= B2 (H A)= 7]H Q. compilationS $~of= ~ATE J]Of‘—:. Compiler2f1 g}.

Wgh o] F ol 24] Aol 75TEE compilatione AF EAA o]FHo] 3.

compilation 51012 MZ} LHE A0 2 ofsfE 2 YL, WS BY HIlE 29T, BHS
Wele a4 2} wol s} AL of f1914-E ik, BHe] B HAFSL, o F B o]
2 H3lsk PLY| EHEF compilation™= &L+ S AR P H. o] PLOJAE EZS Statement,
o]3E Lexeme, S Syntazcfil gF

compilero] E2F I} ofglo] 78yl 7+, o] lexical analyzer2} syntax analyzerS ESF
WA DA, 1 o] F|ACIE AYeHs & WA AR PR 5 90,

o ZAF o2 A WA thAoA] lexical analyzerofAl= statement2] lexeme©] -5-2 oFx] HAFSL1, o]
T syntax analyzero A= statementZ] syntaxo] TF=X] 2lolel. = Hx] 1'3_7'7-‘]]077/(‘] intermediate code
generator+ intermediate code(5{F ZE)& Al o]= machine language 52 7 E0]X]TF ma-
chine(cpu)of] tjsl Z&Z 0= machineo] —'——1,’51—,4?_7 machine language2F= ZFo]7F QL. =, cpuof
AFErglo] intermediate codeE AJAJSFi, ©]% code generatorofA] cpuof BH= machine languages

Gk
Source
program

Lexical
analyzer

Lexical units rj-

iL
0{(ot

Oll

F

['h‘
N

Syntax
analyzer
Intermediate
Symbol code generator Optimization
table and semantic (optional)
analyzer

Intermediate
code

2

Code
generamr

Machine a
language Input data
A/

Computer

!

Results

F7F2, Preprocessor(ZA2]7])& compile 270 AHEE programl. preprocessor instruction-=
program YlEof EAjofr, 7] 220 2 mjF 2 Q].

2. Pure Interpretation

Pure Interpretation-2 PLoj tfjgl ¥1<] glo] Interpretero] ©]J5) interprete(o]d & Ad¥)%= HFA]
. interpreteri= OS 9o A AP EE= £ZE O], programP} cpu(7J2Fo]= 0S) AFo]ofA] &2ol=

virtual machine© 2 AzFel 4~ Qle = nFZ] fetch-execute cycle©] machine language®] A7}
oRel, high level languageoll A == AXE S35

pure interpreter+= portability(]4]4)7 =]k, compilationof v} €4 8. Hgx o AL
languageo]] A-gs7]E= 2 glz]gk, X[ZoJ= PHP, Javascript 5 web script languageofA] &o]
AREE] 2 QlokT g

Source
program

Input data

Interpreter

Results

3. Hybrid Implementation

Hybrid Implementation2 compilationT} pure interpretation®] 7]H-& hybrid2 2}-5-oF HFA] .
high level languageE intermediate codez2 W 3F5l1, o] interpretationo] -&3F.

E3] JavaZl o] BFA]S A-E3%F java A= intermediate codeE byte code2lil dFil, o] & Hdlsl=
byte code interpreter2} runtime system< 550 JVM(Java Virtual Machine)o]2F1l 9F. =, software

- byte code - JVM - OS - cpu] 72X =2 4.

JIT(Just-In-Time)E& byte codeE HFZ interpretedl+= 41, 4al Alof] o]& machine languageZ com-
pilesto] g-g-ol= dHA]¢). o] g 5t o] whEA] AP 4 Uil 5HH, javao A& o] F AFE-B).

Source
program

Y

Lexical
analyzer

Lexical units

Y

Syntax
analyzer

Parse trees

Y

Intermediate
code generator

Intermediate

code
/—Input data

Interpreter

Results

1.2. PL9] 94

1.2.1. PL] A

ol 27}2] PLEY} 1 B FgE gofE AL PLOj tgh genealogy(Z2)= oFfjel £

1957 Fortran | — h‘ FLOW-MATIC
58 Fortran Il —» ALGOL 58

LGOL 60 *APL

62 Fortran V=" 9 CcPL ||

| SNOBOL

ALGOLW

73 Prolog ¢

77 MODULA-2
78 Fortran 77— ’

| 1Y
i ﬂ ARE
‘\P‘

7
o MODULASY I operon \ \ ui(kBASIC\T

90 Fortran 90— Eiffel \| | \Vidual BASIC ¢
\
91 1A

92 AR

93 i

9 elua PHP \ ‘

95 Fortran 95 Ada 95 l ! ﬁbe

96

97 Javascript \

98 \

g; \ ! Python 2.0

o1 Visual Bhuc.ﬁ\ﬂ L

02 \

03 Fortran 2003 \

04 ;Ruby\lc.s Java 5.0

35 Ada 2005 \

6 \ Java 6.0 Python 3.0

07 \

08

o Fortran 2008 I Ruby 1,b C 4.0
\ Java 7.0

10 \

n \\

12 Ada 2012 $Ce50

1 \

14 1 Java 8.0

15 Fortran 2015 Swift

1. FORTRAN

FORTRAN-S IBMOoJA] AJAIet Z]=z2] high level language®]. ©]-= IBMo] AJA]eF ol Zz]e] IBM
104E 7]HFe 2 72592,

FORTRAN2 2] ¥4FS QJoF language 2, 7HESH BH-S 71 9™ compilation 7]EFY].

2. COBOL
COBOL2 business data 2] 2]-E 9JoF language Q.

FORTRAN-2 =2] HRES Q]9 Z1o] A 11, o] business 5 OlA e HJo]E]] g]of jeF @7 7F BFAlls}o]
PEI S

3. ALGOL

o]Z 7JHlo 2 C, Pascal 5°] 5%

E35] ALGOL 68+= ¢4 H-g PLO] HIEQl ALGOL 682 orthogonal designg A& =, FA9]
FY QA4F AFS) o]F Xgolo] AFESFEE 2. HE imperative language= ALGOL 68 =
ALGOL 609] 93FS "gr2. C2} Pascal 2= ALGOL 6828 E] HZE X0l Pascalo] & ©f Ho]
Hs

4. Basic

Basic& Y1l H2gof F=oF interpreter YA 9] W8-8 language ¥

o],
Basics2 o] & £I& GUI 78S AJ-&¢F VB(Visual Basic) 02 -8 E Y-S, EoF g Lfol7} object ori-
ented programming= X]Ysl= VB.NETEZ 5332

5. Pascal

Pascal:& Tkl Ed g o] F=5F ALGOL 7]BHe] -8-§ language .

Ce} Pascal 27 ALGOLOJA] 72l f=0], orufl pascalo] B -PAIRAR]TF Uniz] ARE, Bl £ 5]
ofsf 2000 R E]= c7F B A,

6. Prolog

Prolog= H]ZX}A 0l YIS &H-g35l= logical programming language .

7. Lisp

Lisp= 29 functional language2, AT B H4F 55 95 prEol {2

8. Smalltalk

Smalltalk—= pure obeject oriented language®, object oriented language®] A]Z Q.

Smalltalko] E%Fo]] 9]5] C++, ©]% java’} 5% <. E ol c++32F Pascal-S 7]FFO 2 pythono] 5
Zl-ol-.

9. Ada

Adas= DoDZF BhE,] E A[AH]ofA2] QR {12]4 o 52t language ?].
DoD(Department of Defense. =2,)ofJA] TR O] program-2 YH|TIE programo] 1. o] afzf
DoD+= Pascal:s 2Fgofo] QL] E programs 918t ¢1o]2 AdaE AJA3).

10. C++

C++-2 imperative language(C) 2 A1 2] 7] 53} object oriented language(Smalltalk) 241 9] 7] 55 A
5} language d].

11. Java

Java= C++5 7]8Fo 2 ol=5o]Z] imperative-based object Oriented language Q]

orof] HaJot AR E Java= byte codeE &3 portabilityE &-ggF. o] o]HA] portability2} inter-
pretationof] TF-E H]-E-S THHFF Z o] JavaQ] designo]] IFE E,—%% olY. o]® language intermediate
codeE 8] 9199 platformof 4] HPAIZ| == e 5 U5

Fz9] Java= ZFAAIE 2 EESJolE flo TEolHAEL, o F web /T GEEHA T ARSEFO]
FAs] 2712,

12. Script Language

Script Language= ZFY 2F=35}, 7FFSF program A, 7]& E gJo] o] Eof g-gE]= progrom-
ming language®]. 9-& E°f, Javascript, PHP, Perl ':O]
Z]Z 9] script language= HZ ool FgFol Scripto] tjoF mterpretatwnoﬂ AL E]Qle. o E

UNIX A]A~Hlo) A sh(Shell. command interpreter.)< 788 E] 7|65 T 5= scrzpt language
h AFGal o]5] A= built-in programto] ohjeh, AHEAAF Helet a-e AW 4 918
o] o]&] 7Fesl FEJOJA] variable, flow control, function 5©] F7FE o] programming language”}
o] o
AR T

13. Javascript
Javascript= web Z2 I 2Jof A X0l HTML EA1& BrE uj] AFEEE script language d.

19905 webo] W27 WU TeHB F)ule] Heke R Ee] SRWE. e HTML A=
ojE=Z, o] giet F7}AQl ko] P E|oJof s CGI(Common Gateway Interface)§ /1]-—9—'5]-@7

N e Aol 2ol 1 Bk WEHES B = YA o4 Javascript 52 28
BSR4 <] SRS FgA H2L.
14. CH

C#L C++3} JavaE 7]HFO 2 3}HA], VB 502 HE 9oFS HEL [anguageZ, ZHFY, web, A Y
Fejo So) ojZ Aol Aol AHEE.

C#L F2 NETT 7] /‘fﬁﬂifﬂ NET2 ofo] 3 2 4+ T EZ} 7JdIor £ X EfJo] 7k Laj o) T
=, /1‘2’ —‘_:7—'7_1,]- E]—O]lﬂﬁ’fﬂl ;1,1._07—07-'

1.3. Syntax and Semantics

1.3.1. Syntax Description

1. Syntax Description

Syntaz Description& PLE ZFYE Zx}Ho] tfsl], o]d syntax EFE 7}X] 1D Y=X] HAFHsF0 F
o SaEA] HEIE AY. =, tohen] AP} FEE Fstel formalahA] HeloHe Ao, ol
ALGOLo] &g HA A5 A =E Q5.

Syntaz= PLoj| gjol ZH O 2 expression, statement, program unitof] tjoF §2&]¢]. Semantics+= PL
9] expression, statement, program unito] Z7FX|= ojnje],

o 7] o A] descriptionS syntazl} semanticsof] gl & 4] = oJu]& HAHs= AS el syntaxof H]
5l semanticsof] oF describe”} O o] 824, o] syntax descriptionof tjol ZFEsF da] AL EE=
notation2 ZASFX]TF, semanticsof] thol A2 Exs}7] &F7] mf2el.

grammerg 802 X-E5IH compilerof A 5 languageo]] Tjel syntax analysisE Tdsl= LES
A& Agol= gare]Eo] o dRE o2 7 EXfe ghS. 9l 591, syntax analyzer generator(Z,
compilerof] tfeF compiler.)Ql yacc2 19750 AAE QS o] HoJA HEHE LR parsing tableS
AE G

2. Lexemed} Token

Lexeme& PLOJ gjsl tro]=2 713F ZF2 thl 9] syntatic unitY]. oJ& E©°f, ZF numeric literal, SI4F
2t keyword(ex. if, while), identifier 50| Q. YHFA] O & syntar descriptiono] A= lexeme A2
Sefjof] gigt descriptions 5~85FR] %11, o]= lexical specificationo A 5%,

Token& PLO| tjel ZFALZ, lexzemeo] TSF category®. syntax descriptions HofAlE= tokenS g
SfoF & oJ& E0of, Identifier(X]EX})E= variable, method, class 5= XHsF7] > o] ES LIEILE=
tokeno] oF ZZ 9.

3. Grammer

Grammer= syntax descriptionof] AEEE= FAA ol 212, o]= language generation mechanism
o2 o5zt + L.

g} A7) 5] AL ol AR LFS. T F context freci= 1F e BAY] glo]z, B
of Aaglo] Tojo] ojn|7} spRE EAfol= QlofS @l 1 Y= context sensitive® o] mref
olm]z} ofe] 79l ¢lo]E Wl PLi= context-free=, €A Bl 4 U

o & E9], index = 2 * count + 17;0]2}= statemento]| 4], Z} lexemed} 71 token2 ot} ZHg-.

Lexemes Tokens
index identifier
= equal_sign
2 int_literal
* mult_op
CEAIHE identifier
- plus_op
17 int_literal
; semicolon
1.3.2. BNF
1. BNF
BNF(Backus-Naur Form)& syntaz descriptionof] AF&-ElE natural notation®]. o= rulel] el

context-free grammerzZ oJsfel & Ql-&. ESF BNF= PLYJ tjjgF metalanguage(languageE describe

10

5l= languge) 9.

BNFE AA] FE3Fo] o]z 2] S o grammerE F-835] oG languageo]] £5= 2-E -5-a oF state-
3 2 olw, o2 o7 languageo] gt A7 9 ofslo] BEY & 2le. HA statement
7} FolZl 2ol ol statementZF derivation®] O]l HE 5 UE=XE Elol= A 02 syntax
description & HAE sofel 4~ Ql2.

BNFE= 37[Z] notationTF AF-&-gF.

1) -> : Rules g2olgl

2) <> : Non-Terminal(pointed braket)S LfE.

3) | 0re] 7]&& gl ofe] Zkx|7} EXfolH of 2] ¥ 2= gigl |2 ol 4] Z7]g)

BNFE oo} ZFo] o] & notationS E-§ 5] syntatic structureE FE7|QF. o] 7]ofA] SFAFE ¢]& HHo]
LHS(Left-hand Side)= 8|S ruleo 4] L 2= abstractions WFEMY. @ E& BHo] RAS(Right-hand
Side)= token, lexeme, TFE abstractiono] tfer X2 4% o] ot abstratcionsS el LHSL}
RHSZ FZAE FHolE Rule == Productiono]2l1l gF.

O] =] abstractions Nonterminal Symbolo]2F1l 3111, lexemeT} tokenS Terminal Symbolo]2f1l F.
extended BNFE 112J5}%] &S uj, BNF notationZ} nonterminal-S A]2]et L} X] symbol:L 2=
terminal®/.

