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1. 7] 9lo]

gt a|EL 2o, PL(Programming Language), °JALTEE (pseudo code)Z EHE o+ ey, F2
pseudo codeZ HE 7|}

pseudo codecli= FE Fo] GAW, GANAL 540 BE g 39 1 FE AF
ok 7.

o] @ oFH A= c++ FEJQ pseudo codeE AFEg

2. basic structure
duelFS eFoR BT U oo} L FRER

=
definition part : ZA] 32F(problem), input, output, AFEFZ 55 F9ol= FEZ.
procedure part : L 2]Z9] A =2 HHA]-S pseudo code 5

FHH 02 ofeo] H5 BAL YT B
o] f.oHEo A pseudo codeo] S22 Aol 2 Bx W (0)o] Y A .

K

2120 §r B4 EYe Yol sl HFE GF okl i BYE §7F S order

Mo
)

[ At o).
- oW case(Al/F7F, HA/F oL/ Bal /BE Z-¢)o] el £4]87] 9.
HR o sl Z o]

Pog 3¢ 2YE 9 95

. order A4F.
Z1& ¢4k, case, order9 5, oS BF & 154 B4 oF g
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1.2.2. case

gy a]E9] H5, a&(effic zency) Al /EZFo)] et A591%], _,,]/(—]/_,/]ol-/ _]E/_/_‘,j_r: = o—]lI-] O_,_ o]
2ol ue} ) =9 Sof et
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7} ol ordero] EFHEAZ H5& H7e 5 UL,
7|
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TS G el ) ol BARI Grelo] ol A

HE 2 & orIgFo] 713t ahe F5 ZJoko] Z-2(Worst Cases)2l1l 5111, complexityE W(n)o &2

L. 5, o] E g} 918 7] mive] 45 duelEe] s 22
SH AL AL BRS A B2 F 2 (Averuge Cuser)HT oh complesity 2 A(n)02 e}
] o

S&E= daeEo) giof 1129k FuS Akl Ao]B =
To” E/l/]o; 3IEL oJofr]EF & ¢lL.

=L HE ZHL(Every Case)o] tjall EAs}H, o]mje]
, el ¥ gl HAIRlo] 8 Z7]ovF F5E =

N
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A=)
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3. average case®] AR
average cases AP ml= ZF G- tfjer gF5S Tafofo] FHutS ARFfoF of. =, 715X Hids

oo 2.

zF n7jo] F-27F Qa1 2F F-90] 7] Ak - YZTE Ny, B85S Ppef oFH average case®] AJ7HE
7‘7LEh Ofﬂh’ﬁ} Zo] 7 = A&

k=1

o] 2 F-pol dieh gEo] gyl PG Yol traFutE Tl oF H. olH 4F=
ek }E%?%E 21 717y o] argjE]oloF o}, g ASHA - g-efHa]E ¢F H.

22 2 B82 FeY Y dueiFo] HEHE Y Jojo} ki, YuFHL =8 nE 7}

=9 SE2= =2 (il o = =170 — g
§& £ ¢
1.2.3. B3¢

1. 7] B HAZF
7] HLH Basic Operation):& Yal2]& & 2412] 7]=0] El= AL, Hlo]g] g Z7]of FEglo]
A AJzho] =2l Z g 7] dike

=29
oj odRlS FJE ko iz Astxz]o] ulaf
AL B 2ol 7]H RS U:iﬁ]'o;] Z] o]sjjoF

i =2 o0 o

e TE B4 7F5oF caseE0] Yl 7]k fE 2,

2. Input Size

e 2 (Input Size)c LTENES] YE L2 FolAi HO|E]S] 271G Wk F2 70 A 72
57, wjge] Zo|, Aze] Lo, YL Pz} Ao Ao, THTBAHE JH T} o] 22
olst
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3. BFE

drelgo 45 HEE(Complexity) 2 YEPY + 5. B e BHE o (Complexity Func-
tion) © 2 LIEFY].

F&2 A7k tjsllA] BAsEE 2 AlZHEE (Time Complexity)oll tjsl E4]5}1, o] AJZHE =
T2 UetY. AIZHEHE ok HIo]E 9] input sized] T2 7] GEe] 7 FF2 LiEr].
&= ool nol mef o2 FEY 7 e, orderE 78 WE ng £ 2HC 2 Mol vt
ooz gelsHA Aike = {5

=

every caseg ot Aol ERAAT, 4F grol whet 5ol @t garelEol A= AlLte] B7Hs3t
A el Ao it 450l T2t average cases, £ 450l digh o] 55t worst
cases AFESH

A= g ol mhefsty] of i, nofl mhE A4t 818 AF A8l B 2 Aol 48 4 e

1.2.4. B 442 59

1. 399 H2Yy
BYE g EL T 450 AR APEOR JOH. B orderdhg oM Ao Bojepd
298 & B} YA, GEH0E IueFe] Y5e HolY YUe FYo] B

2. 2914 AWy
Agson JOH BHE G T AL AoHon HRehe WHORE 515 Ay (Mathe-
matical Induction)o] 1<

opy e ol Y BAE 2T
AHEE8E (induction base) : HGo] AJZFES H Y.

A7 (induction hypothesis) : AY 7S €

AE A (induction step) : 792 tha BAZE JEHeE HY. = A AZHFE HE F9l
ojell g Eels Hel Al H.

E5] 81 FEHE Reke 7pol tfal Bojof she Bl S8 AHEE.
A

EHE 4E pseudo codeE Eil 25| 245, =e sty Hidds] 5224 F5HA .

d

1.2.5. order

Big-O, Omega, Theta, little-o= HF ZxlE g0 gish Fgre 2, a9 H24 (asymptotic,
nol Selehel 32) 45E LR,

ofuf g(n) € O(f(n)) &¢I -7 "9(n)2 f(n)e] big-0"°] A2 &l

1. Big-0O

Big-0 E7J4(0)2 HFE g<o] Hgh F23 A Asymptotic Upper Bound)& A-F31= E7]%
0. olefle] 2712 BHEAZIE BEE BEe] HES O(f(n)ol2k ok, B g} of Hel
HotE =R 2 Hes UE.

O(f(n)) = {g(n)| there exists two positive constants ¢ and N such that g(n) < cf(n) for alln > N}

2. Omega

Omega EZ]H Q)L B ghro] gjst H22 3}aH Asymptotic Lower bound)S A|-gdl= HE7|H
o ofEl o] A& HEAI7= BEE ekeso] Jus Q(f(n))olaf ofal, BEE g7F o] gl
HAE =R = S HEY.

Q(f(n)) = {g(n)| there exists two positive constants ¢ and N such that g(n) > cf(n) for alln > N}

3. Theta

Theta FE7]H(©) EE= order= HEF T gFrof tier H23 4+ (Asymptotic Tight Bound )< A|-&5}=
oY), oo 2L UEAI= ARE FE0] UTe O(f(n)oJe T oz, HEE B4} of
Hefol ZAEH =2 55 LER.




O(f(n)) = {g(n) | there exists three positive constants c1, ca and N such that c1 f(n) < g(n) < caf(n)
for alln > N}
Big-02} Omega®] 7'gS HF Z3lol= 7E Y.

4. little-o

little-o(small-o)= == el-7]2]2] PAS LEI7] 719t ZZ]H Q. ofje] 238 MSA7l=A]E

3lo]slo] = HZrn ol-A = o] AHo] o] HAR 02 GIAF =2 2] E TS 4~ 9.2,
N

—

o(f(n)) = {g(n)| for every positive constant ¢ there exists a positive constant N such that g(n) <

cf(n) for allm > N}

2, g(n) € o(f(n) o] g(n) 5T f(n)7} F§ F2F0 2 6 2 ke 1A HL, g(n)o] F5o] fin)
s} G FTHE A9l EFF o] g(n)& f(n)9] little-02}T .

HANAE= g(n) < cf (n) 2 Eo] Yed], A2 F2 AHS-H= onle <8l
fn)ol g(n) B} B = ZHe 2] g% (6 B2 Bz )0 925k, f(n) € o(g(n)) o] &g

5. 70 BFE s 2

el Fo] AL BYE GrE P28 AHoR Y gAE B speae] ok EE.
onderi= 23] OF Eope Hol A5k, Fel il gl BYE fa 14 Ad, 5 A e
29| 2 A5 HFIIE

79 BYE AHDEE 5ol ufet s obdio} 2.

ok

ok

]--

ol

Base Func. Name Scalability
1 Contant Good .
oy | o2 o)
logn Logarithmic t
n Linear
nlogn o Oflog )
.g
n? Quadratic 3
o
n3 Cubic
nP Polynomial on
2" Exponential ‘ Ofog ), 1)
" Elements
n! Factorial Poor
YPolng 7|RH o2 EPWAS c2 e Aet, =2 vehi7]= ¢
e A5T0 2 Big0% 73 5 98
12 input size2 00] E & gl 09] Hu]2] g2 A

=]
2 e e AAAYHA S wiZiHeSol s B4 o
Aot B o B0, S e mmel ol AH A Tinm) & 60 )6 2ol & Ak
g Bas ae
1.2.6. order9] %
ofF YTZO BT FoF B ordero] SeHoA] FHFE A FHIAE, o] JBE G

o2 Agateln FHF g

1. o]H ordero]] £+ F9
FEEo] BEE ) ol ordero] £8E FYaRE AL, HHe cof ng ol .

599 FEE ol 22,




1. 3|5t order(big-O/Omega/Theta)2] 2] AA].

2. AAsl ¢ X|3.

3. no] EAferS H el

oju f7olek F:&, Thetai= Big-O2}F Omega©] tjall ZFzF SFoloF 3. ZF2f ¢& Foll n& & & Hf
EFEENDER)

2. o]H ordero] &£35}x] A42L =9

) 12) 5.0] B 47} of B orderd] 4514 8H8-S 5
Hee 1gRE o s Holw .

AFES 9] o] HigES TIXoF &-&0] 7lsel vieES ol 271X FHl (a2t a7} ofd
HH) vhs IR l= JES 2k

579 7L ofS} T2

V]

Ao, AFYoE Hold 4. 3 5%

rr

o
1. s order(big- O/Omega/Theta)J 2 o] AA].
2. ol BHE oF7F off ordero] ottt 71
5. 412 ejeio] B9l B3,
5. Fog gge 5
ofelo} Zo] FES B&a BT F7l B orderc] S E BHD 5 YL, o] o] WA
Fohel 20E Yo 52 ALY+ 98
if g(n) € ©(f(n))
g9(n) )
A F if g(n) € o(f(n))
oo if f(n) € o(g(n))

=, Theta2l little-o= oo 2 A 7T 5= QU5

o Sol, n? € O(n?)& Holof FTHY, Big-09] o1 AL, ¢ = 10002 AHHS 1] N=lo|d
Aeehe Holwl .

& Sol, n € O(n?)o] AR YE Hofo} ATHY, Big 0] HE FAT. n < n’E WH3HE N, o7}
ZAfaok hzd), 012 Y n < o). =, e 2L nel e e o] AAsnz mael.

1.2.7. NP-complete

NP-complete:> g Ao ol & XserRet et gaa]so] gla, I8 duggo] &
Aek 5 gitte Aol SHHAE g #A4E X

1.3. order?Q] A&

1.3.1. order?] A&

order?] 8 YL oot 5.
1. Big-0O2} Omega2] E8TA
g(n) € O(f(n)) < f(n) € Qg(n))
%, Big-09} Omega’= W2 570l 4218 4= 912,
2. Theta ZEg77]
g9(n) € O(f(n)) & f(n) € O(g(n))
3. 27 BEFE g+
@lojo] 4= a>19] HisfA], log, n € O(logn) 4 FHe
=, 21 BHE pes R e s ze]o] 43 £ O(lgn) it Olgn) 0.2 £ HiE
lgn-2 logy ns &9 A Q.




4. A+ EHE g
e]o]o] A=~ b>a>00] oA, a™ € O(bn) oJ.

24 B G Woj npak ohE spEze]o] 43,

Q’EEI%’J =2
o]o] A= a>00] A, a™ € o(n!) Q.

 HEZ e BE Argruc BYET) S,

JIN oo, & JIN
L

1.3.2. @3} 13

olf ¢rargEof dis), Fekeo] o HYrE 24 ujf, 71 7}
Y-S Hesfel = Qs 09 gig) 5,}/?572;5/771_} Q, 09 2-g 7}
1. Rule 1 : XA Ag

If T(n) € O(f(n)) and f(n) € O(g
T(n)o] O(f(n))el Z35F1, f(n)o]

2 YT AL A2 g

2. Rule 2 : A4 A 715
If T(n) € O(kf(n)) for constant k > 0, then T(n) € O(f(n))

T(n)o] Zohe big-0°f diel Azpeh of, O() -7 eho] Al 4HA7F 7Fs2 big-02] FolE 42}
shel gl

3. Rule 3 : 7 FEH A EFE] g}

IfTi(n) € O(f1(n)) and Tz(n) € O(f2(n)), then Ty (n)+T2(n) = (Ti+T2)(n) € O(max(fl(n),fz(n)))
L= A7 RE B =of Osh big-O=, = AJ7HERFE ZFZFO] big-O & basic funcitono] T 2 Q). F=2
1279 el eAHE AAEE F 2ol A HE

4. Rule 4 : RAE B7] A=

If T(n) varies by conditions, then take greater complexity.

o} o] H-po] ik 72 Eo|n 2, gels] 2L 7)o ufet o AIIEFEE }XA) D 1] £ Fo
5}

1;13740 x#ﬁ”]:

—~

n)), then T(n) € O(g(n))
(g(n)) off <opH T(n) EoFO(g(n)) o ettt A. big-O7F et

rorE
O

5. Rule 5 : = A8 A A7FEZ T o] gt
If Ti(n) € O(f1(n)) and Ta(n) € O(f2(n)), then Ti(n) x Ta(n) € O(f1(n) x fa(n))
HFE B ZojA] 9] B ol JH m o] tfol AJZFERE 9] big-OL, Y22l 92 9] big-O basic functions

F5 A9
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p)

F

o] F-o]aflof T L, WHEE tie] ko] oI Wro] YIS MR P T FOZ A v w
owe 3 upper b} Sl 2. o] B9 4 AL Attt 3

2. 2 A&

2.1. 2 35

2.1.1. B8 P&

1. 29 32
H2eF ZLE (Divide-and-Conquer )= ZA& o8] 7§18 2R B2 0 2 1= (divide) H ZF2FS 84 (con-

=
quer)slxl, @ QofrtH s doF AulE 2 O=(combine) ~,—X7’] A2 gral el
2 8}&F] HH (Top-Down approach) .