<assign> -> <var> = <expression>

F7I2, LHSQ] nonterminal-S RHSO) 2451 recursions 48 = 1, & XA (Termination
Condition)o] 115 W7H4] 919]2] ZolE A= H9E AT U,

EoF o] o] = ZEX] nonterminal 2 2% recursionof A LHSO] nonterminalo] S3Fsl= 9]
off wha} left recursivel} right recursive® Uz = =t o]o mhal ¢{FRFO] Precedence(-241%])
7} A8 7. Left Recursiver= LHS2] nonterminalo] &) L} Q= Zo]11, 2J&o] Hx] ARIE]HZ o]
= |5t HFS Left Associativity(ZFEeHE 8 Right Recursives= LHS2] nonterminalo] Y&
Q= Zlo]al, 9 Z2&o] Mz dIE B2 o] ofid A{kS Right Associativity(X}E3) = 7 gk of
F2 0] ARIRp= FFE o] Ak A etol= A(ex. X4 A4H)E lo B2 1 FFoj upef ruleo] 2 H

]
AR

4
o

<ident_list> -> identifier | identifier, <ident_list>

<factor> -> <exp> ** <factor> | <exp> (right recursive)
<factor> -> <factor> ** <exp> | <exp> (left recursive)

2. Derivation
Derivation(3-X£)& grammer2] ruleE-3 Z-§3f] start symbol 22 E] A2}l nonterminalE-S terminal
2 Bolol= gl TS language = parse trees AYol= Y C 2L o]aflet = S program
B2 grammere SFUEF EXJSFEE, derivationsS Hed] AE3FE 4 SIS
Start SymbolS derivationQ] A]ZFE 0l ERHSL nonterminal 2, X program-S LFEFH. o 7] oAl = of
o} Zro] <program>0 2 LIEF,

<program> -> begin <stmt_list> end

derivationo] ZF ©A| o] EX}H-& Sentential Formo]2l1l &F. derivationS off@F ZFo| sentential form
of nonterminalo] EAoF2] oIS W7IR] =P H. =, nonterminal:S X|& Halo] EeLfx] okS.
of 7] ol A9} ZFo] ol 2] 7HO] monterminalo] EAeF o 7} Q1Zo] Qli= AEHE wglsle HFALS Left-
most Derivation©]2F1 g} leftmost T rightmost 5 o] 2] A F&]o] EXer 4~ =0, grammer
of SJgt language GHol= GG B4 SH=THT B 71N lefimost FE0% AFE:

11

<program> => begin <stmt_list> end
=>begin <stmt> ; <stmt_list> end
=>begin <var> = <expression> ; <stmt_list> end
=>begin A = <expression> ; <st1nt_1ist> end

=>begin A = <var> + <var> ; <stmt71ist> end
=>begin A = B + <var> ; <stmt_list> end
=>begin A = B + C ; <stmt_list> end
=>begin A = B + ; <stmt>end

=>begin A = B + C ; <var> = <expression> end
=>begin A = B + C ; B =<expression> end
=>begin A = B + C ; B =<var>end
=>begin A = B + C ; B = C end

3. Parse Tree

Parse Treel= grammerE 2§51 derivationof] O]l XA El= hierarchical syntactic structure2, &
languageol|A] GO E= statemento] Tl derivationS A]ZFslet Z1 ¢

o] rootQl start symbol 22 E] A2} ZF nonterminal-2 ruleoj] 935 terminalZF nonterminal-2 I
Ao g2 ZHe = 51, nonterminalo] 25 A mj7kR] o] MRS HHESE =, leafi= terminal Y.
of 7] oA & leftmost(pre-order)E 7] 2o 2 HHel

<assign>
T
<id> = <expr>
|
A <id> * <expr>
/N
B (<expr>)
/‘\
<id> + <expr>
|
A <id>
|
c

4. Ambiguity
Ambiguity:= o] H grammeroj 4] s} w2 go] tial] of 2] 7] parse tree?} Lf.L+= golS 2l o] oF
Zo] oja] oJn|z el 4E = Y= grummeri= B EAohiL, SAHAT} o] 5 UL

o E Eof, olagfo} e FHL <exrpr>2 A BIAZ I recursion™ 5= 911, F HA 2 recursiond 5=
s olof mfef A=B+C*AL} Z=2 statemento] tfjof 4] of2] 7HC] parse treeZ}F ZASHA] H.

<assign> — <id> = <expr>

<ids—2 | B | C

<EXpr> — <expr» + <expr>
| <expr> * <expr>
| (<expr>)
| <id>

o]t olafo} ZFo] nonterminalS P B A8l abiguityE AJAS 5= 1S

12

<assign> — <id> = <expr>
<ids>—a | B | C
<eXpr> — <expr> + <terms
| <term>
<term> — <term> * <factor>
| <factor>
<factor> — (<expr>)
| <id>

ZF1 2 terminal2 Wrho]gt= 9.
5 o]

St if-elsed]| T A = of =2}

amblgmtyﬂ- ZA5t. else= 7}

ruleo] TAH R if7} S EE A% clser} o] o] Eolo sH=Ao] e
717 itell Eolok .

<if_stmt>— if (<logic_expr>) <stmt>

il o

if (<logic_expr>) <stmt> else <stmt>

If we also have <stmt> — <if_stmt>, this grammar is ambiguous. The simplest
sentential form that illustrates this ambiguity is

if (<logic_expr>) if (<logic_expr>) <stmt> else <stmt>

1.3.3. EBNF

EBNF(EItended BNF)= BNFE t© Ha]slA] AFSs}7] 98]l BNFE 2-ghet 219, o]= description
powerE Z7FA]ZIR]E 11, ©<3d] readability 2} writability-E OVH]77,

EBNFO| A= BNFoj %712 ofeg} -2 notationS %712 A1§%. B2 1 S59) wlo] mpat 4]

FE& notationS golgd 7 Q5.

1) [] : zero or once. =, sfj5 B2 o] oF ¥ LfEFLFA L, LFEFLER] QS

<if_stmt> -> if (<expression>) <statement> [else <statement>]

2) : zero or many. Z, 5 o] § ¥ o4} e AL, LERR] S

<ident_list> -> <identifier> {, <identifier>}

8) + : one or many. =, ol o] oF H o] & LJEFE. =, ofefl o] F FFE S YR FarE, of 7] oA
beginF endw= coA] {}oll SJGEE symbolg.

<compound> -> begin <stmt> {<stmt>} end

<compound> -> begin {<stmt>}+ end

4) (afb) : aorb. =, S P& F o7} LEIL Ok gf B3] F Yot FH O] AARE BRI ruled]
283
<expression> -> <term> {(+ | -) <term>}
EBNFE AHH 74 ofele} Zo] 4ol 2 4 qlizd], ol 2] M associativity7} §es] Eajux] sherhs

wAI7F EAe
<expression> -> <term> {+ <term>}

g, oA AAlo] AA S TEeHE A4 AAS AWEA, ofze} o] A7) AL 7
o] ope} oje] 717 BAE AR AFAEE 15 AR E ZAE (<expr>)7t Lhe @ A7) TEo] SalE| L,
id7} hew .

13

<expr> — <term> { (+ | -) <terms>}
<term> — <factor> { (* | /) <factor>}
<factor> — <exp> { ** <exp>}

<exp> — (<expr>)

| id

1.4. Lexical/Syntax Analysis

compiler®] UYmz] B3} o A W82 F5 Hupdd oA w9 s ok, of7]oA= 11 4
HH9] lexical /syntax analysiso] T3l &otx 2t

1.4.1. Lexical Analysis

1. Lexical Analysis
Lexzcal Analyszst Fo]Z Ex}H (FE)of gis) Fo) 7l EAFE) YR[SF=X]E &FQI5H= pattern match-

lezical analysz's§ AolE B2 (e)S Levical Analyzer = Lex2tal gF lexo] Yo 2= BX1H
o] Folgl. lex= 5 ZAEES =2]F L& groupingslil, YAl codeE S sl 2 ofal Q=0
ojuj z} X]-Ojo] oFofl x| E]' lexeme©] 1L, group©] token®]. o]luj] lex= syntax analyzero]] I gr=]o]
front end2 7] 53F =, lex= parsero] oJs] o=5

_” lez = o]_EHQ]_ 1_ x]—oizg /\ollol-

1) Ex} oAl £ white spaceS Xﬂ7—]§l.

2) ZAFEONA] lezemes 25

3) &St leveme QIS HAFE. o] lezemes ZH= 2 ¢fof o5 FAo = H.

4) lexeme 5 user-defined names< compilere] o]< trAJoA] -85l 5 symbol tableo]] ¢ &g}

lez= ZR2 lexemeo]] tokeng& &9 4] parser= BFeFg}.

lexE TFE mjo= token TEl o TS} formal descriptions 2P oFo] o]& FEoFALE, state diagram
= GAe H ol FHL + U5

2. State Diagram

State Diagram E+= State Transition Diagram-2 state(31E])E LFEIH node2}, state H2aFS 7-2F
event2} 10 =Y E = actionS arc2 YEFH BFSF 78]Z Q] o]E 28] lexo] EAS Fo] Tl HE
4 Ql2. o]gf %]& stateE Initial State, U]'X]E]’ stateZ Final State2}1 $F.

state diagram © &2 ofelje} Z+o] lex®] FAS UEPE 7 QU5 FAFE O] 2} FRTF event®E 7]&5F 1,
olE switchi# 0 2 7Hds] Fdo] 7l5a. HAZE letter?} digit Tk of 8] 7[R 2 LFHX]EE of 7]
A ZFeFSEA] unknown © 2 2]l olo]H e identifier HEH 2]o] EASF=T], lexes o] H ExFHo]
identifier2 WEEE oy 73] WX gl £ 215 81014 identifierg o 22 Zlo=

=]
.

Ol
e rir

A

[" U

14

Letter|Digit

Letter
Start

return lookup (1exene)

Digit

return Int_Lit
addChar; getCha

\ \ te—lookup (nextChar)

return t
—>

5l state diagram=S FHoF ZEE= WA ¢lo] RF15FA].

1.4.2. Syntax Analysis

Syntaz Analysis = Parsing2 lex 0 2R E] HFS HJHEZ 312 5] parse trees AH5l= 2. o]
sl HES Parsergfil gf.

o FAH 0 =2, parsing:S ofe 2t £ F 71X HAS THY.

1) syntaxol Egol=X] HAFgk 74/‘} EZ errorZF BPAEH diagnotic messageE A SF. 0] errorg

recoverydlil A|<olA] parsingS 3 SH=H|, O] compilerZ} oF Hlo] analySZsoz’]/‘f program o]

oAl B 2] SIE.

2) syntazol] 2glol= Yo tofi] 27 S parse treeE Y. parsing:S parse treeE A4 ol= HFSF

ofl wte} top-down(rootof Al leaf2.)3} bottom-up(leafo 4] rootE.)P_E FEE. o]uf parse tree A E
BAF o pEL Al B YHEF AYRIE B

il

parser o}l compileris 31 TEE BHT: YA puserks F2 TEE AT A IS FAo0 3
oF

Skt o710 4] ol A7A) e AE o

ASS
1

1.4.3. Top-down Parsing

1. Top-down Parsing

Top-down Parsing2 start symbolZ 2 E] A]ZF5Fo] leftmost derivationS 5~ o;]-Ua7 parse trees 74
ol= dH]el. =, EX5lE= H-E nonterminalS pre-order(root, left, right 4= 2 «=3]¢}.)2 3G rule
o o2& TLEE Helol= 2FYE BFESH parse trees -9k

top-down parsingS +Fol= Ll E]&S LL(Left-to-right and Leftmost derivation) ilg]& o]
of gjEZAo]l LL Ydiig]Zo= ofgjojA] el recursive-descent parser?}, BNFE S*&SF parsing
table§ o]ﬁo}% H}-H—?o] olo.

LL d12]Z&L leftmost derivationS TYSFEE2, 7[EHZ] O 2 |eft recursion®] EX[|of= PLQ X—]E]
23 —’F A leﬁ recursion®] 3¢ & F7o] QEZ o] YR|ol=H, leftmosto A= niHl 2lEFE]
Xfaf SlERE FE RS H/fx] EOH Fot RIof mpR[A] H. o= IHY A NA X BFRER] Q.

2. Recursive-descent Parser
Recursive-descent Parseri= BNFE &-§35fo] ths> 29l 5F top-down parserd].

recursive-descent parsero| Al ZFZFo] nonterminal-2 SFLFO] subprogram=- 71, g EXlHo] Eolgt

= o, Z} subprogram2 A 2-E $Z5FH 35 nonterminalS root2 SFHA] BEXFG1} AR]SF= leafE
ZIZ]E= parse treeE 2. =, nonterminal-S RHSE 1 Y-§0 2 o= Y& gl HGF3

15

<expr>

<term>

<factor> <factor>

<term> <term>

<factor> <factor>

(sum + 47) / total

A& &°f, oFef 2k Zo] ruleo] ool subprogram(ets)o] FElE + Us-

/* expr
Parses strings in the language generated by the rule:
<expr> -> <term> {(+ | -) <term>}
*/

void expr() {

printf ("Enter <expr>\n");

/* Parse the first term */

term() ;
/* As long as the next token is + or -, get
the next token and parse the next term */
while (nextToken == ADD_OP || nextToken == SUB_OP) {
lex () ;
term() ;

}
printf("Exit <expr>\n");
} /* End of function expr */

subprogram-2 =2 o5& 4= L.

1.4.4. Bottom-up Parsing

Bottom-up Parsing2 leaf2 2 E] X]ZF5}S] rootZ7}X] parse treegs 74 6F= 2],

O ZHH o2 = leafo] terminal 22 E] A|ZF5) reduceE Y25 A= start symbolS = 74 Q). o]
3L mghtmost derivation2] YT ZF¢]Q]. of 7] o] X Reduce= sentential formolA] RHSE ZFof 5}]%7’
rule®] LHSZ HIHE= 712 2Fgl ol sententzal formoll= SfLf o]3Fo] RHS7F EXer 4~ =1,
A2 Hele algJof 5= RHSE Handleo]2F1l gF. =, bottom-up parsing®] H4]E handleS ZF

=~
A9,

e

bottom-up parsingS Y oh= 713 i E X 0] ekaa]Zo] LR (Left-to-right and Rightmost derivation)
gy ajZolil, R Eo] 7[HE2 LR ¢ilg]&9] Hgolalil ¢f. Hz9] LR 21 8]&2 Donald Knuth
9] canonical LROIT] o]= HFL computatzom‘]- memoryE Q5] Y] Ao]x]= 211, o]5o] LR
ofye]ZE52 o] E Mgt gF.

1.4.5. Bottom-up Parsing : LR Parser

1. LR Parser
LR Parseri= PLY] tfjgF LR parsing tableZ} parsing stackS E-g5l= bottom-up parserd]. ZF input
I} 79 ofZ state(Parse State)E 2]l parsing= T3¢l

LR parser= 2= PLOJ gjgf] uF5o] & 4~ 9111, gk S &7 X AH7F Y08 2 top-down HCF B2 HA],

16

QEE o7 £]2. ESF LR parser+ left recursiono] ZeF= PLY] 2]el 4~ Qlo], Ala]e 4+ ¢l
+ PL {gfo] LL parser?] superset‘)’ LR parser®] -3-4sF 242 LR parsing tableg R FA5E]
g ke Aol dAPE grammerE g0 2 Yo LR parsing table2 A s]FL of 2] program
= (ex. yacc)o] A ZAE x| FS-

LR parser2} parsing table2 ofgfjo} -2 FZZ& 7.

Top
Parse Stack Input
So XI‘Sl Xm|Sm a; |aj4) a | $ ‘
Parser Parsing
Code Table
Action Goto
State id + * () $ E T F
0 S5 S4 1 2 3
1 S6 accept
2 R2 S7 R2 R2
3 R4 R4 R4 R4
4 S5 S4 8 2 3
5 R6 R6 R6 R6
6 S5 S4 9 3
7 S5 S4 10
8 S6 SN
9 R1 S7 R1 R1
10 R3 R3 R3 R3
1 RS R5 R5 R5

ofes} 22 7}l 2l parsingo] 43

1) initial state(0)0] stackol] Eo17F Y= AEf =2 A]ZFgl

2) stackolJA] W 919] stateE A4 mputJ/]- a5t stateo]] wlef ACTION tabelo] THE shift/reduceS
O(;']O]'.

3) $7F input 2 2 F0]e} F= acceptE mI7FR] 21H AF¢E HHE

2. Parse Stack

Parse StackE bottom-up parsingoj] o2 el 731}— 22l stackC. 2, 8 E terminal/nonter-

minalT} stateE A2 2 Zel(stateE nfx]2tof] WS). of 7o A] stack2] ,ﬂ 2 Zrol state= A

stateS oJo]gl.

ol Initial State(X2} AE])= 0. =, RS9fl& stack state 0TF 501 U=

3. LR Parsing Table

LR Parsing Table2 £7% PLoj] gjsf A4 E]o] LR parseroA] parsing= 5~sl= o] AFEEE= table

o]. o]= ACTIONZ} GOTORZ FAEH, rows states LEFY.

ACTION-E parser9] action(&2F)S Fool= W ZEOZ, columnsS g grammerQ] terminal

symbol2 g}, o]uf] $= FOFZ, nfx]ufFQlS LIEFY. input © 2 50]2 S symbol(token)Z} HA state

off -&E+= actions TYoF=F 9. actionof= ofef2} Zro] S(shift)2F R(reduce)’}F -5

5F
of.