=]
LoA= F2 AAE AFgota, o upet A4 FF ZEO tigt ZFEgo] F5-

e Mo
mop ol
o,

X




B GEL o]zl HEE Ao]o] B} Gl RAE NPk dlol AT B e}
ekl F5 dio FF vmge] PP 7 UL

2. 28 %3 DP

AHE A8 £ FBe Y] HEEA] F-5o] Q. 72 A SR Heleh] o2
o). o] 75 FB AL DP HFY 7 L. BT GHE A=Y Jio] HuL gl Frepv
(R0l Ak nlsn 9l 7.9) DPR oS AgHoloF 8. ofuf AzF Bt §4-] order} w27 73}

32]g
Aol A AR5 Wol Aot HhE oo ofet wiie] 2yt g 4 qlon®, Jue|gut 1
S Aol e Feiss Abgehe o] fET 4 oS,
2] 7 (Tail Recursion)= A TZo0] §h4= upz|ato] WrAst= R AS W3t =, o oA A9 =&
o] 3o Sehat 2ol gl AR AT S5 QAtre] TPsAol EASHAT, 23 A B4 S
b WhE H]G-&2 185tA] Yol E 4 Q1. LISP A& (c, ct++, java 5) & 4F ol Antdg=
Antl Alof 12| AL HHER(DP) 02 hR|sHs 7% 7HA T 918,

2.1.2. B Juo| 4% 24

epeated Substitution
2] (Repeated Substitution)y= &2} 7]2] BHE2] © 2 ClopALl WALl g 2]o]A] dubers 6F
]

L~
L

“@ oL Jl{t m

oy
H

YR AAE T2 AGRDE, BT Gaot A Gz e Hed, 2T
= dof repeated substitutionS A| =8 5 Q1.

Zo A HE] 2L ZO 2 F5l= ZS backward repeated substitution, ZS ZofA]HE 2 ZO 2
& forward repeated substitutiono]2l1 SF.

By g

AAE AFERr B J& due]Fo] ARMHEHE= T2 FopA]o] PHE 7H. repeated substituions
Apgalel AR RS THIE T+ A2

22 o] g 78 Yukgo] mE Byl ol YYIFEAE 915 A 53 AFgsfel 2 FHao}
B 59 AL AHOIE Fo, AL 53 el 4 AT Jugel YT Aoz
37, AYBAIAE BHE B2 FI42 Aoy Y2 olBd FAHE Aoz FHT -

o] O
=N

H #HE iy

Ol
)
e

I\S)

Ql

2.1.3. otAH A=

o] 2] (Master Theorem):2 oS} 2o] 71502 FoJHl oFi1e] 7] AlZHEgEe] et 4
2 weskl Yo, F2 2e P DueFlA e

T(n) = al(3) + f(n)

(n) = nloes a2} 521 o7} Y3

. oW k9] A= cof HiefA] £5 € O() ol |, T(n) € O(h(n)) .

. ofF ] == eo] HEA] fS € Q(ne)o] L, FE35] 2 nol Hiaf af(}) < cf(n)o]H, T(n) €
O(h(n)) 2.

3. of® Qo] == o] sl A £ = O(;k)olF, T(n) € O(h(n)) &,

h
1
2

<




=, g Felerd ofeof 5.

1. h(n)o] f(n) B} Hgo] L (Fro] Z) F->, hojl oal Z3=]o] T(n) € O(h(n)) <.

2. f(n)o] h(n)Er} 50| L (glo] Z) F-2, foll o5 A= o] T(n) € O(f(n)) .

3. f(n)Z} h(n)2] F&o] 21, T(n) € O(h(n)logn) .

B8 GEo] BHoAE, o Al (she] gF)ol sl AZHe o, Eelsfo] whEol Xl HEo] ATt

aol1l Hgksle] prEol7l ZF BiEo] 7171 b
B AR 5o AT ) AT B F471 919] Galolet, A A4tslA] ghot order B8] 1]
7 5 L.

2.2. o] A

2.2.1. o] EHAY

1. o]& g4

ol F4(Binary Search)i= Y MjIL v LA FAIsHE BT FE.
W A B oleln Rl o] Skl i g Hoals glo] gow Fashy, iy Bd
g Vo2 LA 2ol glot 57k gt} Ao g% wde] thak, 28 2% tde] fahA]

EFXHGF
= Sy B =
pseudo code= of2 o} -2

index location (index low, index high) {
index mid;
if (low > high)
return 0; // X £
else {
mid = (low + high) / 2; // &% Uxd (LAl HED

st

o
=]

if (x == S[mid])

return mid; // Y=
else if (x < S[mid])

return location(low, mid-1); // & HLS MEHGH
else

return location(mid+1, high); // REZ H-S MEHG

7iol diet FJore] A HFEE FoRA. HE AL JR dho R g ofuf el 3
el 5l ilo] 29 HASGEE ol F S} FolA HFT.
n = 2~aly ZpgsE Wn) = W(%) + 19|22 o] repeated substitution O 2 7§ a]s]H W(n) =
lgn+1¢. = W(n) € O(lgn) Y
3. &%

Yukgro] B F-9of Hiol g Hol=<]& HofoF of
4 n =28 e W(n) = W(5) +10]1 W(n) =lgn + 19 n # 2 ml= no] #4007 S
o] w2 L WD) ZolE melskE W(n) = W)+ 12)(3ioke] Fgoln). =, Hoke]
32 21o]e] nofl tjal] HIE gt W(n) = W([2))+ 19,
o4 Y oR Z




Induction Hypothesis. 1 < k < n?Ql koj] tfa] W (k) =

Induction Step. W(n) = W(|%]) + 15 no] B¢ F22p S0 F¢2 FA W(n) = |lgn] + 1
o2 1ol . ouf no] F4-olw [lg(n—1)] — |lgn| o) A &3

A
UQ
o
+
:
2 @
o
i)
u&h

2.3. 3§ A4

2.3.1. ¥4 34

1. g3 g€

oy FE (Merge sort):S W& A& 2ok (divide)oll g (merge)oh= 2 FH JL ¢
HES 272 e A er Y H, = o dS HHoA A= T4 9.

pseudo code= ofgo} ZHS. v gx}0 2 FE Gl

void mergesort (int n, keytype S[]1) {
if (m > 1) {
const int h = n/2, m = n - h;
keytype U[1..h], V[1..m];

copy S[1] through S[h] to U[1] through U[h];
copy S[h+1] through S[n] to V[1] through V[m];
mergesort(h, U);

mergesort(m, V);

merge(h, m, U, V, S);

void merge(int h, int m,
const keytype U[], const keytype V[], keytype S[1) {
index i =1, j=1, k =1;
while (i <= h && j <= m) {
if (Uil < V[jD) {
Slk] = ULil; i++;

}
else {
Skl = V[j1; j++;
}
k++:

)

}
if (i > h) copy V[j] through V[m] to S[k] through S[h+m];
else copy U[i] through U[h] to S[k] through S[h+m];

BHEE FoEAL H4 7He] HlwE Z]E Atz of. Fug gE dug]
J)E elzloz o
=8 50 i/i7} 55 @8 A0 o5 gaiet 1 2he S R Sl 98 Aol 2 Sl

]5T H] W HAFaF BFS o Rjofo] AHQ HZr-L 7] ho]1l j7F m+19] H-L FL

A1t ] Aol T (o) b 9] (ef o] WA AL S oA,
A GFO] BAEL Wkt m) = W)+ Wm) +htm—12] HE & 5 g n = 22
ZHgolH, ZE O] h =m = 5. S, W(n) =2W(5)+n—1¢. o]F repeated substitution © =2
ZjE]o;]-’,Jj W(n)=nlgn—n+1¢cO(nlgn).

10




oro

order+= 741, YErF Q] FHL ol = o=

of,
=,
\%
:E,
i

e
S
y
Ol
~—_

d
fu
Anj
)
qu
2,

Merge Merge

X{]Z}E]Xo F(In- place sm“t) el FE Ao FrpR ¢l R e] F7ko] ARSER] gl FE Y.
= =0
= =

o] Hl 2 7ZHsF £~ QIx]ul 2]9] pseudo codeZ 5]

1

7|&o] m2e] FEE Yzl Byl F7FA Q] o2l nt (3 )n+( P*n+(z)*n+-- =2nfF B
(RS A|gFT WFSIER.). Z, FIHEZFET} 2n € O(n) 9]
FRIFA Q] w1 2] F7Ho] H R 3 o]3= merge Ao Z]E gl HolAA H 4= Q7] HliE o] B2 merged]

Yot B2 WS AGolE . o A2 e Yo AL o, nEEe] ZolE FHA
B UZE 41908 =17 mergeot Aal-E Uoj] ] ZoF & o]F v Sof HFYsl= Ao 2 28 4~ 9]2.

pseudo code= oo} ZHS. HIYgxl0 2 Gl

11




// mergesort2¢ HIES W5t FE0 WiH |22 pseudo code= 4H2Fetf.

void merge2(index low, index mid, index high) {
index i, j, k;

keytype Ullow..high]; // &&sot=0 ot [H B
i = low; j =mid + 1; k = low;
while (i <= mid && j <= high) {
if (S[i] < s[jD) {
Ulk] = s[il;
it++;
}
else {
Ulk] = S[jl;
jtts
}
k++;
}
if (i > mid)
move S[j] through S[high] to U[k] through Ulhigh];
else

move S[i] through S[mid] to U[k] through Ulhigh];

move U[low] through Ulhigh] to S[low] through S[high];

}
!
2.4.1. 4 HE
1. 3 3¢

2] (Quick sort)2 S (pivot)S 7|F 02 Bl EES L =1 (partition) ZF RES A2 FE

(sort)sls HeF BE % 042407

-
partitionS pivot= 7] 02 ZF

e AL 9E HEoR 2 AL 0EXE HEO g Pt B9, par-
titione] o]3] pivote] AGeH= B40] YATF AYHDZ, IL FYsH= oy Ao Yz

ol o

pseudo codel= o}t -5, Ml A0 2 FEeh ol wjLofA] W
T, ji pivotE o} & 8471 EolZ 9A0]L, it wAH o el %—
pivote] $13]E 7} 8.

pivot O 2 |5}
5 917]9]. opef]

L mlm

void quicksort (index low, index high) {
index pivotpoint;
if (high > low) {
partition(low, high, pivotpoint);
quicksort(low, pivotpoint-1);
quicksort(pivotpoint+1, high);

12




void partition (index low, index high, index& pivotpoint) {
index i, j;
keytype pivotitem;
pivotitem = S[low]; //pivotitem= 2Tt Y
j = low;
for(i = low + 1; i <= high; i++)
if (S[i] < pivotitem) {
jtts
exchange S[i] and S[j];

oo

==
=

njo

Ink-tel

}
pivotpoint = j;
exchange S[low] and S[pivotpoint]; // pivotitem Z}{= pivotpointO|

2. 4% 24
Alzhol digt z]ofe] F-¢ BHEE Fo Bl fx 7H] HlwE 7] ditez gt

G4 HL] W11 A ] SR, parttion B8] B every casee] el 1, 3
T(n) =n-—1¢.

Fd A o] BYE = pivote] npxjal LIx]of] oJs cf2A4] Y H. =, pivote] 9JXE p(l1 < p < n)
2l1 5}, every cased] gioF BFEE W (n) = W(p—1)+W(n—p)+(n—-1)2 FJde 5 Q2. olgf
pZ} o]H gk JIR]= F-eo) Zlokolx]E AR o2 (o]A XA AlLslo]) BFols] HE, p7l 1 = n
o 90T A% G e S LHE Litel mtie] htrol A R ko] 4
5ol "olx&= Al

W) = W) = 00]EZ, p7} 1 = n9d FLE W(n) =W —1)+ (n—1)0]1 o]F repeated
substitution © 2 “gJ2]sH T'(n) = n(” b ¢ O(n?) .
3. =9

p7h 1 T nd o FopelS, = mE noj tfa W(n) < "L o] JEEHS Hofof . 517 AL
ALk

Induction Base. W (0) =0 < 2 3 —U o).