17

1) shift : state2} input-2 A2 stacko]] Y Eoh= ¢I4FQ. o] So =x}2 H7[sl=0], g =219
stateg stackof] Y= A, =, inputS BF1 -2 &= state2 HeHE

2) reduce : stack®] W 9Jo EA5F= handleS LHSZ bﬂi]—o;}— oJRFe]. o] R} s=Rf2 HI]ol=
g, oli= grammer 5= ol <e2F0] ruled] Tf-§-F= Hel Jolth= 2. o] % Blgko] oo A-gF
nonterminalZl, GOTO9] 9] A== stateE ’\K‘]EHE stackoﬂ (SR

oJuff handleo]] sfjEdl= 2SS Y 7] Ao stack 7 Yo Y= state(ACTIONOJA] £ state2f= &2
H.)2 A 22 states B EEUI_ o 2 termmal/nontermmalﬁ FAE rule2 e-g5) Helsl= -2,
stackofA] Skl E2) °f~ stateg+> FAQ o]uf]l GHASHA L reduce A]ofli= HeFel nonterminal TS
stackol] Y17, input-2 YX] 2L (input-2 shifto 4] EofZ.).

GOTOE reduce’} &2 & o] H3lE LHSQ} g7 stacko]] EoJoF ol= stateE YERHH, column
et grammer2] nonterminal 2 gF. =, reduce ARFJAIE ruleRS LFEF O B &2 goto tables AF-E-3f
state@} nonterminalo] TEf o]& o] H e =2 ZFx] gl

=g =01, 19| tables -85l id+id*id$E off o] I3 o] parsing® = Sl S I FFH=
reduce® parse trees 18 = Q13-
Stack Input Action
0 id +id*id $ Shift 5
0id5 +id*id $ Reduce 6 (use GOTOI[0, F])
0F3 +id*id $ Reduce 4 (use GOTOI[0, T7)
0T2 +id*id $ Reduce 2 (use GOTOI0, E])
0E1L +id*id $ Shift 6
0EL+6 id*id § Shift 5
0E1+6id5 “id $ Reduce 6 (use GOTO[6, F])
0E1+6F3 “id $ Reduce 4 (use GOTO[6, T])
0EL+6T9 *id § Shift 7
OEL+6T9*7 id$ Shift 5
OE1+6T9*7id5 $ Reduce 6 (use GOTO[7, F])
OE1+6T9*7F10 $ Reduce 3 (use GOTO[6, TJ)
0EL+6T9 $ Reduce 1 (use GOTO[0, E])
0E1 $ Accept
1.5. Name, Binding, Scope
variableo]| oj3f] &otE A},
1.5.1. Name
Name E= Identifier+= program2] entity(object) & FE2F7] Lol Algol= EXFE Y. W ghr-m
Eo] o] o
(o) AR

Reserved word(oj|2Fo])= ofjoFo] E]o] Qlo] identifier2 A-go] B7F53oF tho]Ql. reserved word &
Keyword= E% 7] 5o]Lf Here ~8st= 9],

1.5.2. Variable

Variable(H)2 memory cell = memroy cell9] gl el abstraction®]. variable2 & 6719]
attribute @l (name, address, value, type, lifetime, scope)Z2 Jo] & FLE=E £+ QIS

assignmentol 4] 2] Q]z]of] w2} variableQ] address= l-valueZ, value= r-value® 22 7] SF,
Alias= o;]-L]' o]&t2] variable nameo] =Yt memory2 9] FHLoj] AFEE = Q= F-L s variable
E8 Wt aliasof] 9J5) A2 CFE variableo] St addressE 7FX] = 75’—‘,’—7]— HRAPSE 4~ 912 glias7}

=
%}%7%" 4— Q= AF3lo 2= wunion types AFESEAL, 2719 pointer& AFESFALL, call by reference
= g&ol= F-27F Us

1.5.3. Binding

18

Binding:2 entity(variable 5)2} attribute(type, storage, value 5)2] AeFS &gl bindingo] Y ==
A& Binding Timeo]2l1 9F.

binding < runtime O] Z o] A E]o] program 75(507’] g0 =35 z] ok= & Static Binding, run-
timeo]] A E]o] program Al TZof == 4~ Ql= A8 Dynamic Bindingo]2f1l &F.

of 7] of| A= type bindingT} storage bindingo sl 4w B}

1. Type Binding
variables2 type bindingo] =Y E]O]OF reference”} 7F&8F. variableo]] el type bindingS static type
binding} dynamic type binding 2 = U=, typeo] EYE = WA} BYEE A SHA

olag 4 9l

¢, java 5 HE2 91152 static bindingS 7] 02 3}, interpreter BFA] ol ¢ Z]HF olo] 52 EFYJ o]
E,l]l_ HA7] ojn] gl = 7577‘17]- ol dynamic bindingS AF8-8F 53] compiler H”/"EE]-pure interpreter
diAlo] PLEojA] dynamic bindingS F2 FE ol AMgerCla g

1) Static Type Binding

static type binding-S explicit declamtionﬂ]— implicit declaration © 2 A= 5~ Q-2 Explicit Declara-
tionS variable®] namel} types X FHA|SF= statementE AFE5F= BFR]o] 11, Implicit Declaration
2 9] statement o] FoiFl ﬁ—é’(convention)oﬂ a2} variableQ] typeo] XJo]]Z]—,’_: HFa] o],

A o]o =

2) Dynamic Type Binding dynamzc type binding2 assignmento]] OJ5] A= 4~ Q1.2 =, o]H vari-
ableo] digl type bindingo] 57 gFS assign wjf ofjg gko] typeo] wfaf A4 H.

dynamic type binding2 pmgmmoi] ﬂe:mbzlztya A&l SEX]EF error detectiono] o] 29| reliablity 7}
SO, runtimedl] 919]°] type HoJeF <= ofok o2 7 B §] L.

2. Storage Binding

storage bindingZ} B2 5lo] Allocation2 7F&8F memory poolof Al memory cell& ZAY] bindingof] A}
g5l= ALS 9oJu]dlal, Deallocation2 A= binding2] memory cell & memory poolof] BFYsl= A&
o)

o] H yariabled] gt Lifetime2 35 variable®] % memoryd] binding® o] Q= A|7FS 9Ju]gf =,
binding® A]ZH2El unbinding® A]ZH7Fx]2] A]ZFS.

storage binding®]] WEF variableS ofgfje} Zro] 47X 2 B&23eF 4~ Ql2.

1) Static Variable
Static Variable:2 static binding®j] 23l memoryd binding=+= variable®. d& 501, global variable(F
)L history sensitive$F local static variable(co A1 9] static variable)of] AF-E-H.

History Sensitivel= g7} F2H0] = gk 7] oJsfoF SHe A& e YIS MemorylessZ, 347}
FEEY 1 o FREL A5 g3 7]l o S Ut

2) Stack-Dynamic Variable
Stack-Dynamic Vam’able% declaration A]9] storage bindingo] XA E]X]2F, type bindingS staticsF
Al AHEE= variabled]. o] EA] runtimed] declarationo] 28] &L allocation E binding IS

Elaborationo]2}11 aF. 0]77’;7’ memory~= runtime stackoJ A allocationd. qJ& £9], coA]o]] GHF7F
ol O

3) Ezplicit Heap-Dynamic Variable

Explicit Heap-Dynamic Variable2 T2 7 EH HZE explicit runtime instructions A-&5Fo] memoryE
allocation/dealloctationdf= variable‘,’J o]l nameo] EXSFZ] gFol pointerl} reference variable =
referencedl] AFEEL g memory= heapoA] allocationd. & E], c++JA= new2} delete
ol Fegl

4) Implicit Heap-Dynamic Variable
Implicit Heap-Dynamic Variable2 85 variableo]] 1= assignF oj] storage bindingo] A4 EE= vari-
able®]. S5 memory= heapoll Al allocation$F.

19

3. Named Constant
Named Constant= valueof] Tt binding= oF HOl 7}X]= variable®]. ©]& &-§5F¢] readability2}
reliabilityE SFHET 5 QIS & 5], ZF PLOJAlE const, final, read-only 9] 7|} E2 #7]E}.

1.5.4. Scope

Scope= 3G variable©] visibleSl statment2] B9]Q]. VisibleSFrh= 7212 a5 statemento] 4] reference
FL assignmente 5~ Qoh= AS ghgk

Local Variables2 program unit F-= block WF o)Al A 1E variable®]. Nonlocal Variable-2 program
unit F= block 2FoJJA] 41olx]o] CFE program unit F= blocko A1 wvisibleoF variable®]. Global
Variable2 X-E program unit F= blocko 4] visibleSr variablez, non-local variableo] HEZ]gHe].
9 F &°], nestingo] EA5k= F-> FR oF9] variable> ZFA] glof O]a Fo] TFsetH], o]+
globalo] oFY2F non-locald.

o] ™ variable©] local/nonlocal/global Q1 X|= G variable Q] scopeof 2] A E. scoping 7]H o2 =
ofgflo} ZFo] static scopingXF dynamic scoping®] -=.

22 scopel} lifetime2 A2 = 2] Q] il

1. Static Scope

Static Scoping2 nonlocal variable2] scopeE G variableQ] T = AF LJx]of Q]3] statics}A](runtime
oJfol) Aol= FAY. =, o] F visability7} ZEO] x| O] FJH oz HAYH. o= ALGOL
60°04] 25 AJAIE 202, ofa] PLoJA] RJ-&5F1 5.

static scoping2 subprogram2] nestingo] 7F5oFz], 7l55Ex] 9kl z]o] nfal = 7Ex] BErl Zxfst
=], 97| Al= nestingS 5]-§0l= 7ol oA HEFe o EFol = o H variableo] Tgh
reference statement 50| AFgE ZF-2, 5t subprogram oAl tf-&X= declarations 2. decla-
rationS ZFX] BHCtH T Static Parent(subprogram-S #1918t subprogram)2 7FA] C}X] Zh= 7135
HEEST o]mf] 713 HFZE 9] static parenti= Static Ancestor2Fil &f.

Block structured Languageo A= Blocko]2l= T E ¥ 9GS A-E5F], blocko]] gjoF static scoping= &
83 block Y2 stack dynamic variable-2 F]o]7F blocko]] 0] 2 M A] allocation®] 11, blocko] EH X ™
deallocationd. & &°], ColAl+= nestingo] E7F& o X2, block=S A& = 5.

2. Dynamic Scoping

Dynamic Scoping& nonlocal variableQ] scopeE TE AFofJA]o] QI=]7F ofr]zl, ZF subprogram2] 5%
Al of wref dynamicSEA (runtimeol]) Egoh= B4 Y. T2 H o] ¢ FRHA] g2 F¢ oFE active
E oFalal sl=4)], dynamic scopeof Al & active of0] By H 7l AY.

dynamic scopingofA{&= o] ® variableo] ol reference statement 50| A= F-2, s subprogram
toflA] dI- &&= declarations 2. declarations ZFX] M G5 subprogram-= S&3l subpro-
gram 0.2 o7} declarationS 2= 73S BHE S

dynamic scopingS X+ 9lol= ZF g2

3. Referencing Environment
o]d statementof] gt Referencing Environmenti= 8|5 statementof] A visiblegF FX]] variable 7 g}
= sk scoping 7] § o] mief visibility7} E-YE B2, referencing environemntIz scoping 7] Hof wla}

gH.

iy,

referencing environmeni~= static scoping9Al~ G subprogramX} 2-E static parent2] variableZ
FAE] T, dynamic scoping9 A<= |G subprogramI}F H-E active$t ¢F2] variableZ 2%,

1.6. Data Types

Data Type< ©|o|E o] th$t value?}, S valueo]] th3t operation(method)E 2] A 2] <.

1.6.1. Primitive Data Types

20

Primitive Data Type-2 T} types S-§-5l o= 2] ghe 7]E typeQ]. primitive?} oFd type- prim-
itiveZ FGE A1}, T subset@]. PLL o]2]] primitive data typeS A58

primitive data type.0. 2= op2fo} & AE0] Q. Y02 integer, float, char, boolean 2.2 % 4
ZFZ] 9] primitive type©] A-&-E.

1) Numeric

-> Integer : g negative integer+= two’s complement(one’s complementE& 7ol 15 HgHE &
&l 2k

-> Floating Point : 2.

-> Complex : E2=~,

-> Decimal : 4] Z15>. BCD(Binary Coded Decimal)E AF&E + U5 o]&= é]{—’f—_‘l,’ zF A8l II]'E
o[z Ak WA o Sof, 12&5 0001 00102} Zo] ZF 2le]& 4HIES &) o]+
BHNE AY. ol 59} % 2] vigo] gloms Feo] WelF

2) Boolean

sealzh. ol el true, 7 oL ¥ fulses)

3) Character

w A SHEE ALEl YA} &5 Eoks ASCIE T2 AF§oLL, 16H]EE AR A AAl A5
FH 5= Unicodelr A-§gF.

1.6.2. structured data types

1. Character String
Character String2 character?] sequencez F4E data typed. stringo] Hjglt operationof= assign-
ment, catenation, substring reference, comparsion, pattern matching 5°] QU-=.

Substring Reference= 013 stringof] TjoF substring 2 9] referenced]. =, Y2 E
array9] Ojel slice2 F=2 A-EH.

A9

o

#zol

e

Pattern Matching2 stringof]A] E% patternd} Y 2[SF= substring= = operationd]. O#Ef language
E2 pattern matching= 9ot Regqular ExpressionS A&l o]= UNIXE—’,:’—E7 A 2FE HEA Q] [A-Za-
zJ9F Zro] ZFysfo] ofLte] charactero]] High 2AE e = a1, 75 oF ZR} Ef/’O; wild card
2, *2 9JoJo] Z]o] stringo] el wild cardE A& & L.

PLolH= of2s} 20| string lengthell tt 912 optiono] ZHE 4+ 2.

1) Static Length String : length7} statico}A] 23 =& "4 oJ& 59], linked list 502 oF HO]
allocationS £=3lS}.

2) Limited Dynamic Length String : 72]t lengthZFX]E lengthZF dynamicstA] B H + U=
kAl ol & E9o pointer arraryL 2 SF B9 allocationS g}

3) Dynamic Length String : ¥9]9] length2 dynamics}A] 23 E 4 &= HHA]. o& Eof
HZ2sF ot allocationgr.

2. Enumeration

Enumeration Type:2 J2JofJA] 756t 2E value(named constant)E GAJoF= type . o]mf o] named
constant-& Enumeration Constant2l1l gF.

enumeration type2 readability@} reliabilityS A&

A5 59], C++9)Al= oFeioF Zro] AFggl
enum days {Mon, Tue, Wed, Thu, Fri, Sat, Sun}

3. Array
ArrayE of 8] -FAFeH(homogeneous. type©] Z-5.) data element®] Felo 2 FAH data type 0=, ZF
element= & YA elemento] Tl Y| 2 FZE=

21

2219l oo array= 1 FEjO mef 2F rowe] ol7F BE e Rectangular Array@f, Zb rowe]
Zo]7F ZA] 92 Jagged Array= T2

array~= FORTRANOJA] A2 532

4. Associative Array

Associative Array= element@ 2 =51 74~F 7IRX]E Key=2 Z}F elementE 2 5F= data typel 2,
element&-2 g E o] YX] g5 o]uf element52] X2 F2 A& tlE (heterogeneous) 5 -2
perlof A= associative arrayE hash function© 2 FZ& 5}, o] hashefil HE. olgfo} Zro] A4 ef
- 0] O

T ORT-

%salary = ("Gary" => 75000, "Perry" => 57000) ;

hash function2 of®H ¢Jeof g =t Zo]o] hash FFS &8 ol= function®. hash functionS
o8 hashing2 HIoJEIE 311 BAYsls] o5 WHOZ, JEHOZE wrrayz 2. FUT
hash gFS 7FR]+=(collision) R 2E9] I A= linked list 522 &gl

== elemento] tfgF searchof hasing©] oFY 2} linear searchlf binary search(g 8 HQ)E A+
A=t, HoJE7F Eo] BFf& 7&-7 hasingS AR}

5. Record
Record= name(field name) 2 2 FZEEE= element(field) 2] {22 7245 data typed.

arrayof Al index2 ZJ elementE FE PO, recordofJAl= name L 2 ZF elementE 2 ¢F.

record= COBOLOJA] A& g5 & £°], COBOLOJAl= ofefjet &0 records 2-get. o]2A

| —
o
AzHel 728 A + UL

01 EMPLOYEE-RECORD.
02 EMPLOYEE-NAME.
05 FIRST PICTURE IS X(20).
05 Middle PICTURE IS X(10).
05 LAST PICTURE IS X(20).
02 HOURLY-RATE PICTURE IS 99V99.