Induction Hypothesis. 0 < k < n?ol koj] tffa] W (k) < k(k—1)

V)
~—
O:

(p—l)(p—2)+(?L—p)(n—p—1)+
Fgig Mg spxE e,

Induction Step. W(n) =W ({p—1)+W(n—p)+(n—1)0]|2&Z W(n)
(n—1) = (p— 251 + L= = () 9. f(p)E p7F 1 EE 0
91519] nol S} W(n) < "7} e

él/\

- °]
e 2 4 —5 ﬂ(pwou #X])Oi] Ef Lhd p 1FE XS 71 = 9l 2 gha OHE gE S
Lojetz 714

S w(Alp =1+ A(n—p) + (n - 1)) .
pell 1578 n7}2] 8 e HE W(p—1)7 W(n—p)7F 2282, A(n) = Y0, +2A(p—1)+(n-1))
2 g 5= g 18 Y H, n-12 e A mpEy, o] Tl e ey, A =
A(n—1) + 2(n71) o]

n n(n+1) H-




an = 47 22 B}, repeated substztutlonﬁi FEloFH an = 2301 751 — ket k(k+1 o). ofmj
Shey i_ = InnoZ ZARET, S, k(k+1) + dominant factorZ} oFYE 2 orderg& & o FA|gk
T d&. & a,=2lnn, A(n) =2(n+1)lnn € O(nlgn) Y.
=

, BRE Ze 45 O(nlgn) Y.

iz, v A4ks 7182 Qite = e ol AF dalEgo] 7 A9 42 O(nlogn)oal, o] A K
deol H F2 e (T8 ). ¥ 4L, I A2, heap JEo] 54 Z-oll tisf O(nlogn)el
zZotE.

1.
theo] g Fo] FoJif 2 AjFe = QS
pseudo code= oo} ZH2-.

void matrixmult (int n, const number A[][],
const number B[][], number& C[]1[]1) {
index i, j, k;
for (i = 1; i <= n; i++)
for (j = 1; j <= n; j++) {
Clil il =
for (k = 1; k <= n; k++)
Clil[j] = Cl[i1[j] + A[i]l[k] * B[k][j];

L 7 oFE B Qgbe 7] il o 2 Sl A every

2.5.2. ~ESHA0] BY B FuE

1. 2E2Hdlo] gd F4 duzg
~E2bdl(Strassen) o] P 4] de]Ee 7@ o2 g/ H o] Zo] 7} 20] AF5AE ] P 9
4709 BEHE (submatriz) 2 L}Fo] HAHoR Pg F2 ol Fe ).

oINS 0] L 1] YR e, My Mo AL oI SE0] F co] 2 942

Jae 2%+ 9
Cu Ci2\ _ (A A « Bi1 Bio
Co1 Cao Agr Agp By1 B

My = (A1 + Ag2) X (Bi1 + Baa)

= (A21 + A22) X By

M3 = Aqy x (Bia — Ba)

My = Asy X (Bg1 — B11)

Ms = (A11 + Ai2) X Bag

14



Mg = (A21 — A11) X (Bi1 + Bi2)
M7 = (A2 — Ag2) X (Ba1 + Baa)

Cin Ci2\ _ (My+ My— Ms+ My Ms + My
Co1 Cao My + My My + M3 — My + Mg

pseudo codes= oFe 2} LS.

void strassen (int n, nxn_matrix A, nxn_matrix B, nxn_matrix& C) {
if (n <= threshold)
compute C = A x B using the standard algorithm;
else {
partition A into 4 submatrices All, A12, A21, A22;
partition B into 4 submatrices Bll, B12, B21, B22;
compute C = A x B using Strassen’s method;

// example recursive call: strassen(n/2, A11+A22, B11+B22, M1)

bz

go] F7I7F 28 ml= te FO] A5o] o Exjal, ZI|7F AX]H AEaRAe] Hido] Aol
= 0 O &2 thresholdE X|7goFo] AFggh

& 24

Alzhel et BEYE=E ol EAF.

o Vo] F]i 4 S4rE F ko ok elAFH(hreshold)o] 10]2 FFHSIAH(RIAGE order
o Aol YIS njxx] Rek). T(1) = 1Y. My ~ My& g of &4 dito] 78 ZHAsEE =,
every caseoﬂ 1:,1]0]{ n = 2’C >1¢ E]y’ T( ) = (n) = 1¢. repeated substz’tutionﬁi A alslH

T
He gE FHRTG Y50l F2.

ol

]

e
\./
I
=
)
0
¥
3
I
3._-
o
-
I
3
S
00
=
m
@
/—\
l\')
®
=
S

e wlo] 712 G/l eleks 22 dito g mk FAwh o] F9 T(n) = TT(5) + 18(3)°,
T(1) =00]E2 2|5k T(n) € O(n**) .

. every caseol] T3] -50] O(n?8) Q.

I

3. DP

3.1. DP

3.1.1. DP

1. DP
52 A 5% (DP, Dynamic Programming)L 2AE oja] 7jo] &k HEB o2 L}F=(divide) ¥, -2
—v—Xf/—f"iEf AZsly 71 A2 grgslo] 2 BEAE sl 2A) z4g HFAJ o],

DPE= /37’5;1:4,7 é—,:li"_l,q(Bottom—up approach)$].
DPOJAE £ MRS 1§

pPE 2 XfH B2 2o BAIY GO 22 5 9l A, 2 BAA e BAY g FEohe
B4, L REE Apolo] JTEATL e BAE AAE ol Heke P,

Hn

2. DP 5§ 34
DPE 4§ w= 1. BA9] qigt AAL(HIA)E FoJehi, 2. JFH Yo e EARH
s Ze

15




DPOJAE 55 292 ssbA} 22 2A)S] e B&H7] e e BA2 S HY, Hlo] 2
Soll A gsto] A&

3. top-down DP
A5 HE, DPE 27132 s 5= Y5

1) Tabulation(Tabulation method)
ek bottom-up 4] AF BIFE tableo] ZoF1L AFE

2) Memoization
DPOlg] top-down o 2 HL HFH.
&

DQAY Al|7] &5 oh=t], AU ZHE memodf = AL A Fof ifif 0 = AF Fap7F ZA|ol=A]

AAsho] EXJSTE G1eh thAl SHe Tl gEE THAT &,

B AR AL A B4 F

denz 2xeh 4% 2He 8 A gle

2 % 2 Zo] Fa%

Fo BAZ QA ol
sk ajo] EtA Q).

02

ok to o

1<, o

3.1.2. 9| 947

1. HF3t BA]

/8] 4] (Optimization Problem)i= 501l ZAo] tja4] s} o] o] aE (candidate solution)o]
E2HY 1 F HH9 AL Foh 799 EAY.

qGE Eof, {FFE FAl= 223 ZA Y.

2. o] g3

ojW Zajoj tjat A7} sllek BA 2 R 519 BAo] XA )Z gFAF EaFeIiw, 7 BA 2] Z] o]
2] (The principle of optimality)o] 2§ €}l gf. E= Fo]4]0] optimal substructurec}il = gl.

5, HH2) BA) F 58 2AY HHNE A8 DA 2AG] HANE 7 + A F9E 2

sl gol Gttt optimal substructureZ} oFd Z. & Fol, g7 2]& k= A A= A
A0 FZ A7 {v1, vz, v3} & T, vi vy AFO]O] A 2lE T2 YoE = 5. (ppto] TAH
A7} A5)

Hepalo] vge=dl o] EAIZF FZ st £A0]12, X9 fZ]o] H&HTH, DPE #A& &g +
5. ojn] ZHYES A =517 Wi HLE DPE 7l= Aol F5. vhef Fspd]o] vigli=t] o] A7}
Z| 22} £ A 0] 1L, optimal substructureZ} oftatH F5of Hig tfE FHE ARgoloF 2.