A ZA ol L2 recordof 4] EF fieldo]] T3l reference B 0 2= S5t field7}R] o] HE ZH2E 7]
Sl= Fully Qualified Reference2}, Y2E #9511 F7|5]= Elliptical Reference”F Q-&. 99] o A]o]f]
oA obefsl Zo] AHHE 4 UL,

*> Fully Qualified Reference

Employee_Record.Employee_Name.Middle

*> Elliptical Reference
First

FIRST OF EMPLOYEE-RECORD
FIRST OF EMPLOYEE-NAME

6. Tuple
Tuple2 record@} -F-AFSFX]TF ZF elementZ} nameS 7FX| X] &F= data typed]. element= A2 CFE type
= 7} (heterogeneous) 5= 117, indexZ gl

AE &l phythonof A+ ot 2} o] Z-ggl.
myTuple = (3, 5, 2.4, ’apple’)

7. List

Liste #A417} QL Hlo]el o] FgHoz 24H data typed].

liste= %]29] funtional PLQI LispollA] 215 A A 5

22

8. Union
Union& -=oF memory &7Fo] tjsf] A2 CFE data typeS Z-ge 5+ Y= GF data typed]. o]=
oflE typel] variable®] program A& T3 A2 CFE data typeﬁi value— Az =~ Qe E gf
A F 501, collAl= ofefief Zo] 2Bk
union flexType {
int intEl;
float floatEl;

0.

};
union flexType ell;
float x;

ell.intEl = 27;
x = ell.floatEl;

i

Yz 0 2 ApF ARG E = IR B EFA 0.2 EAYSE fieldE 7+ o AFS-S]k ¢

1.6.3. Pointer and Reference Types

1. Pointer

Pointer+= memory address ¥+ nil-5 valueZ 7} 4 Q= data typed. nil(FZ2 002 FHE.)2
29 5F address7F ofL] 2}, g5t pointer7]- E % addressE referenecedFil X LS HEFE valued.
pointer— 1. indirect addressing(call by reference)S FFHFAL, 2. heap 0 2R E] Fgtare dynamic
storageE HE|ol7] Yol AFEE. nameo] EXJS]X] 2oF variableS Anonymous Variableo]2F1 of=
4], heap-dynamic variable2 HIFZ anonymous variableo] B2 pointerg& EH-&3JJoF &

2. Pointer29] A&

pointeri= ofgflo} Z+e BEAHES 7F4. garbage 2T} dangling pointerZ} &) 2 EA] Q.

1) Dangling Ponter/Reference : pointerZ} deallocation® heap addressE 7[X| 1 Y& 2. o]
addressZ} TFE variableof 7] allocation = cFH BA7} ©f 7 F].

2) Lost Heap-dynamic Variable : allocation®] {X]2F addressE & 0771:’113,7% 59 o] 32 user’} AF§
5lX] Z5}= heap-dynamic variable. ©]2 varibableE garbagezfil gt HE.L deallocation®] X]
oroko o 2 memoryS SH]51A H.

garbage Ao it s AL ofefef & AE0] U
1) Eager Approach : reference counter& AFE5}o], |5 memory ¥ -S referencesl= o] 7f
5 XYl o]F reference counterZF 0°] W garbagez Q14]E 0] SA] heapof Hheksl AlgHg-2t
(reclamation).

2) Lazy Approach : Al§ ZFs8F memoryZl Q= AFgro] EH, garbageZ QA EE= Z155 heapd
ghekoll Af-e-g-2t.

c/ct++:2 o]l Ea]o] oA o] HAZF FUASHA pointerE B8 =, pointero] High {te gLk 7l
SIX| %, pointerZ} 7} E—Xﬂﬂ%o] gAieh 5~ glo] Fol5lloF %‘- JavaOfW = delete 7] 5%

garbage collector& A-&56F&] dangling pointer ZA|E ol 2 4.

‘{Oll
%
ofl

To

3. Reference Type

Reference Type2 TIE variableS referencedl= Hlof] AFEE= data typed)

HHH CFE yariableS referencedl= Z o] ol gl, I A 0 2 yalueE 7FR]= variable2 Scalar Variable
ojgl1l 8}, Value TypeS 7}ZIckal &f

pointer?F addressZ valueZ 7FX]= data type©]BFH, reference typeL memoryQ] object F= value

S referencesh= data type®]. pointeroj ik {he AR AFALY AP, reference typeo] tigh {lE
ALk o] 7t gl

212, indirect addressing & col A *2 THAE T, o AL o A F& o} Zo] & TR

el

23

jump 0x200 -> 0x20022 HIT,
jump ©0x200 -> 0x2000] AHZAE Zfoez2 A,

pointert= gotot 1 1314 0] 243 v wH. pointer?} goto BF L& TH0| o] Fo| & ZH 4= Q11 N
Y ole.
=2 goto= wild goto®@} structured goto® WH. wild gotor= JAE2] 9] jump} SAMGH] =213
ouE Z 4 9= gotoo]|dl, structured goto= break, continue S} ZFo] AFA Y=t & 4 =
gotod.
col| A= oot Zo] &t *2 call by references @A o|f xi= a9] FAE FHO=E JHA]AL, arx= A9
e gro 2 7B 2 x9} a= alias7 ofd. *x9} a7} alias¥.

swap(&a, &b);

swap (xx, *y) {
temp = *Xx;

*xxX = *y;

*y = temp;

b

1.6.4. Optional Type

Optional Type2 variable©] o] ol valuez 7FX]11 QUX] 9422 LFENE data typed.

variable©] valueE 7FR[R] Q= AF3l2 0 502 UEIY o~ Qxak o]= A2 gro] 09] F-22of
FEY 5 2. ofo] ma} Y2 PLES 54 712 AMESHE optional type Ho]olo] AFET

1.6.5. Type Checking

1. Type Checking

Type CheckingS operatoro] tfgF operand&5©] A2 compatible(Z 2} 7l)¢l typeQlX]E HAFSF=
ZFojol. olofl compatiblesFrl= AL = typeo] operatoro] Tjs legalsFAL, legaldsF =2 implicits|A]
HetE o Qs AS on]gk o]uf o]gl ApE Bleks Coercion (3 Hel)ol2f1 3.

ESF runtimed]] = E= type checkingS Dynamic Type Checkingo]2fal &F.

2. Strong/Weak Typing
type mismatcho] tjjoF 2] HFAlo] ufa}F strong typingF weak typing©] =

Strong Typing2 coercion $°] type errorZ} GF4F detection®l= ZH-S 2FEl. strong typed PLoJJAE=
compile timeZF runtime 2= A ZF operando]]t type checking©] 7F&3loF €.

Weak TypingE ceorcion 5= 2-§35}o] type errorgE g ZX]ol= A2 2al

3. Type Equivalence

Type Equivalence= = typeo] Hisf, oJE opperand] type©] coercion glo] A2 HEIE 4 Q= AL
j2igeTs

PLoJA] variableo] Higt type equivalenceo] T2l 7gofofli= ofelloF 2= I= ZFZ] approach?} EA]gF.
1) Name Type Equivalence : & variableo] &St declarationof Al HAAEJAL, TLUSF type S =2
£O1E] FHL equivalentslClal SF.

2) Structure Type Equivalence : 5= variable9] type©] & et structureE 7} 3-$ equivalents]cF 1l
gl name type eugqivalence AT} & -k 7]F ¢l

1.7. Data Abstraction

PLOJ A A-g5dl= datac] thgh abstractiong otE =t

24

1.7.1. ADT

1. Abstraction
Abstraction(F33})2 entityol] tis] S ¢l attributeTHS Z$Fol= view F+= representationd. =,
abstractionS Qx| g} HH O Zojsly ol HEOLS 7735l E 3f] programming processE

3l ek

&2l o] PLOJA] A]&-8F= 82 abstration O 2= process abstraction} data abstraction©] Q- Process
Abstraction2 subprograms Al-§ol= F Y. =, A& ¢ processE = subprograms & &0+ 4
o g ZFS ~afel 4~ Q2. Data AbstractionS ADTZ & H

2. ADT
ADT(Abstraction Data Type)= ©]® data types 7}X]= Hjo] e[}, di5h Ef]O]E']O]] tjsF subprogram2]
=S (enclosure) Y. subprogram(opemtion)§ %’%10]-01 G typeofA] W QoF HEOLS ALL5ILE =2 5}

1, representation(7+&. AA] flo]E] 724 55 oJ0jgl)L =EX] gr= 01 O]lT—}] ADT_J instance
£ Objectef1l gf.

gt} ojH FHaEo] el ZIX| & oF 4= QIX]8F global variable©]L} call by reference 5-°f] 2J8f CFE
FLoflA] declare®l variableS AE2]A] EE= functional side effect7} QAYeF 4~ ¢l = 7F BEo] &=
20| 2] gh= coupling®] A7} WY e 7k o] EAgE o] ’Ifﬂf ADT—S“ 5}30#0:7 encapsulation,
information hzdng 55},

TAHC 2= ofgf o] RS HIS A7l AS ADTel1]

1) 3l type2] objectZ} 7}R]= representation2 1 objectE Al-§-3f= program unit(client)o7] &
E]z] ¢k31, A3E operation(subprogram)C 28 o] 7lsgk

2) g typeoj] et declaration®} interface(operationoj] tf gl protocol)7F SFLFQ] syntax TH9] oFoj] FZ g}
E] 37, program unitS G typed] Tk variableS A = Q12 EoF o]nf] interface= representation
ol $4517] .

ADTE &-g3s}H 55t do]Elof] &% operation© Z0F FHLo] 7F=5FB 2 reliability 2} integrityE
929 + 98

]--

ol

interface ™= specification, prototype2 A& 53t oJu]<l.

A& =0l stacke] tiet ADT= ofgfjel do] Ao 4 3Ug.

create(stack) Creates and possibly initializes a stack object
destroy(stack) Deallocates the storage for the stack
empty(stack) A predicate (or Boolean) function that returns true

if the specified stack is empty and false otherwise

push(stack, element) Pushes the specified element on the specified stack

pop(stack) Removes the top element from the specified stack
top(stack) Returns a copy of the top element from the speci-
fied stack

ct++9 A= private, public 52 XA 3}1l, constructor(Z 7]} Ao &8)e} destructorE A3 ADTE
TEdE 4 Q2. TSt scope operator(::)% AFES] EA classE &8 Z,‘— .

javao| A &£ c4++3}F GASHA ADTE 13T 4= QI A|gt, E object7} heapo] A4 =W reference variable
2 reference®. E5F 25 method”} classtfof] A o]H. TSt AFE35}A] 9= objecto]] T3l garbage collector
7} &2t

1.8. OOP

1.8.1. OOP

1. ooP
OOP(Object-Oriented Programming)= HE Z1& objectZ HE= BHHEQ OOPE X|¢lol= PLL 3
7kx] h2] EZ] o 2 ADT, inheritance, dynamic bindingS ’,52}’,@7'.

OOPoJJA] ADTE Class, 1 instance~= Object2}1l &F. E ST objectof] sl 4 2]% subprogram= Method

25

2} 5}, methodo] et $ &S Messagesfil o]-EE] classo]] gigt method2] S Message Protocol
= Message Interface2fal &F. OOPojJA] 9] AL interfaceE EGF object AFO]2] message £541C
2ojalg + 2.

variableX} method= 1 A-9-AFo] olef instance} classZ UHZ. Instance Vam’able/MethodL 77’
object(instance)7}F 443-8F variable/method 2, objectE A4 5jJoF /(]-—9-07' = 9l2. olu] variable2
objecto]] tjja]] /"7/‘45]_1_, methodi= B2-E object’} sFL}Q] T IS T2 o]-O-'] AFggl Class Vam—
able/Method= classZF £-7SF variable/method 2, objectE YoFR] grofe AFgeF & QIS olaf Z}
obejetZl &Gl class variableo]] HZoFA] H. javaolAlE statics £ class variable/methodE]
93

ADTE ¢hojJA] cpgl o m 2 of7]oJ A= inheritance@} dynamic bindingS 4w H A}

2. Inheritance
Inheritance(%31<:)= o1® classZF 7] & classQ] HJo]EILF methodE A<EFS = QI & 5[, FToF 4
Spre BES S YL FEE 27 5 R oo Wl ol = TEHS software reuse

= 7I55FA] &) productivityE =9J.

ojuf] o]™ classE <LHEFL classE derived class, subclass, child class2f1l S}, child classZ| AF<oF
classE base class, superclass, parent class2fal &F.

child class”| parent class@} Gef] = 32L& ofgjof Zre
class2] variable/method& e 2] 0 2 Af<=HFS £~ 910
1) Aspre HHEo A 2.2 varzable/method FIleF 2.

2) /‘7:7 %7'3 methodE overridest F-2. =, method29] =22 73 ef.

3) parent classolA] variable/methodE private 2 2 Z]XJO]-O-'] child classoflA] visiblesFR] &2 72

Z1Eo] Q2. child class= 7]E 2] © 2 parent

H&
N

<

inheritance= parent class= SFLAF 7F& 4~ Ql= Single Inheritance@}, ¢J2] parent classE 7}& 4
Q= Multiple InheritanceZ L. javaolJAl= single inheritance@HS-]I},

3. Dynamic Binding

OPoz’]/(i,': dynamzc bindingS &-83F Polymorphism(tt@ 4)& X]¢¢er. ©]= Dynamic Dispatchef
I B2 = polymorphic reference”F 7]-55Fo] Lt9] reference variableo] &J2] classQ] object&E
referencedr 4~ 2.
ol o]o]] mief 2 o] EXSER] ko I A2 SEE AL HIE 4~ §l= Pure Virtual Function
o] EAfel. Z} virtual classg EHRS classe= pure virtual functionS override(7-&d)slo] 2H-8-%F.
javaof A= overloading, overridingo] CFg A4S £& gk
9 F 50], ofef el Zo] AFEE = SIS

Class Hierarchy
Shape

virtual void draw () = 0
Circle / \Rectangle
ivoid draw () { ... }| [void draw () { ... }
Types Pointers Bindings Objects
ptr_shape Square

void draw () { ... }

Rectangle
rect

Rectangle* void draw () { ... }

26

2. PL 2

2.1. Concurrency

© A concurrency®] thall dotR I, ZF PLOJA] o] & o8| 2| Ysl=2] S erolr =},

2.1.1. Concurrency

1. Concurrency

Concurrency(5A19)= A12HA of2] taskL} process?} Alo] A== AHE HolAN, U2
Al AP == A Y.

concurrency Y 2]EL scalableSF1l portabledl|oF G Ho] o] & Q. scalableSirl= 212 & E-2 pro-
cessor(cpu, core)7F S7I6FH Aol £ Z=7l5lH= 219 portablestrfe -2 SFEGo] T architec-
ture = 2] © 2 gHg-o] 7}lgofrf= A Q. 53] sfEf|o] ol 4 9] Bhd o] upef concurrency Yl E]E
GA Alofl= 7 ZFR]7F & 2l E]ofoF 3.

concurrency® HiofAl= ofjef go] F 712 Fejo] 22l v £ Q5.
R

1) parellel exccution : HAFE ol2] Gol 4] Lh2i= A. ofa] o] 22} AYE FUsH= F-
9) pipeline : Z}3} 2ol A AGE GA 2l A. FEAA Gog g o] VoA

g # o} sH= F2.