DPE g3 HA3 BANAL 2} GHE Abole] EUHEES S HFY ke 5

e X&m-

3.2. o|FA

3.2.1. o|FA 5

1. oA
o g7 4(Binomial Cocfficient)i= Z8-9] A58 54402 Lpehlis .02, oo} Zo] Ak

—~

C1GA7} HA s A 4 5 S obdlsh 2o] 2] o] AR 2 Aol ot
Y.

16




3.2.2. 28 HE
1. 23 38
2g Proz Ids] o]gA+E 78 + U

pseudo code~= OF2f e} ZHS

int bin(int n, int k) {
if((k == n) || (k == 0))
return 1;
else
return (bin(n-1, k-1) + bin(n-1, k));

g e

SR
B TEL I ko g, ()l PoHs Sk A 2()) - 19 ol 3 AR H.oR

Induction Base. (é) = (8) =1

oo,

Induction Hypothesis. T(n,r) =2(") —1¢.

”
Induction Step. T(n+ 1,7) = T(n,r) + T(n,r — 1) = 2("1") — 10] H &g}

)

2R & #AE oFx] glotk, HE2| Yol IR R XpekpHn o] ¢F F2 AL o
A& A7 =] olet %% Hiro] Al

3.2.3. DP

1. DP
DPoJA <] A= 24 AFANE F IS, T
41 A HORL 23kl D2 Agate], Blillj)el (

51 e 5 1S

lo
i
Mo
2,
i
%{l
my,
Qi
~—
rr
]
Ni
~~
il
A
o

ifi=jorj=0
Bli —1][j]+ B[i — 1][j — 1] else

i)
=
Il
—

—

I NS ko2 AGH HrE o 2314 )Y BE Eol vekfl B, Billj)§ 7517] 4l
Al 2 9] i) 9% 9] €47l Haghe &+ Ude.

pseudo code= oo} LS.
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int bin2(int n, int k) {
index i, j;
int B[0..n][0..k];
for(i=0; i<=n; i++)
for(j=0; j <= minimum(i,k); j++)
if (j==0 || j == i) B[il[j] = 1;
else B[i] [j] = B[i-1][j-1]1 + B[i-1]1[j];
return B[n] [k];

'~

[2bo] T B E AR YRR JRE B g0 2 2 v, EE B 7 d4H o]
HFIXH S =] E] %

+- o+ (r=1)4+r+---Frojal, A7|A r&n—k+ 18 53k
(n,r) =nr— 312+ ir € O(nr)Y(r <noJEZ.).

(") a2 olgsla A

n—r

=
L
)
il
4
9_\,
AR}
rr

=
—
e
)
lo
g
)
o
iz}
ko
ol
o,
|d
ku
o,
_>|4_|‘
[
=
ng
Hu
>
oo
ol
ol
&
=

I

3.3. dA=
3.3.1. FdA=

1. g 3=
Z]5F A2 (Shortest Path) EAE TFEAI7} 7 A& F 2 (path) & FHe B ol7AE THEA BF
e o4 9] ZEH o] a4 t}E.

o 7| Ao = EH F=2E S Esl: YalE[F 2= brute force?} floydE U=

2. I8 7|1 B Y
g J2 & I P EAojA = 20 Qg o Sol&. oA I EE ¢l
dot. = WIilljl= oA j2 7= 2 (edge) o 772 7FE A5 LHEF.

danl =A% (tuple) © 2 LFEFL T, sJLte] T8 X= G = (V,E)2 HIJgE VE verter(2 &, FH)
_Q] é’é}_@_g V= U1,y 7Un-917- ZE}O] %72]5]—_ﬂ7 E% €dg€(CLTC, Z_]—/'(j)_g] ﬁ@'ﬁg E= (Ula U2)7 T (U47U)5)
s} o] HeJgr. ojaf 7} Hgo] AL U el AL V], |BI2 e

A2 (path)= |2 P, AE 5o, [va,00,05] 502 FHT 4= 8.
cyclee PEPE HHE TA] WHESHe FZo|L, cycleo] Y= THZE cyclic graphehz

F 29 do](length)= FZol YUi= 79 weightE dE ojoh ¢l

o
osl

=i

=

]

JH= B FAHRJ] 712 N2 ol Amax gr1E FalskAk

1

3.3.2. Brute force
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1. Brute force

r&v

-5, ﬁﬂ@ﬁoﬂ/‘ﬁ_ <l
=2
H

2. /g 444—7
o Yo O FHoR The Hzo] Apu dgFHoR PRI TN nfe] FHE A2
9, RE §Ho] AR 7Hio 2 eZEo] ety 7 of) 3 YHI e HE0 R ] BE
oh2 YHE AAE 2] e ol B, SRR EHRE A9Je n-27)9] FHE Iz
(n—2)1 4%

5] A(n—2)e

17, GelslAE o oF £& 8 Jonz ool Z-e gz o)A brute force
= Fgatr)o] da4ol ¢l

o]

©
=

3.3.3. Floyd’s algorithm

1. Floyd’s algorithm

Floyd’s algorithm:> DPE 2§l 2 F 25 Foh= dug]lgez, F7F JFo] gli= HHoA A%
o 32 FHS Fopob] A 428 A,

2. 2gAE] 7517

HAF2E Fopr|of] S, HPdAeRE Pl HPdARE e Qo ZF YHE F <A
HA9FE 92 7 92,

P41 2 Z o] QIFYES oo} Zo] Wz &E7[ek. coi= ARS 2o wpep AE 3t gl AFgord H.

weight if an edge exists
Wilj] =40 ifi=j
00 if the edge doesn’t exists

28] A2 Zoli DHllj|E E)e o= 0< k<, {vy, 02 vy} ] FHETHS AFGHA
vl vy 2 7He Rz JolZ YePd. 1T 09 B5E £ A Apoje] thE FAE A g
H9el. Ao} ERA] OV 0o ghOR X, A7] Ao e 7L 0%

£ ggoie] olels) 2ol 4318 7 2 98 vk ZUSE FLGPE 49 b s
S5 7.)9) EREA] e A9 F O e FE AHe A9l o] Fae] e} 4oz fas
A g 78+ A2

roll

D*[i]lj] = min(D*'[d][j], D*~[i][k] + D*~[k][3])

DO = Wolx, kWlAg a2 H k-1HAE e & H. o]af kzlof mpef Ya7F HEEHE 2 k-19 Ao
ol ghES 5 ol E(RE #’—5’——2"— ehgoles) ZEE E 7 Qs

ofzlm] of TAO] ARke] Bk A HEE o] whAl gledolnz, o]xpg vjd shpuh 4k
H. Azl & gk oJRFozE, dA dAoA et —i"i—,i"l% %hofiﬁ ARlol= F-27F EXE
I QIA] O*Eﬂo’- ol X2k Azkel HiH vl HoA] Z}ATh A fIR]= gho] £ ER] o2 Bl
DY, = min(DE7Y, D +D’,§;1>oi/ A DETE ofA] ﬂ—g— glo| B2 4FpglS. Dt + D’z p Al
Hl, i joll 217 kg ¥ s A2le) 2yl Dy, = 00122 §4 D tep U8 e 71 5
oG e gro] 45,’XI 1o 5—'— ]
a2 o]l i9} k Apo]ojl A e E
ZZER] oS

pseudo code= ofg|o} LS.