2. Physical vs. Logical Concurrency

concurrency~ physical concurrency@} logical concurrency® U 5= Q1= Physical Concurrency—
2 o= sl gojof oJ gk concurrencyiz, coreZF of 2] 7] A LA = Z}zF £ E]= Z& W3l Logical
Concurrency= SF=gJo]7} sfLFo] AL AtE Z Lo &g 7[56F =2] X 9] ~F 9] concurrencyzZ,
ZF concurrency THJEO] ol timesharing 0 2 AJ7HS RIJA EHEst= A2 gigl

=
logical concurrency= schedulerglil sl= runtime system programoj] o] 2 &5, scheduler+= ZF time
sliceo]] o]® task7} AP EZ]-E 27 6lo] processor(cpu F+= core)E TGl

task+= oFeloF =2 stateF 7FE 4= o0, ZF stated] A= queue} EAeE. ofef o] Z1gE Pro-
cess(Task) State Transition Diagram©O]2tal oF. AFEGE taskQ] time sliceZ} BLFH (timeout) sched-
ulerol] OJ&f ready SEfZ Eol7F th7]solA] =g, o]EA] Y Y& s]4ol= HAE Preemption
olgtil gt o]% scheduler= ready queueofA] TF-2 0 2 20l taskE AUl gl

Time slice
expiration

Input/output
completed

Input/output

Completed

Blocked

27

2.1.2. Subprogram Level Concurrency

concurrency= "1 G- of T}zl subprogram, unit, statement 5 oj&] SWHojA] e 4 Q=] of 7]
NAl= of 7] oA subprogram(thread) THY Q] concurrencyofl 419 7Y &5 4o H =},

1. Task

Task= T o T2 73 1jjo] C}=2 umt—J—,’- concurrentSFA] AP E 5 Qe I 2 T2 ynit © 2, subpro-
gram3} -F-AFgl. task= processBf I = HE. java 59 HoJoJAlE threads2l il H 2= ZHZ]9] method
7} taskE 33l

taskis 4419 79T T BN JYE Heavyueight Tosksh, 798 74 B2Hg 7144 g7
CHE unitdZ} EYoF FA4A] AP E]= Lightweight Task=Z 2=, Threadf process o] EAJ5F=
Zgx Ao E}%E, lightweight task$].

of Wl task7F T2 taske} FASHAL FEFE FIA 2] GO disjointslrkir B

2. Synchronization
SynchronizationS o 2] taskSof] tjsf] o] H task7} W x| YL z]o] et .-A]-E 2 A 5F= HF
ol= &+ AFglo] EAfol= -0l tier Z Y. synchronization®] 7] %7'3]% 7

/unlockﬁi, zZF 21 oF= 2 lock/unlock Z]2]& g} synchronization& o] E35] m

A& ek
gjo]El & F-7-0l= F-2, synchronizationS oFef o} Zro] 272 FEH.
1) Cooperation Synchronization : SF task7} Y E7] QA= CFE taskZF 2LE E]o]of 5l= F-Lof

ojst synchronization.

cooperation synchronizations2 Producer-Consumer Problem= s 435l= Z o2 AzFel 4~ ¢l2. o]l=
0s9] ZEFa} T SHA] S3oF BAI2, oF program unitQ] producerZ} Hjo]E]E AAISH buffero] *&F
oF1l, oFZ program unitQ] consumerZF bufferof 4] fo]elE Ay Ergol= g digh ¢l o]uj
producer’F ¥ &S buffero]] 12 #a] 2 overwrite™ 5 37, consumer?F bufferg 7 Ha] ¢J O

LR

2) Competition Synchronization : gA]of AEEH 5= gl o] glo]glof tjsf o] task7} FH2ole 1L
Sl F-2of gisl synchronization.

competition synchornizationS = 7Jf O]/‘F_/] task7} =] of] 3-8 tJo]E]of] FHZL5l= 4189l Race Con-
ditionS BFX|S}11, orderly executionS THSFEZE ¢F race conditiono] BIAYSI= 757 2 72 o]
E2S ofH task7} WA oY FEo] EAS5H=X]o] zr}a} dY x| ojH 2= Xf]7f G7|B= o]F o

2}
oF,

3. Language Design for Concurrency
f 22 O] PLOJAIE concurrencyE X[-Agl 7|22 0 2 os(javaofil= JVM)ZF threadE 2|5}, PL
< oJF &&%t

o2 07707701]/(7’1_ concurrencyE X YsF= libraryZ| A ¢, c++, FORTRANOJA]-= OpenMP, posix
O] Pthread 55 883} pthread= posiro] B2 UNIX H|E 2] oso 4] Bl o] 4aFglo] dli A[H|AE

S5F X o] o
:%"%%Ty]ﬁ-

O

synchronization 7]¥ o] RW Locko]2h= o] 12, RW-= read write2 datao] tjd4]+= reader?} writer
7t 2 4 A& RW lock2 readi= A= 3 4= QA Sk, write= HiEFH 02 3ot & St=
71 9.

2.1.3. Semaphore

1. Semaphore

Semaphore= SFLFO] 2] task descriptorE&] Zol= queueE L o= A2 F X2, counting 5l
702 synchronization 2] &} Task Descriptor= tasko]] gjor JHE =]Zol= A2 Y. o]l=

dzykstm7} AA]eH HFH] o 2 ZIRF Y] AFEEE synthronization 7] & SFLFS.

semaphoredfl= wait/lockT} signal/release/unlocko] EAHel. waitd} signalQ] QIRFZE semaphore g
s& YEolEr], wait(s)= s7F 02 2H s& 1 £90]12, 20X blockgl. signal(s)= s& 1 = 8. wait?}

28

signalS race conditiono] B 4= Qli= X[o] OFF 2 ZpY 5] synchronization 2[5 @F. ofef+=
waitdF signal®] AEFE Q.

wait (aSemaphore)
if aSemaphore’s counter > 0 then
decrement aSemaphore’s counter

else

put the caller in asemaphore’s queue

attempt to transfer control to some ready task

(if the task-ready queue is empty, deadlock occurs)
end if

release (aSemaphore)
if aSemaphore’s queue is empty (no task is waiting) then
increment aSemaphore’S counter
else
put the calling task in the task-ready queue
transfer control to a task from aSemaphore’s queue
end

2. Synchronization @ % Semaphore
synchronization & #H2 oo} ZFo] semaphoreE Z-&8 4 9l

o

1) cooperative synchronization
olgl| o} ZFo] 270 9] semaphoreE AFE5FA] producer@} consumer?F A-&-8F= shared buffero] T eF syn-
chronizationS A-g3F.

semaphore fullspots, emptyspots;
fullspots.count = 0;
emptyspots.count = BUFLEN;

task producer;

loop

-- produce VALUE --

wait (emptyspots) ; { wait for a space }
DEPOSIT (VALUE) ;

release (fullspots); { increase filled spaces }
end loop;

end producer;

task consumer;

loop

wait (fullspots); { make sure it is not empty }
FETCH (VALUE) ;

release (emptyspots); { increase empty spaces }

-- consume VALUE --

end loop

end consumer;

2) competition synchronization
ofefj2F go] 17]€] semaphoreE AFgole] HolH =
nizationS £}

& 29l oFH 2 lockd}F unlockS 4 o] synchro-

oK

29

task producer;
loop
-- produce VALUE --
wait (emptyspots);
wait (access);
DEPOSIT (VALUE) ;
release (access) ; relinquish access }
release (fullspots); { increase filled spaces }
end loop;

end producer;

wait for a space }
wait for access }

task consumer;
loop
wait (fullspots);
wait (access) ;
FETCH (VALUE) ;
release (access) ;

make sure it is not empty }
wait for access }

relinquish access }
release (emptyspots); { increase empty spaces }
-- consume VALUE --
end loop

end consumer;

semaphore A= waitd} signals Z272r]7} 28 X7gofoF ol=t], o] mpef G A ZEE
W AL 2R 2P S1= F-2of] 9]5] reliability7} '/Fl;f w Aol EAlet.

2.1.4. Monitor

Monitor= &5 X o] OjsF classE U,f—,:j_ﬂ, E% operations -g5) HLoL = 5JA] synchronization

2 AL Y. =, olelo} 28 rxE 17

Program
Process —
SUB1 <+
Monitor

SUB2 U
F
2
E

Process — Remove B

SUB3 < |

Process

SUB4

monitor= encapsulationS -E35]] semaphoreQ] ¥ reliabilityS 2. SFXTF monitor2} semaphore

+ &6 2F concurrency powerg 7[X]v, A 27} /<7’EJ T grgE = S

2.1.5. Javao]| 4] 9] Synchronization

1. Java Semaphore

javao A= java.util.concurrent.Semaphore2 semaphoreE &-ge 4~ Q2. oJuf] Semaphore Z/7|=
counterZF XS] queuers ZAOFR] 2. FF waitd] releaseo]] -&-E+= HlAEE acquire()2f
release()E A&l

2. Monitor
javaol A= synchronized 7] Y EE HlAE o] Bof H4AE ~FofA 9] synchmmzatzon§ 2]-g5}o] mon-
itorg& e = QIS synchronized 7] YEE E0]H g w2 oF Hoj slupar S8 + QIS

3. Java Thread

javaoflA1 Q] concurrent unit-2 thread FH class®] HAE run()Y. ol= 2 run() HAEL2F main()
A =53} concurrentd}A] HalE = Q5. olmf run() Hl4£E7F HASHE ZFYS threadBF F. java
oA thread+= lightweight task?:].

30

javaol Al thread ¥ classg A-gol= B2 ofeof Zo] 27Fx]7F EAjgl. o] % o classo] ZAIE
Aot start() Ml EE ©FSFH run()of s k= 2ol HFH.

1) Thread classE 21 run() 42 E&8 QB afo] =gF.
2) Runnable QIE]H[O]AE implementst run()S FEgl javaol A= SFLQ classTh AF<BHRS £~
Qonz, DE cassE JEEHE 22 SIEHo]AE FHSER HoF T

thread H& classQ] HAEZ2E sleep() join() X Y= sleep()S F+5 Yoz drof, a5t -0t
F9] ms &°F thread?} blockE[== . thread+= blocko] ZUH ready AEf7F &H. join()L TFE thread
O] run()o] gtEE w7} A& A7]oh= H|A£E Q. & &0, tl.join()S SEdIH t1o] EY w7}3]
Zlohy. ESF t1.5oin(2000)2F Zro] SE&561H timeoutZ 2ol s Al7FH(ms)7FX]eF 7],

thread2] lifetime- start()FEl run()o] nfpzjaf HE7lz]o].

2 JFo] of 2] 7J9] threadE 7FX]= -2, scheduler+= ©1H thread”} HA] 32 A& FYEl
ofuf sl mE 2} FHNA schedulere] F2po] FeolA] FHFO] QU= QAT AR round-
robin Y&] o2 EQlst Z]o] 9] time sliceE ZF ready threado]] ZHJsF= & o2 EZFgk oluj ZF thread
= & 3 priorityE 71X o2 2]

4. Synchronization ¥ % X2 @

synchronization &8 z|2] HFHL ofgfjo} ZF2.

1) cooperative synchronization
HE class®] A9 classQl Object’} EEFol= wait(), notify(), notifyAll() HAE=E AFES) synchro-

nizationS -G8 5~ &, o] A HAEL synchronized HAE oAl S&8F 4~ ¢l 2.

wait() H2EE A Ad Z9] threadS IA] Zths}il (block AEZ At dig A 9] wait listo]]
F71eF(semaphoreofA] 2] 1Z121E= TFE.). notify()= £ eventE 7]Hl2] & waiting thread o7 event
o] BRS ora 7. ol ofH event} 7| RR=X]= JVMe| O]of A= 11, A AFY = gls-
ojofl mtet notifyAll()S A& = Y=t notifyAll()> g AA7F 7F] wait listo] B threadE
7j<.

ofefol Zro] queueE AT wf wait()Z notifyAll()S &g + U= deposit()F} fetch()E Z2F
A& 5= producer?] consumers synchronization x| 2]%.

31

public Queue (int size) ({

que = new int [size];
filled = 0;

nextIn = 1;

nextOut = 1;

queSize = size;

} //** end of Queue constructor

public synchronized void deposit (int item)
throws InterruptedException {

try {
while (filled == queSize)
wait ()
que [nextIn] = item;
nextIn = (nextIn % queSize) + 1;
filled++;

notifyAll () ;
} //** end of try clause
catch (InterruptedException e) {}
} //** end of deposit method

public synchronized int fetch()
throws InterruptedException {

int item = 0;
try {
while (filled == 0)
wait () ;
item = que [nextOut];
nextOut = (nextOut % queSize) + 1;
filled--;

notifyAll () ;
} //** end of try clause
catch (InterruptedException e) {}
return item;
} //** end of fetch method
} //** end of Queue class

2) competition synchronization
E% 32 flo]g o] HZ5F= methodd] synchronized 7] Y EE &9 synchronizationsS Z-ge 5+ ¢

Jl
=i

2.2. Exception/Event Handling

exception handling¥} event handlingo]] tdl] &otH 2} o] B2 A= tfE Jgo|Aqt & t} H|AAZ o7
HAstE e thFaL, EoE AP B o] FAR

o] 7)o A 9] event handling-& javaol| 4] AZ5l= GUI event handling2 A2

2.2.1. Exception Handling

1. Exception

Exception2 o;]- o] FL 2T EQo]7F ZFX|Glo] Ha]e 5~ Q= unusual eventd]. exceptiono] ZF
]S o] ~dlx] = EHSE 2] & Erception Handlingo]2F1l 8}, o] Exception Handlerﬂf_z_
5= program unit = segment®]. HH eventZ| BAHS}A] exception©] 573ol= AS Raised E=
Thrown(c A4 QolE)olatal g}

f R 2 o] sl= o] AJAHLL runtime error(ex. segment fault)E X 23Z7]9] PLE-2 ©o]¥ error
= 7’770;}7']'% Aejope s A W FHAE] Ik, o]of ujef ©hed] error?| MY mjnfr; T2 78
o] FEE I Ho]7F oso A Hol7} e & E]o] 2’15,’13' Z]:29] PLOJAl= o] & errorg program-detected
event?l exception O 2 = 2]ek 4~ Q-2 o},

exceptionS SLE o] = osof] 9]5] X-E.0 2 ZFx]E]o] BIAISIE Implicit Exceptiond}, AF-§AF FE o

32

olgf] Ao 2 HAISE= Explicit Frception© 2 s £~ 9l
ezxception handlingS Ada, c++, java 59 Q5] FHE Y]

2. Exception Handling I3

exception handling ZFg-2 ofefe} Zro] J7}R] YAl 2 T4 H
1) exception 42]

2) exception =]

3) exception 2]

4) exception *]2] o]5 o] EXF

ol ofglfe] 17z} Zro] osol] sl o] B ZX]EE implicit exception}, AFEAFO] 25 Yo H
HRE] = explicit exception© 2 FEG)] 1188k = Q2. exception©] 0so] O3] A2]E]H I 7L
abort=| 2|2, AFERE7F 2 0@k handlero]] O]5] 2|] FaER] == g 5 S

Tplecel

an fing and Event Handling

590 Chapter 14 Exce

he absence of separate or specific exception-handling facilities in
ge d t preci ndling of user-defined, software-detected e
unit is harkdl

qﬂ@“ ﬁu'ns S uch aj exc ed WI% rogr:
037‘_@ 5 0 er On deslgn 5

v
A
used asa status variable. The status varia ;Ede \q@d,l the ¢

cordln e correctgess, and’or normalness of tife resu

k\‘w SOt Imme upon r from the called unit, the caller

(the sta the value mdlcates that an exception has occurrec

handler, which may reside in the calling unit, can be enacted. Many of 1
tandard library functions use a variant of this approach: The return valus

sed a 1 inficators.
Q{i)) f ibility is to pass a label parameter to the subprograr
ARgzFol] O]sF exception handling2] control flows ofefef ZH-2.

Executing code Exception handlers

when ..

begin
begin
Exception_ some statement; Exception 0 et
is raised i
end;

Termination

terminate= A2 = HA2 =35t

ofalst.

|H

239 5 &5 oJu|stal, abort=

2.2.2. Exception Handling in C++

c++9J| 41 9] exception handling: Ada, ML 5° 2 FE] JgFS BFQFor 1990\ o] HEFo] EerE -2

ofgfloF ZFo] try-catch®} throwg &-§3f exception handlingS & 5 =

33

try{
throw NegativeInputException() ;

}
catch{

}

2.2.3. Exception Handling in Java

javaol A1 2] exception handling:S c++olA12] 133} -FAFSIX| gl AR Q2] 0 2 (ZAE throws]
2. FHEE o JVMOJA &5l predefined exceptionS E-g¢F ESF finally, throwsE E-g¢F
1. Exception #d Class

HE java exceptionS Throwable class®] SF9] class®]. Throwable classi= Error2} Exceptions class
= 7HY.

Error class= JVMO] throwsl= errorof] sk class@. o]i= A-g2}Fo]] Q5 A] throwE 5 {11, A-gX}Fofl
o] A= FlolAl oF H.

Exception class®] 3}9] classE-S RuntimeFEzrceptiond} 71 89 class, 12|11 U] classg2 428

A o)
T As
Object
Throwable

{ Exception
IOException RuntimeException)

Error2} 1 319 classs, RuntimeExceptionTF 1 3} classE-2 unchecked exception©]il, L} X]
Throwable classs-2 checked exception®]. Checked Exceptions2 compilerZ} 71 *2]& &FQl5}= ex-
ception© 2, W AT oA S5 exceptions try-catchZ handlingsFALF throwsZE SEZXFA] HrlE=
=2l & gljoF gF. Unchecked ExceptionS compiler?F 1 &5FR] &= exception$.
checked exception< try-catch2 =] 2]s}z] koIl olafo} Zro] oA E of throwsE FA]sHoF &F. o]of
mje} oy H A EE TEole £o)4 o]F 1g{ofo] 2lofE5 of.

void buildDist() throws IOException {

OutOfMemoryError

3

RuntimeFEzception?l 1 519 classk throwso]] ZF4el 4=~ Qlx|al, 2 ZXFJ51x] gh=rclil 3F.

2. Exception Handling

javao A= exception handlingS L3l try-catchZS &-gel. GFHSHA = catch parameterQ] class=
Throwable©] 5] EF$Jo]ofo B ol ¢+t oA o] Hwlah 523

throw® exception ZYA|7F offigh oA E A try-catchZ X 2] =[] QIQctH 71 vlAEF SEoF faE
2 A7 Y. o] o] BHE R} L H=l maino]] EYoFal, o 7]oA X X 2] E]] FQtH JVM
oAl AYElo] mg Jdlo] EgH. o]F exception9] Propagationo]2f1l &F.

ol catch & $1oJ 4] st FAIGHE T class7} EASHE A catchE TEF

34

try { \ 5
/7 BI2ID BAE JhEs0| U= EFES W=,
} catch (Exceptionl el) {

// ExceptionlOl HHME H2, OE Hasil /& 258 Hed
} catch (Exception2 e2) |

// Exceptioanl- LS A2, 018 H2EI e 2P EHES H=[}
} catch (ExceptionN eN) {

/7 EKCEPC-\OHNOI ZAUHE AR, 018 H2GH A8 22 Her)

}

olefo} ZFo| exception AF-E AASILL throw 7] YEE AL exceptions YL 4= Q2. o]uf
Exception class T= Z] 4ol 5} classE AF<HFof K]-JQ-X]- 2 o] exception classE A48
2. throw®2 emceptwn;_. HAISHE AL actual parameter G2 5= A o], catchZ2] parameter
+= formal parameter 9eFS £3l5l= A Q.
class MyException extends Exception {
public MyException(String message) {
super (message) ;
}
+

throw new MyException("MyException occured!");

Exception ZHAE AJAE
Ezception ZJ=]]of] E]]é}]/(i

catchZojJA] g-gaF 4= 9]

try-catch2 exceptions Z2]SF F exception= CFA] BIAAA s B2 EQF 7 Hl42TE $E5F g5
L K=o A] exceptions R EJol & o & =0, o] & Exception Rethrowing®]2F1l gF.

try {

o ¢Ixtz EAES FolFH oy wxEO] exception HAIXZ EE-H.
getMessage(), prmtStackTmce()E I HJHE SIS = 1, o]&=

r =

o

}
catch(Exception e) {

throw e;
3. Finally#
FinallyZ2 try-catcho] oJgr %] 2ok EF5F17 gy —//\—5&7@0}' 5]’5 2SIl ALk 07]
nY @], AFg v 58 $3fgh o] ofajg o] X
FREE FPolk finally= FE TAH.
try {

}
catch(...) {

}
finally {

}

catchZ o] try2} finallyat 2 5F7] = oF. o] Z-L try QFoJA] break, continue, returnof 2J3f Aol 7}
Hol7ke finally= @8 HYH

35

try {

}
finally {

}

4. Assertion
Assertion& 2] ZoF ZHo] IR E HAFSH= EH O 2 defensive programming= 93l AFgHE. o]=
ofg|o} Zro] A4 5F11, o] 7 Y-S uff conditiono] FFro]H 1 HolzFal A Alo]H AssertionError
exceptionS BIAJA]Z]. o]uj] E]of expressions XA fE FS AssertionError AJAJXFO] oIxf2 H
o] messageZ BF.

assert condition;

asser condition : expression;

gVl

o= Fi2 ¢
St

7
T—/'___—.

= Yol AFgE 11, T2 o) tieh HEo] kR E]H A2t ojnf ZEFZ HE 77
o] J 7

A} E:)
VMol §8E FE Ao N s

2.2.4. Event Handling

Event= o] ™ ApAo] BRI LS oFa]= 2Fg] O 2 user actiono]] T2l runtime systemo] A5t ZH]
2 & 5 Qle. o]d eventE handlmgOI- FE HES Byent Handlergfal &} eventof tjjsf ZdsF

5,7’040] TO”E]EE 5= AL Event Handlingo]2f11 F.

event handling2 exception handlingZ} 3-AFSFA], event2] BFAJ O] wl2f Event Handler?} S &= 4]
o2 F2FeF 5[X]7F exception©] implicit/explictslA] WAE = Q= A= G2, event= GUIOf]/(‘]_J
ARER} Ao 2FE 5 external actionof] O]l B of 7] o A= o] & GUIOA] O] T2 -g-of mhE event
M

il

oF event= exceptionh €2,] 2]opx] gFow off I Yofipa] gls.

Fo 2p-go] BRAIGEE GUIOAIQ] graphical object/componentE Widgeto] 2l $F(ex. button). widget
of tjgt B8-S @ ol= 40| event handling2] 7F3F S oF FEf Q.

2.2.5. Event Handling in Java

javao A€l GUI A 2]ofl= AWTSF Swing & &8¢ %

1. AWT
AWTE java Fz22] GUI EZ1¢.

AWToJA] Event Listener= eventE ZX|5L1] &]sF= interfaceo], o]E Fe ol AHo] Fvent Han-
dlerd]. ARl widget(Fvent Source, Fvent Generator)S AAJl1, event ZAE Y= event
handlerg& event listenerZ &= (registration)el. AFSAF7F widget?F AF S 2F-8-51H event ZIA7F A4
X177, event listener= event— XJE]?;]'.

o

36

import java,awt.*;
import java.awt.event.*;

class FrameTest3 { |
public static void main(String argsf]: {

}

{

Frame £ = new Frame ("Login");

f.setSize (300, 200);

/{ EventHandler8aA9 UNE SYMAM Framed WindowListeners SEsi},

// Frame%E MM,
// Framed 3B §F0C,

f /addWindowlistener (new EventHandler {}));

f.setVisible (truel;

/! 448 Frames 00l HOISS &,

class EventHandler implemerts Windowlistener

public void windowOpened (WindowEvent =) {)

public void windowClosing (WindowEvent e) { // Frame® 2 WEg 838 0 S&SC},
e.getWindow () .setVisible (false);

e.getWindow ()} .dispose();
System.exit {0);
]

/7 Wizelod RAHECH
// ZRIBE mEH0,

public void windowClosed (WindowEvent e) {} // GIRUSSE gis HME 3y
public void windowIceniZied (WindowEvent e) {}

public void windowDeiconified(WindowEvent e) |}

public void windowActivated (WindowEvent e) {}

' Exuhlic void windowDeact: vated (WindowEvent e) { 1

event®2l, Sl event& X 2Jol= event listener interfacew— ofefeF -2

OlHE IE{HI0| A

HAE

ActionEvent ActionListener

actionPelormed(ActonEvent ae)

ComponentEvent | ComponeniListener

componentMoved(ActonEvent ae)

componentHidden{ActonEvent ae)

componentAesized(ActonEvent ae)

componentShown{ActonEvent ae)

MouseMotiontistener

mouseDragged(MouseEvent me)

mouseMoved(MouseEvent me)

MouseEvent
Mousellstener

mousePressed(MouseEvent me)

mouseReleased(MouseEvent me)

mouse€ntered(MouseEvent me)

mouseExited{MouseEvent me}

mouseClicked (MouseEvent me)

MouseWheelEvent | MouseWheelListener

mouseWheelMovediMouseWheelEvent e)

keyPressed(KeyEvent ke)

KeyEvent KeyListener keyReleased(KeyEvent ke)
) keyTyped(KeyEvenl ke)
Textevent Textlistener textValueChanged(TexiEvent te)
FocusEvent FocusListener Ll U P L)
focuslost{FocusEvent fe)
IltemEvent ItemListener itemStateChanged(ltemEvent lg)

AdjustmentEvent | AdjustmentListener

adjustmentValueChangsd{AdjustmentEvent ae)

WindowListener

WindowEvent

windowClosing(WindowEvent we}

windowOpened{WindowEvent we)

windowlconified (WindowEvent we)

windowDeiconified WindowEvent we)

windowClosed{WindowEvent we)

windowActivaled (WindowEvenl we)

windowDOeactivated(WindowEvent we)

WindowFocuslListener

windowGainedFocus(WindowEven! &)

windowLoslFocus(WindowEvent e)

WindowStatelistener

windowSlateChanged{WindowEvent e)

ContainerEvent ContalnerLislener

componentAdded (ContainerEvent ce)

componentRemoved{ContainerEvent ce)

[E13-24) Event®l &R @& EIHOIA

37

// Frame® HEtIA 20l Y& 51

ot 2 2.

I e
rl
o, AN

event ZAY A]ofl, event ZYA|o] off == listenerof A

a5 =2Foj] ol AT oF &5

WA=

SENI

aclionPeformed(ActonEvent ae)

ButtonZ SEMS O,

MenuE SE#=s O,

TextFleldOil A EnterI| E %2 M,

List® tem8lLIE M&5I0 GESAMS 0

companentMoved({ActonEvent ae)

YIPEI OISAUS W

componentHidden{ActonEvent ae)

BEEE SH 0 201K B EIAS

componentReslzad{ActonEvent ae)

HEUES] 3710 ATUS I

componentShawn(ActonEvent as)

FEGEEI B 20 8 o

mouseDragged{MouseEvent me)

0124 HER £8 M2 0RAB S39S O

moussiMoved(MouseEvent me)

OI2A-ZUEE QISAIY W

mousePressed(MouseEvent me)

A HES Es I

mouseReleased({MouseEvent me)

0RA HES GAS 0o

mouseEntered{MouseEvent me)

O ZPIED} DIUE 442 ¥el toZ Soigs
o

mouseExited{MoussEvent me)

Oi2A HRIED} OIMIE A2l gof pHIA Ho2 o
sem

mouseClicked(MouseEvent me)

0IRA HES BUU NIAUS U

mouseWhesiMoved(MouseWheelEvent e}

iess U8 SIS ©

keyPressed(KeyEvent ke)

JI2EZS 78 sHs W

keyReleased(KeyEvent ke) -

JNE=S I B-HAE @

keyTyped(KeyEvent ke)

JIEES I8 S0 MAUS O

textValueChanged(TextEvent te)

TextField £& TestArea®l 80| B US O

focusGained(FocusEvent fe)

OIMIE AR focusdt 0IZ8E 1

focusLost(FocusEvent fe)

OIUI= AAD 20 248 focusdt CHE BEUEZ 0|5
g M

itemStateChanged(itemEvent le)

Checkbox, Checkboxltem, Llst, Cholce2! statusJ} Bt
A= W (selected « unselected)

adjustmentvalueChanged(Adjustment
Event ae)

Scrollbarel 20t WHEIRUE W

windowOpened(WindowEvent we)

=R SHE O

windowClosing{WindowEvent we)

AR S WS HES SHE o)

windowClosed(WindowEvent we)

HERI E2E D(dispose()It SF 5IAS W)

windowiconlfled{WindowEvent we)

=2 ZAS(0H0I 23 HUS O

windowDsiconlfied(WindowEvent we}

HER0} 23 SEHOIN CHA R2l 312 s o

windowActivated(WindowEvent we)

HERI S48 gYs 0

windowDgactivated({WindowEvent we)

HERI HIRE3 EUS 0§

windowGalnedFocus(WindowEvent e)

H=RI EHAG g O

windowlestFocus(WindowEvent)

RN EHAE s @

windowStateChanged(WindowEvent e)

HE=R YEI HyE U

componentAdded(ContainerEvent ce)

2HIL BEIED} NS US 0

componentRemoved(ContainerEvent ce)

HEOILN BEHED} MALINE O

[E13-25] 0/8E 2lAUS Componentdl IR A3 HME

P
event sourcedfr} SZ2¢F o~ Q= listner2f,

WA Qs

= -

38

CHlaE B

Mo

fS listeners &5 H AAL o AF§-oh= w4+

Listener Listener& 3t / M m AS3dr= HAS L OHE B

ActionUistener void addActionListenar(ActionListener] Button, List,

void removeActionListener(ActionListener] 1'?‘;’:;:!;3"

AdjustmentUstener | ¥0Id addAdiusimentListener(AdjustmentListenar)]

void removeAdjustmeniListener(AdjustmentListener 1) Serollber
. vold. addComponanlLislener(CnmponentListener)
Ci nel N :
omponentistener void removeComponenlListener(ComponenlUstener)] Component
—_]

. void addConlainerListener(ContalnerLisiener 1
ContainerListener vold removeConlainerListener(ContainerListener 1) Conlainer f
. void addFocusListener(FocusListener 1) s
Focuslistener vold removeFocusListener(FocusListener 1) Commnenl_‘}-ﬁ
—_] _
. Checkbox, " 3
ItemListener void addtemListener(ltemListener 1) ' CheckboxMej:
void removellemListenes(|temListener 1) ultem, List,
Choice
vold addKeyListener(KeyLIstener 1)
Keylstener vold removeKeyListener(KeyListener 1) Comaanant
) void addMoussListener(MouseListensr)
MouseListener void removeMouseListener(Mousalistener 1) Componenl-?,

N void addMouseMo!IonListener(MouseMollonLlstener] ',
MouseMotionLstener void removeMouseMotionListener{MouseMotlonListener 1) Companen;

TextListener void addTexiListener(TextListener [) TextFleld,
vold removeTextListener(TexiListener 1) TextArea
. . void addWindowListener(WindowListener 1)
WindowListener vold removeWindowListener(WindowListener [} Window 3
——

. . vold addWindowFocusLisiener(WindowFocusLlstaner] H 4
WindowFocusListener void removeWindowFocusListener(WindowFocusListenar] Window

. void addWindowStaleLlstener(WindowStateListener 1) g
WindowStateLIstener void removeWindowStatelIstener(WindowStateListener] Wlndow‘

[E13-27) OIWE 2ialE BIUS0 22 F= WAY U Mssts L=

5 = 5 FAJ5]o
o o]l event listenerE wjHl 25 F7sl= P AFESFA] ?J—:O ”1]—’13;5;77 EH/\J: iifﬂé} ;] Eb’o;;
Efb A RG] EXfoped], o] ufet Adapter classg H4ES 2] off G Z—”J_— 2 Sl
= 737—0% Fder = Q5. adapter class= lister interfaceE Had] Hl M4 2 L) =2 A Y.
= A— jas = - - :

adapter class= oF2)s} 2o A5o] ZAY%

Adapter@ e A OIME 2lALi(Interface)
ComponentAdapter l ComponentListener
ContainerAdapter .]Comalneﬂ.istener
FocusAdapter

KeyAdapter KeyListener
N T —

Istener
WindowListener

ol 1y

= o
TG GASHAE ofefs} Zo] AEE YT 4+ 912,

i

class KeyHandler implemsnts KeyXdstener
{

. . class KeyHandler extends KayAdapter (
pubslx.i void :ey?:as:edv(l(eyevent e} { public void keyhassed(KeyEvent e) (
, ystem.out. print. n(e.qetkeychar()__);__’ System.out.println(a.gatKeychar()),'
public void keyReleased (KeyEvent e) (}
public void keyTyped (KeyEvent e) (] -
}

s, = = o]l ZHAH=
?@Zzinfmdgetoﬂ o5t classs} interface -5 Lgtohs EF02, AVZ]T”E'j; KAL) ,E"ff;“;;;jﬁ;
= by = =2 = i — =

grgore] Ao widget: THE = 9. AWT7} 7H component o] 5 j& ¢l 4

= AR
T 3

2.3. Subprogram

2.3.1. Subprogram

SFQ 5]z o] HH
;" bsuoli(f;;(;fzaz“ocess abstraction®] oF E2 Y. =, subprogramS F-GoFH ARG} AR 0] A E
ubpr = o]

AFR7FR] 2] SER] GFoke processE A 7 (U5
o
=

=
YEFA Q1 subprogram-2 off L} g2 54

39

1) ZJ subprogram-2 SFLFO] entry pointE 71H.
2) ol wlo]] 3FL1Q] subprogram@ro] A=, = subprogramo] S EEH caller= o] H7]=
3) subprogram] H&o] FEE[H Fo]7F callerof Al Zol&-

Subprogram Definition< G subprogramo]] oot interface2}l, 1 actions YEFY] 1, Subprogram Call
2 E% subprogramo] tfer A Q. callH o] o2 FZE|X] 9F2 subprogram-2 ActiveE o] QIclil
gl o & 5o, maino] AE, A7} BE calldlal, FX|] A]o]7} Boj 0713]-1757 main, A, B H%= actived].

subprogram-2 abstractionZl ZAFE, information hiding &A1 Jo7F 5. SIX]BF coupling©|2l=
side effect’} £A|5F=0)], o]o] wla} data abstraction O 2 ZWA| 2] GFo] EZFHL.