J

Nl‘-{m

o
-
Pz

J50] ko} j APolo]A] 58 HHEE Fei HPA} op]ER

O:
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void floyd(int n, const number W[][], number D[]1[]) {
int i, j, k;
D=TW;
for(k=1; k <= n; k++)
for(i=1; i <= n; i++)
for(j=1; j <= n; j++)
D[i]l[j] = minimum(D[i]l[j], D[il [kI1+D[k]1[j1);

w

AZ1o] gt BREES G2pe] B} 713 oM pHEEO] i o1k J]E ko2 o]H, every case
of disf & 0;}7115 T(n) =n’ € 0(n*)%.

3. A= o7

ool Zro] ol Hjd PE A5 2R AFolo]] EA5lE= FHF sFUE XA SF, AAH o2 ZF
YH& ololE ARFEE 7T = %s—.

PLillj] = viFv; APl FH & 7 2 g2 gk FH ol Aol
o YH ol EAHA g E-¢

floyd() gFrell= oot Zol Pojl gl& gl ZER F7FFH H.

void floyd2(int n, const number W[][], number D[] [], index P[I[]) {
index i, j, k;
initialize P to O
D =W;
for(k=1; k<= n; k++)
for(i=1; i <= n; i++)
for(j=1; j<=n; j++)
if (D[4l [k] + D[k][j] < DLil[j1) {
PLi1[j] = k;
D[il[j1 = D[il[k] + D[k][jl;

ofgfof Zo] PEFE F2E AFFC2 & 5 s

void path(index q,r) {
if (Plqllr] !'= 0) {
path(q,P[ql [r]);
cout << " v" << P[q] [r];
path(P[ql [r],r);

N

e me] B9 o1 F AR FEL P F7IE YHOE DPE A8 £ 5 9e

3.4. 44 3 &4
3.4.1. 44 34 54

1. A4 ¥4 F4
A P& F4(Chained Matriz Multiplicaton)2 oj&] 7§o] &S Fol= ALY,

20



‘ 98 o, AB = CF Akgei 512} o] €] 2F gl thaf A
o] 2} 9jo] gl49} Bo] 2} 91o] HaE Fohnz shpo] flaola WA F4 el jHIel. Ok

- —
ixk G0l A} BE HE u] WAL 1A B GRS ke, =, A2 Y7} 29 277} o2
A4 P FH A1 A - A, e ARACLT oEl o] FLE7] B galEAo] weh HA] Aol
go1d & 9.
2. Minimum Multiplication
Minimum Multiplication 1 2]ZL nrjo] S FHol= gjo] WRol H4 HAFRFS FZ5)1, &g
AbFS Fole A wAIE Fe O*_’El%%’-

o Y G 2} glol e F o] es) L A0] Fagh lzjlE ol 94 o
oL T Hz ALY, oltfo] o] WY (H £4)E Fole LIIEE FoHE,
Fole WS A2 £AG B Fo] ohjer, B g ofwA & F A& Hhe A

) 42 FooF HHURE e Aoni, X3} B,
o] 27wt JPe Wong Yot 7} Yo HA H4 gro] ozl 7}

L
e

3.4.2. Brute force

brute force2 ¢4 Y 549 HX w4 A& Folelw o] digt 2} F-p-o] & R Sfelafof
28
nfo] Y Ay Ay AR o FHo] gt F9-0] #F t, 0]l 1] A7} A S vpa]Epe]
HolE & el 22} t, — 19] Zpo] $7F ARk A7 A& vpRge] Fols B 2
1 gog Hee FHS HYIEE, b, > 2, 8120 & 7 25 Ty = 10]B2 o]g elolH
by > 2,1 >0 22" 2ty = 2029 S Fagt o] Fpo] (UARE Y HE)E dYo]
gQlejoF kB T(n) € Q2") . =, X A5l5.
YA o] GA A, G 2ol B by = (n— Dty 0] BE, FEJoFH t, = (n -2}
o Qg ofFE HAHE Y £ e Yol oFH.
ol ZF F-pol gt Ails & wf miE AgA ARbel= Ao]B2 HA= ddtto] BB w2l
H| E84 9.

3.4.3. DP

oA g FA A1 Ag- -+ A, 9] Minimum MultiplicationS DPZ Fél= ¢ 2]&S AFm Hx},

Al
&

1.
A2 B Ao do] 2727 o} P 7L F P do] 279} B P& P 7]} Lojo}
SlhE Ao W] Z7]= dy %7. ?—7}5 02 :

Y
L,

MTi][] = minimumi<<;—1 (M[i][k] + Mk + 1][j] + di—1dxdj)
M) =0
2. pseudo code

pseudo codei= oo} 2. AiAz--- Aol HE HH F& 75}
o2,

rr
o
ol
S,
Jﬂ
414
lo
l
.
[}

¢
&
9
m
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int minmult(int n, const int d[], index P[][]) {
index i, j, k, diagomal;
int M[1..n, 1..n];
for(i=1; i <= n; i++)
M[i] [i] = O;
for(diagonal = 1; diagonal <= n-1; diagonal++)
for(i=1; i <= n-diagomnal; i++) {
j = 1 + diagonal;
M[i] [j] = minimum(M[i] [k]+M[k+1] [j1+d[i-1]*d[k]1*d[j]1);
(i <= k <= j-1Q! xOi| CHaH AAt.)
Pli]1[j] = 22Z2E F= k9 &
+
return M[1] [n];

(o}

Ml i = j 91 tj2} HERE AF, R} B4 f2pH0R 3 0 AYA JHRER 74
ofuf ZF HEE 7o ufi HF FEE EHAZ he PE JHHHE] HaE (L% o] Zo]
Ui gaE)o] Y Bag dNHoz Fafo} sk gL mpx|se] T W 0EE W 9] e

Diagonal 1 Diagonal 2 Diagonal 3 Diagonal 4 Diagonal 5

T W T

1 o 30 64 132 226 348 <—— Final
2 (o] 24 72 156 268
4
3 (o] 72 198 366
\ ° 5
4 o 168 392
__J
5 o 336
6 o
floyd’s algorithme A2} Zro] Fohe Al P Hjgo] X8 Pliljlols ALH A, 718 3 1)
202 gepxlie 2] F(pxIopo] Foke A|H)o] HFE. P AL 2 ofefo} Zo] AAHOE 7
Zoto] YU FY 2AE U 7 YL order(ijs AR A& Fob HH #E B2 25

void order(index i, index j) {

if (i == j) cout << "A" << i;
else {

k = P[i][j];

cout << u(n;

order (i,k);

order (k+1,3j);

cout << ")";

R

1

&

3.
Alzke] tiet B Eg el Al G M i d AAE 7l EE every cases T 5+ 5. 7T
=k FE YFo] dgtoz gf

diagonal 2IZ A diagonal =1 ~ n — 19 & 7IX 12, i 2XE= n — diagonal ¥, k F X =
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jol—i+1=j—i=diagonal¥l ] 5. Z, Jjslu ofefe} Z-2.