2. Function vs. Procedure

subprogram-2 =5}oj| 4] 9] gl~E2 IO 2 Fadsfo] Higlglo] £A5l= Function}, BFslzlo] ZASEX]
Y+ Procedure® 72, c <'>: 5,}3 PLoJA= o] & Z]¥E 5202 2ol gikl, vrelghe] 77
lI]-E]' functiond} procedureE F+& gF.

procedure— BFgtzlo] EASIx] o O 2 1) formal parameterZ}F OFLHA] Gt procedure} caller 2
7o)l Al visibleSF variableo] EASIALL, 2) callerofA] Hlo]E[E &2 4 U= formal parameterE
212 A callerol] 2318 AL 5 Y-

ool Al CF2 AR, subprogramQ] Al-gof el functional side effect(coupling)ZF ZAgF. o] & HFx]
5L/ parameterZF G4 in mode]oF SF=t], Ada 5 B PLOJAE o]E gt

3. Parameter
non-method subprogramo] = 2]eF Ef]O]EfOﬂ HZol= HHAloflE= 1) visible$F nonlocal variableo] 24
HLol= Axl, 2) parameter passingS & o]-__ o] 9 o0 o

subprogmm_J Parameter Profiles2 8fg subprogram©o] 72 formal parameter2] number, order, type
S EoF5lE)Y @), E ol subprogram2] Protocol:& parameter profileZ} return type2 Eglol= 71 9.

orofJA] cf2 ZAX] Y, parameterofi= formal parameter2}l actual parameter’F Z2]gl.

2 B2 O] PLOJ A= actual parameter2} formal parameter@] binding©] parameterQ] s=A]o] o] &
iz =g, o] & Positional Parameter2fil &F. BFHH A7) O]-L]E]- formal parameterQ] o]ES8 HA|5]
bindingsl= HH]L Keyword Parameter2f1l &F. oJ& 9], ¢ 52 positional parameterdlS 2] {I5}
28k, python& keyword parameter XS} positional pammeter— parameterQ] 571 AL nl=
OLFSET g-8Ao]x]ul, Jl4=rF Hopr]H T2 o 7F gllZhE] £~ Ql o B 2 keyword pammeter7]— o
098 2~ 91O

python, c++ 5ofJAl= formal parameterd] default 415 X735} acutal parameter’} |G EX] =
Fool o5 e GEINEE AU

actual pammeterﬁ 2P SF variabled] sl formal parameter2l9] type checkingS e ZQIx] =
design issue = & 5ILFQ]. B2 AL typographical errorof] 9] ZEA|7F BRAISE7] £]2H 2, consistency
2 reliability ZHOJAl L o] 8 #-gsl= o] £2.

parameter= subprogram-S HYe 4 Q-2 2] QI5lE= PLE EX]g

PLoJ| A 9] 7} 5 Q 3t abstractionS 2+ process abstraction} data abstractiono] £A|. 27| PLo A=
process abstractionH-2 2| LA, o] data abstraction®] & QA]0] 7 E]|HA 7—717\1] A &o] THAHANS.

72 9] imperative PLof| A= Wrehgt o & AR 4 Ql= AR ol AlehE = o9& 501, col A= arrary
o} functiong §Hest = §l-2. B2 o] ¥HeghE pointerZ sj|A] ¥igto] 7453t

jump= jp(jump)©]l, call-2 jr(jump and return)d. =, call& o] ThA] Eol Q= HAXto] =35,

2.3.2. Parameter Passing Method

1. Parameter Passing Method

Parameter Passing Method-= subprogram ©.2 pammeter% 01%—477’] Agerz], 728]10 parametersE &
ol subprogram © 21E] o] A gkS YABRSZ]o] tjel B Z Q] o] subprogram designoflA] 7V7L
ZF QS issue & SFLFY.

40

parameter passingoj] gjeF Semantic Model2 E7 formal parameterof A 2] glo]e] FAg dFA]Ql. se-
mantic model:S ool Zro] 37Ix]7F —'—/’(}]0]-_1_ OIE 23] formal parameterE 72 5+ 2.

1) In mode : OJ-& == actual parameter22E] GJoJE]& BFS &~ Q= F-&
2) Out mode : - EE= actual parameterzZ GJoJE[E HAGY = U&= F-2.
3) Inout mode : J-&E= actual parameter22E] HoJE[-& BFx, AEe o Q= 3.
Caller Callee
(sub (a, b, ¢)) Call (void sub (int x, int y, int z))

\

%

In mode
Return

Out mode
Call

y
\///

/N

Inout mode Return

parameter passing methodS Zol= F£8 Td AFgoR2E= 1) a& L]-

g3l glo]g Yol
one-way x| two-wayAX]7F Q2. EGF subprogram 2J2 9] o]l & ZZXFelH= A

12 223}500F 2
2. Implementation of Semantic Models

semantic model:2 PLOJA] A2 ojH Fej2 FHE =3 FHHIF. f BE O] PLOJALE pass-by-
valuel call-by-referenceE X|{SFX]|gl,)2 BFHAI7IX] AlESF5|A] 2] {H= PLE EX]slct gf.

1) Pass-by-Value(In)

Pass-by-Value = Call-by-Values= actual parameter®] gko] formal parameter& Z7]5}5F= tjof
AR E= A

T

ol
To

wpE gk, FIFA Q1 o 2] F7ko] Ha

2) Pass-by-Result(Out)

Pass-by-Resulti= 3 formal parameter”} local variablex] ¥ AFEE]CEZE subprogramo] 2 E]H
caller9] actual parameter2 1 gro] JAYE= HFA]Q] o] FHL formal parameter29] ¥ AYL 4
P14 o

pass-by-value2F BFIZIR] 2 712 Q1 i 2] gL7Fo] H Q5117, copyoll THE overhead?F EXJ S = Q5.
F3 FAF actual parameter} 012 7] EASH B Azl SAE 2HA Hok -

3) Pass-by-Value-Result(Inout)

Pass-by-Value-Result= pass-by-valuel} pass-by-resultE HF &-gsF= HFAIQ. =, actual parame-
terQ] gto] formal parameter& Z7]8loF= H|of] AFEE 1, subprogram &7 o]< g ZFo] actual
parameterz2 Y=,

7ol mma] g7to] Bk, —i“fo;f% Hee
Adaof A= in out keywordE AFE3] o]&

4) Pass-by-Reference(Inout)

Pass-by-Reference F= Call-by-Reference= o] OFL2F access path(FE address)& FYol= BF
Alo]

=~ a-

?&l‘

F 1S Balsle 2FY 9] overhead”} 2 5= §1

-

F W GRSl I 2 7 overhead”} O] FF].

4
Pae)
+ 9l

ks

gre] Ae o] TRAOIAT, B =8 5 Qi side effect7} WYY 7 9

5) Pass-by-Name(Inout)

Pass-by-Name2 subprogram U of] £AJ5F= sl formal parameter”| actual parameter® textual sub-
stitution®]= BFA] Q] o]l formal parameters= subprogram call A]9] access methodo]] binding=]1l,
#loluf Faxof gjeh AA binding:S g E= 2 7F By gi7Ez] XA

o

41

main Stack function sub

At start

w Valueof a |« ------ - Ref.toa
x At end Value of b Assign to b
,,,,,,,,, At start
v At end Valueofc [€777 777 _ ef. to e
Assign to ¢
””””” Address (at start) Code
B SeREEEEE R >| Address (d) e |< - - - - - - - Ref.tod

Code

J

Function header: void sub (int a, int b, int c, int d)
Function call in main: sub (w, x, v,2)
(pass w by value, x by result, y by value-result, z by reference)

3. Parameter Passing in Various Languages
cOl A= pass-by-valueE defaultz2 A-§35E11, pointerof 2ot pass-by-referenceE |-},

c++0lA= F7F2 Reference Typeo]2l= SE 3 pointer types] @lgl. o] implicitsFA] dereference
17, A== pass-by-reference® 29l TR c++9JA= reference types oG subprogramoj Al
constants}A] AFgSFEE F =1z Ql2.

void fun(const int &pl, int p2, int &p3)

{

}

javaollAE c/c++2E pass-by-value} default]. SFX]TF objecto]] a4l pass-by-reference’} &
Q=]
o -

cANAE pass-by-valueZ|F default©] X 2F, ref keywordE ZF4SF0] pass-by-referencer &-§aF - ¢l-2.
void sumer(ref int old, int new)
{
}

sumer (ref sum, newValue)

c#3} javaoll A array object=, Zb element”} arrayd 4= Qli= single-dimension®]. Zt array+= Z o]
5= 51t2] named constantE 7HA.

il

2.3.3. Local Referencing Environment

subprogram-2 local referencing environment& 7}, local referencing environmento] ZE$FE]= local
variableZ} nested subprogramo]j] tjsj] erol.H 2}

1. Local Variable
subprogram U-EoA] o€l variable2 TJAZ scopes} SIEF subprogram O 2 |eHE]= o7} mko o
2, o]F Local variableo]2}1l &F.

2 B2 o] PLoJA] local variable2 stack dynamicQl Z10] defaultd]. stack dynamic local variable-2
R e] &2 7 1, recursion®] FH g-ge 7 S
staticQl local variables2 stack dynamico]] H]S] 1) allocation®} deallocationof] GFE runtime overhead”}
R, 2) A accessof B2 FH2l5[1 G8Z o], 3) G subprogramo] history sensitived = Y=
g}, SFX]at static local variable2 recursionS ¢S] Z2gf.

42

cOl A= localof A variableS 2JFH defaultZ stack dynamico]l, static keywordE £of HololH
statico] H.

2. Nested Subprogram

Nested Subprogram-2 subprogram QFofJA] & O] %] subprogram@]. ©]o] w2} scope”} global, local, non-
localZ2 FEE] =

nested subprogram2 ALGOL 60°2HE X|ZFE]Q]1l, o]F X]YsF= PLL ALGOL 609] &£ PL
£9). 4l co] F& PLES o]F A2aH 2.

2.3.4. Calling Subprograms Indirectly

o]® subprogram©] callE]o]oF S=X]7F runtimeo]] 23 E= 438 SofJAl= pointerl} referenceS &
&35 subprogram call®] indirectS}A] =3 E]o]oF &F.

c/c++N A= function pointerE E38f indirect call-S |-l £3] c++9J A= function pointer2] EF]
o] protocol(BF2lZk, paramter types)of Q5] 2 E o], protocolo] £ functionsof tiet indirect call
= FEHY = US c/c++o A= function/arrayQ] o]E0] G function/arrayl] F40|BE, o]F
pointero] grgfspe] g-ge o+ QS

c#0lA] Delegate= H|2E0] bt JF2E 2 Fol= A o]& &of H
9lL. olafol Zro] delegate AAE AA5117, S protocolS 7]-X],_ o]
°7E,°. o]& E5f indirect callo] F+&H

public delegate int Change(int x);

F) |~>

2 oFQ
= O
of 2§

new Change(myFun); // 281
myFun; // 282

Change chgfucl
Change chgfuc2

chgfun2(12); // myFun 8% 7ts

2.3.5. Overloading and Generic

1. Owverloading
Overloaded Subprogram-2 5FLL2] referencing environmento] =6l nameS 7FX|HA], TFE protocol
S 7IR]E subprogram©] EAJ5= subprogram .
Overloaded Operator= operand®] O]} 1 e}l F2Fo] A E = operatory. & £9], javao]A] *
= operando]] 9J3]] integer H4Fo] E 4~ Ql1, floating point ¥4ro] E £~k Q]

A o

o

=
Ada, c++, python, Ruby 59JAl= AFEXL7F overloaded operatorE& JoJel 4= ¢l-2.
2. Generic
Polymorphic Subprogram-2 ZF callofA] A2 CFE EFY 9] parameterE EFE 4~ Q= subprogram@].
£5) £ogl U E0E A2 HE Y] HJo]ElE LHEL 79 o} B-glo] softuare productivity
= g 5 5. o]# polymorphisme of 2] FEZ} EAlek 5/“— A=, o7]of A= ofef o] F 7IXE
2}
1) Ad hoc polymorphic subprogram : A2 C}E2 EFY-S A 8]ol= subprogramE°] G AR =21
5= AL ol polymorphic subprogram. overloaded subprogramojJA] o]& &gl

2) Parametric polymorphic subprogram : A2 CFE2 E]—%’—EO— 2] 2]el= subprogramE-o] gy FAFSEA]
& 2F5l= polymorphic subprogram. generic parameterE Z-§5f= subprogmm‘?_] Generic Subprogram
ofj4] o]& k=t tIAE type expressionofA] pammeteTJ types Xk

c++, java, c# SOA= compile timeoA12] parametric polymorphism= el o F 9], java
AL of] 2ol 4

43

generic_class<T>

// Comparable®| 5t2| EtP TZ HEE & US
public static <T extends Comparable> T doSomething() {

}

public void drawAll (ArrayList<? extends Shape>) things) {

3

O]
Rand

c++9JJAl= genericE templateo] 2l g

2.3.6. Closure

Closures= subprogram@}, 7§ 2] A& oA 9] referencing environment2] 432 2, subprogramo] 74 2]
g o 9] variable YEHIE 2Fo) F= EH Y.

22 9] functional PL, scripting language, c# & static-scope®]1l, nested subprogram-S5 X|s}1,
subprogram=< parameterz MY = Q= PLOJA] closureE X|-@gl

olgll= javascriptl] closure o A]&].
function makeAdder (x) {
return function(y) {return x + y;}

}

var add10 = makeAdder (10);

var add5 = makeAdder (5);

document.write("Add 10 to 20: " + add10(20) + "
");
document .write("Add 5 to 20: " + add5(20) + "
");

2.3.7. Coroutine

=

Coroutine:2 subprogram-5 YA] SHsf Alel 4~ Q] ol QJurzIo] subprogramofA] caller2}
subprogram©] master-slave #AQ] A= 2], caller?} coroutines H] il % F-5olA] 4%, corou-

tine2] Aol BFA]S Symmetric Unit Control Modelo]2F 11 g}

A& &°f, oFef 2k Zo] subprograms HzoF P + QU5

il
Mo

A B

resume —>
from master . .
.

—— resume A

resume B |

e
T
/

—
resume B ~

2.4. Implementation of Subprogram

subprogram 2] implementation®]] tjj3}] &to}H 2},

44

2.4.1. Implementation of Subprogram

subprogram 9] callZ} return®] 2 7Y S EEof Subprogmm Linkage2}1 $F. ©]= subprogram2]
F3lo] gt #8 AFFES EeHeh subprogram®] FEE callT} return] X FHORZ HHE
o] o
% =

Activation Record— subprogram2] noncode(data) parto]] teF formatC 2, o] staticolA] & oJ=.
o] subprogramo] A&P=E wjo] W] F7LS activation recordS W21, ©]F Activation Record
Instance2f1 gf.

oJA] subprogramo] ZF E”ﬁ L40] O-E implementationS olHZ}. =, activation record’} o] H
722 Ho] YEAE

1. Simple Subprogram

local variable©] statics}A] 57";*5]—,'_1 51 subprogram 4] activation record= local variable, param-
eter, return addressQ] =412

ojmj B~ FEOJA] %%*o;f% é*f 2 3=, parameterZ} X] AF F1=] 53022 local variable
Hrot WA 2.

m‘ﬂ

Local variables

Parameters

e =Te> 1= PO

(MA:_\I{ Local variables
Local variables
A Parameters
Data 3] Return address
o (Local variables
B Parameters
] Return address
(Local variables
C Parameters
] Return address
MATN {
]
Code Y
A
s

2. Stack-Dynamic Local Variable

local variable©] stack-dynamicQl F-20l= 1) compiler”} implicit allocationS T OF 5F12, 2) re-
cursionof] mref ¢]o]o] Fl4=9] subprogram activationo] EXe = loB 2 A2]7F ¢ EZFE) static
T= e, FASALE stack dynamicol A 27 HuFel Eelo] F48 BFeHA] B4

o] FH-L activation recordo] dynamic link2} EPE Z7F2 2H8-5F11, activation record= local variable,
parameter, dynamic link, return address@] A2 24 5.

45

Local variables

Parameters T

Dynamic link Stack top

Return address

Dynamic Link= callerQ] activation record instanceQ] baseE 7I2]7]= pointerd]. subprogram EH
0]% callerz2 ZolZ 0], coded| A= PCE ARSI datao A= dynamic linkE AFESF.

EP(Environment Pointer)= &l o7} A&l 591 subprogram@] activation record instance2] base
£ 7}8]7]= register(pointer) Y. ZF variable:2 EP2 R E] 9] Offset(Displacement, local offset)S 7FX]
_ﬂ, EP2} offset2 g3 /“7]- AIRFE. subprogram©] call=]H Ez[o] EPZ-S AZ2-2 subprogram
9] activation record instance?] dynamic link2 XZ =31, A2 activation record instance2] base
TaE XA H.

.RV\@ %‘RME_ A Parameter a Top
ic link e
for fun3 Dynamic link
Return (to fun2)
-«

Local y Top Local y
ARI Parameter | x AR Parameter x

for fun2 Y e

o Dynamic link®—— for fun2 1 Dynamic link

| Return (to fun1) Return (to funl)
Local £ Top Local & Local t
Local s

ARI Local s AR Local s ARI
for funl P P t Parameter v
arameter r for funl arameter r for funl
Dynamic link®— Dynamic link ® Dynamic link e
Return (to main) L | Return (to main) W | |Return (to main)
ARI { ARI { ARI { L
ocal
formain Local 2 formain Local 1 I formain 2
at Point 1 at Point 2 at Point 3

ARI = activation record instance

olmf E7 A H o] stacko]] EXl= dynamic link2] @7,0?—;— Dynamic Chain F+= Call Chaino]2}1l gF.
o= A Aoz} L 51 subprogramZpx] o] @ U7 #po] Y E ==]of Hiet dynamic history
= e

3. Nested Subprogram

nested subprogram©] X ¥ EE= Z-2ofl= EH O (nonlocal) HZ= 28 4~ Qlojofsl2 g2 H o] Ep
S A 2ol QlojoF gF. o]o]] e} activation recordo]] £7F2 Static Link E+ Static Scope Pointer
2l B2 fieldg§ AFE59] static parentZ}F Z7FX]= activation record instance2] base 15 X7 ek

el

ZF1 2 oFofJA] CFE AR Y static parenti= T oA 9] parent=, G subprogram-= 7§ 2JeF sub-
program .

Static Chain-L stack2] —51‘7 static linkES HASl= chain®]. o]® subprogram2] static link= 1
Hoo]l Fp gl&, 7 Hnl= & 7 2ol P ZFS JIX]A] . static chaing &-§3 static linkE o

ZF7FH nonlocal H4-E éJ‘O]-L” o~ Q2. static__depth= ¢4 Z] Q] nestingof]A] oL} Z1o] nested=]o]
UIERE EHE T2, nestedE]X] GATHH 00]17, nestedd mjofrt 14 7.

chain_ offset:2 5% Blg=of] ILeo}r] ol A& OF o= link2] 7H4=¢]. nested subprogramo] EA5}=
1G] ofH BFE EJE of, (chain_ offset, local offset) 2 LFEFE = QIS

2

| =}

%l
22 ol 780 HHo] static linkE LFEF.

46

Local 4 Top
Local .
ARI for —
subl Dynamic link -
Static link o=~
Return (to sub3) |
I
Local - :
Local - :
ARI for — ,
sub3 Dynamic link - !
Static link of--44 :
[
Return (to sub2) '
|
Local - ! i
[
Local b : 1
[
ARI for Parameter ” ¥
|
sub2 Dynamic link -~ : :
Static link P I : :
P
Return (to bigsub) :/. :
a
Local ol i
! I
Local bl | :
[
ARI for Local al |
bigsub Dynamic link o | : :
!
Static link] Co
[
Return (to main) '
De?
ARI for { Local | xl
main_2

4. Dynamic Scoping
dynamic scoping=2 +&s }5 E’joi— deep access2f shallow access7}F EAg}. o] &
Zfo]7F QIR]ut, EZF Ayl =9

Mo
Y
rel
ol
I
2
o

nOh

1) Deep Access : nested subpmgmm—é’— St gRAIaE QAFSEA], dynamic link52] HE9l Dynamic
ChainS &-83]] nonlocal BH5>0f] FZLol= HFH].

Local z

ARI Local x
for sub3 Dynamic link ~—

Return (to sub2)

Local x

ARI Local W
for sub2 Dynamic link L

Return (to subl) j

Local w

ARI Local v
for sub1 Dynamic link o~

Return (to subl) AJ

Local W

ARI Local v
for subl Dynamic link |

Return (to main) 4]

ARI Local u

formain Local v

ARI = activation record instance

47

2) Shallow Access : HHoprl H I O] stack-S AR5, subprogramo] &2 u E7 o] 59 BH71

AoAE]El et o5 stacke] o] HHF. o] F ofH W} TEHW L stacke] 71 S
ol HlO 5I935t
AL =22 =2 0 [

subl sub2

subl sub3 subl

main main sub2 sub3 | subl

u v x z w

(The names in the stack cells indicate the
program units of the variable declaration.)

c-based languageS]| A= Block-2 X|¥sH=4|, ¢] AL X dynamics}A &do] 7}

3. Functional /Logic PL

3.1. Functional /Logic PL

3.1.1. Functional PL

o[r
ok

Functional PL& 513 gl~& 7]HFO &2 S}= PLZ, B2 728 sl ZJsto g2 B o]of ufz} im-
perative PLI= CFE FEf2 EAo] HZL51A E.

(HRIRF ZH1 Z2) FEI7L functional PLE] 7] FEfQ].

Mathematical FunctionS domain setl] {42} range setQ] {14 AFo]2] mapping@. mathematical

functiono] EZJ o 2L olafol ZHe AEZo] 9lL.

1) iteration 2 Th= 2 recursion, conditiono] 2]5] Ajjof&.

2) external valueE E-§5}2] ESFE 2 side effect”] EX|SFR] S

Lisp= 713 28517 92| 291 funtional PLY]. o] scheme, common lisp 52 oFF7] a0l H-S.
il

functiona PLE imperative PLOJ] H]3} ©] HrdF FEoF UB functional PL AFGRIEo] oJ5FH E&
w2 o3l oF. SEX]8F functional PLIF imperative PL AFo]o] B 2] xFo] mfZo], o]u] imperative PL
o] EH—’?—E.%’ Hokl = FgolA] functional PLO 2 O] Felo] =] ghrfal oF.

3.1.2. Logic PL

1. Logic PL

Logic PLE symbolic logicS A&}l logical inferenceE sl E 5= PL¢. o] declarative$t
G402, ofrl A7E 97 9ot He el il 1 Aol et ARAGE AT Hoz
3 Zf% logic PL- facte} rule2 7+g=o] lonj, Fo] 50l ol factf rulez HFt ¥lE
Czs

fe13
57,
o= & RDBMS, expert system, NLP SojJ4] &-§%

N

2. Proposition
Compound TermE 5>5FojJ 4] 9] S~ o;]-L,L— UEFflE 7 0 2 function symbolQl Functor2} parame-
terQ] ordered list2 4=, 713 77—’:7' el 2] proposition(FA]) Q] Atomic Propositions compound
term O 2 A E.

Compound PropositionS & ©]4F9] atomic propositionE-©] logical operatoro] o5} Eglz o 2 245
proposition®]. logical opemtori,': ofefiet 2 AEo] YIS

48

Name Symibol Example Meaning

negation E a nota
conjunction N aMb azand b
disjunction @] aUb aorb
equivalence = a =b a is equivalent to &
implication D Db « implies &

C a Cbh b implies @

IS oo} 2L Quantifier’F EXSF=1], compound propositionof A variableS quantifier”F Z2J5]]

oF 53T 7 8.
Name Example Meaning
universal vV X.P For all X, P is true.
existential I X.P There exists a value of X such

that P is true.
dig S0, ofefs} 2] YT = UL

likes (bob, trout) C likes (bob, fish) M fish (trout)

propositionS > inference rule= Resolutiono]2f11 gF.

3. Prolog
prologS 71 - E Sk logic PL = SFLF¢).

prologO| A= sLFO] B3RS Termo]2F1l gF. term-2 Constant(Atom E= integer), Variable, Structure(

ol g5 Y2

prologo| Al Factl= ofafo} g2 gA]o 2
fact9].

.

dg& 59f, female(shelley)o]™H shelley’} femaleo] 2=

female (shelley) .

male (bill) .

female (mary) .

male (jake) .

father (bill, jake).
father(bill, shelley).
mother (mary, jake).
mother (mary, shelley).

Rule2 ofgfje} Zro] -2 ZHSFI1 &L consequence, 2EZL antecedent__expressions L EF=
Head Horn clauseZ LFEFY. of 7]ojJA] A :- Bo]™H B implies A2 o]&|gr 4~ glrt.

parent (X, Y) :- mother(X, Y).
parent (X, Y) :- father(X, Y).
grandparent (X, Z) :- parent(X, Y) , parent(Y, Z).

Theorm2 logci PLo] 243k system©] proves]7]-E 7] t]sF= proposition . 2, prologo] A= o]& Goal
T Querysfd g} systemE yesZ proveE] Y22, noZ proveE] x| BP-LS LEFH. o]uf provest=
I14S Inferencezlal gl

inferenceofl= bottom-up, top-down &5 of 2] BF2Jo] FExfgk.

L

49

4. 7|}t

4.1. TOY

4.1.1. TOY

1. TOY
TOYE= thoF g g 9] Lisp-like funcational language®]. TOYE statementZ g% TIE language2}
2], term(§o)0.2 P45l U,

TOYE MINUSS} IFE primitive functionC 2 7}2x]11, o]E &rgslo] ALGX7} a2 o]t 4~
A== gk

Le RE FRsdt terme] Fsho2, olef2} 2ol 2.

t1) variable v1, v2, ...&= term$%].

t2) integer constant ..., -2, -1, 0, 1, 2, ...;2 term .

t8) t12} t27F termQl -2, (MINUS t1 t2)2} (IF t1 t2)= term$.

t4) fno] ZOJH function nameo]il, si, ..., sk7F termQl F-% (fn sl ... sk)= term$l.

7= RE integere]l g). TOYIHE o]F dite] ko g

2. DEFUN

DEFUN2 TOYoJA] §+5 FoJsh= Hlo] AHg-she sz ¢]. oo} Zo] FA 0= g5 o3
DEFUN=& Z} arqgumentE HAFLR] §Fal Herd] o] & AYet. DEFUN-S nfZ 2 o] X[k L E -
HOJet #9 nameg VIEFRH(OlE g P Ho] ohet HJE 2o AFEH.).
TOY A= eFr2t & ()2 S84 =
(DEFUN <function name> (<parameter 1> < parameter 2> . . . < parameter n>)
<process description>)

Example: (DEFUN ADD (x y) (MINUS x (MINUS O y)))

3. TOY9 gr+&

TOYE 7]#& oz ofgle] gL 7HY. ol prefi’} 712 Y. =, TOYOJA MINUS®} IFi= 2],
L] E theorem Y.

1) MINUS

MINUSE oo} o] 214510, acl4] bE 4] 1 FokS wigkeh 7] Aglo] lowl AFEeis
HRE 2HY - U

(MINUS a b)

2) IF
IFE ofels} Zo] ZH5hr], at =
EE g0l AR AR Z9 b 4l 0] Wi,

(IF a b)

WHEBE if2 TEE. BE goto?] 2oJoF 7
BNFZ UeH HZL. terminal:2 const id () if minus©] 1, non-terminal: <term>¢.
<term> -> const [id | (M <term> <term>) | (if <term> <term>)

3. TOY Interpreter

TOY Interpreter+= interpreting term=S g3l F+¢=. Interpreting TermS 7] 229l termS 2§35
FAEIE higher-level expression$]. siigF interpreter] oF T2 lexQ} parserz FA == 7.0 2 o]sfal
Ece) KeX

T AT

50

~ > [" ! .
ABA] VALUE

v

interpreting term-= ofe o} ZF2

=
=
1) VALUE<term> : term<& 34 #O2 ojgsl= oF.

2) SUBST<fn (nl ... nk)> : TOY gFof tjjst g o]
= Helslo] terms Hlekol= o
3) APPLY<fn (nl ... nk)> : SUBSTS #-83}17 VALUEZ 1 32 ot g}

=, ofefie} go] 7.

(v1) VALUE< u > =undefined if u is a variable,

(v2) VALUE<n>=n if nis an integer,
(v3) VALUE< (MINUS t1 t2) >
=<tl - 2> if t1 and t2 are integers,

= VALUE< (MINUS VALUE<t1> VALUE<t2>) > otherwise.
VALUEX (IF t1 t2) >

= VALUE<t2> if t1 is positive integer and t2 has a value.

=0 if t1 is 0 or a negative integer,

=VALUE< (IF VALUE<t1> t2) > otherwise
(v4) VALUE< (fn (sl .. sk) >

= APPKY<fn (VALUE<s1> .. VALUE<sk>) > if fn is neither IF nor MUNUS
(a) APPLY<fn (nl..nk) >.

=VALUE< SUBST<fn (n1,. nk) >>.

Where the n1 .. nk are integers corresponding to the values of
VALUE<s1> .. VALUE<sk>.

TOY program-2 (fn nl ... nk) &o|1, APPLY<fn (nl ... nk)>2 1 ZI}7} #{HE.

4. Recursive Term

S8 M A7) T 71E YAE Al recursivest A 74
- 0] O

T ARE-

o
+
%0,
Oo
<
it
Ik
oo
-1}
o,
i
o,
Mo
Ry

pE2 HO] 9 B, 5, o §EE AHED TOY 48 e

=
£ 24519, formal parameterE actual parameter

TOYA MINUSS} IFE &-goff ofefjiet o] of 3t4-8 AT 4= =
(DEFUN ADD (x y) (MINUS x (MINUS O y)))
(DEFUN EQUAL (x y) (MINUS (MINUS 1 (IF (MINUS x y) 1)) (IF (MINUS y x) 1)))
(DEFUN POS (x) (IF x 1))
(DEFUN ZERO (x) (EQUAL x 0))
(DEFUN NEG (x) (IF (MINUS O x) 1))

ofefje} o] IF/THEN/ELSES} FAHE Fdo] 7Hs3t.

Let IF/THEN/ELSE denote
(ADD (IF x y) (IF (MINUS 1 x) z))
The value of the term
(IF/THEN/ELSE x y z)
is VALUE<y> if VALUE<x> is positive,
is VALUE<z> if VALUE<x> is zero or negative,

is undefined otherwise.

51

Let TIMES name the term

(IE/THEN/ELSE x (ADD y (TIMES (MINUS x 1) y)) 0)
We will now prove, for non-negative n and all k, that

(TIMES n k)
yields the product of n with k.

A=
AN

<

2 domain (A 2]) o] 7k} range(2] <)) 2] 7k AFo] 9] mappingd. TOYE= domain} range 25

Sh A oo ZA 5= parameterE Formal Parameter(7}¢14>)2tal ¢ ¢4 & Alo]| ZHA5H= param-
eter= Actual Parameter(4¢14:)2h 31 ¢ formal parameterts o2 W52 H3 o] $ASHAT, actual
parameter+~ 12 2] &S

52