—1)(n—-2
T(n) :Ngi;glyonaZZI (n — diagonal) x diagonal = % € 0(n’)
o2 FUT Aelol ATAL e Bot FR(ATSE AT Sk 52 o] WAlsle] Aol
7 EolA.

3.5. Optimal BST

3.5.1. Optimal BST

1. BST
o] e E 8] (Binary Search Tree. BST)w= XFLIHELCE keyglo] ZrAL 2R &= 91& 2202 2}
RBECE keyglo] 2 2 E= QE& Ao g2 HU ZA5H= binary tree .

BST+= ordered set5 9802 ’E”'O]- FAE. ordered set-2 Z} QA5 7]2]9] «A]7F ZolE o] Q= set
= 2ok A= O’E*’% E= key ghol wpefp §1%/902%0 2 o]F5t leafo] EYSHA oy 9IX]E
Xalo] el o

E3 1T 9] depthi= root22E] o]o]Zl edge] 7H5=¢]. root= depth7} 0¢).
olojo] L= - & 0] depth XFo|7} 1 o]5Fo]H balanced, 1ZX] &F.©H unbalancedeF BSTEF1 &

2. Optimal BST

wto] Y52 ofE 242 BSTA ¢Es-=Ajo] ue} BST ke 2455, ofe] ufel = Eof of
Sl average search time©] Y21, =, optimal BST+= average search time©] A7) ElE=(Ha2 o2
ERio] Z1%F WRE) BSTY. of 7]ol 4] 9] Rl4=zFS optimal value2l1l F.

£ L Eof gigk search timeS it e 55 7| 7FR] el Bl ALE] ZQl. of 7] o[ 4] o]i= depth
+ 107. zF FLof gjs) E3 7|7} 5%3FeF 2FE-S 7FR] I average search timeS & 4~ L.

— the probability that Key;
is the search key
p;=0.7,p,=02,p;=0.1
1) 3(0.7) +2(0.2) + 1(0.1)=2.6
2)2(0.7)+3(0.2) + 1(0.1)=2.1
@ @ 3)2(0.7)+1(0.2) +2(0.1)= 1.8
4)1(0.7) +3(0.2) +2(0.1)= 1.5
@ @ 5)1(0.7) +2(0.2) +3(0.1)=1.4

key’} 0] Q& 4]0 upgl BSTIF AFEo g FAE DR 4E o A2 Holdx|7F #HA Y.
o 7] A AalH o2 L9 optimal value, bst, Y& =AE Fole da]ZS ol
ojuf keyo] FAZ Q] FrHE ZF keyo] 2EA7) FRFEZE L EJF pfalH ZF L EE 1 ~ n9

22 hey 7RI AOR g E hey glo] e o wpet FYHo] YoBE JEORE 7} key]
g0 o 5.

O
Rl

B 2705 71 F2Al2 Ao 4= Qlal, AA|=E BSTolA F43

Zegat
1_ T o .
Elsee E‘r—{EO] key%l% Hlwsto] A9 258 she Ao g AT 4 S SRt o] ¢4 31201] + &5

9]

_éﬂll

3.5.2. DP
1. Fai4
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nZfl o] ke EZ} Ut SpRk WA e Ei= iE keygh 2 JIX A, T 5 FES pi Y

o (=

WE AQ] f4 Afifljjoll& A EERE jAA L ETIRE ALE ol 7 7

Aot optimal bst2] average
search timeS ]3¢l =, B dg|Zo) A= Allj[nj7}x] o= Aol B

ol Afijfij=0, Afi]fi-1]=A[jj[i+1]=0¢].
Hopale ofe el 5.

Ald)[j] = mini<i<; (Ald[k = 1] + Ak +1][7]) + Z Pm

Z, Afifj= ARE AN 2B F ShIE REG F9E R T, T 5 ARAE glo
2 8 o] p 2 Hoft A By LI/ FEA B 0] 7 LEL WA @ U4 6 LA

m0] 1, ol3} T Aol L min 9o Wl Z19).

For each key, there is one
additional comparison at

the root. l

Average search time
in this subtree
is Al1]lk— 1]

Average search time
in this subtree
is Alk +1][n]

Keyy,....Keyy_1
Average time for tree k, A[1][n] =

Al1][k-1] +p,+ ...+ Dy + DPp + Alk+1][n] + P,y +... + Py

Average time  Additional time Average time Average time  Additional time
in left subtree comparing at root searching at root in right subtree comparing at root

2. pseudo code
D1~ Dn O olaiojg Hh_

void optsearchtree(int n, const float p[], float& minavg, index R[I[]) {
index i, j, k, diagomal;
float A[1..n+1]1[0..n];

// 27|53
for(i=1; i<=n; i++) {
A[i][i-1] = 0; A[i][i] = p[il; R[il[i] = i; R[il[i-1] =
}
A[n+1][n] = 0; R[n+1][n] = 0;

/7 ALt
for(diagonal=1; diagonal<= n-1; diagonal++) {
for(i=1; i <= n-diagonal; i++) {
j = i + diagonal;
A[i]1[j] = min_{k=i~j}(A[i] [k-11+A[k+1]1[j]) + pi + ... + pj
R[1][j] = a value of k that gave the minimum;

minavg = A[1][n]; // ©teHgf

Afil[j}& F5+7] A= 7 o] thZpad (diagonal) ] gho] BT 2, Afilfij=0%E] A2F5ke] AfLjfn]
742 zrd Wiz kg g

24




WY R A3} optimal b5k GRS 2 EAE T RN min £ o1F ks A3
2 RN iAARE JHAARE optimal bstE YA ] mEo} 4P, e RS A7 B
o1 optimal bstE 7 5 2. o bstollic BB Fo Y= LERH You HOE 9 A

Alzhe] gk BHEE AR min WEANA] GiHS TE Ao 2 . cvery caseo] Tl 7L
]

dia=n-1, i=n-dia, j=i+dia, k=j-i+1=dia-10] 22 oo} ZF-2

> (n— dia)(dia+ 1) = w € 0(n®)
dia=1

=, every cased] 5l ©(n3) Y.

4. Geedy

4.1. Greedy

4.1.1. Greedy

1. Greedy
Gireedy approachi= i -7+ HH 0.2 1ol A s F2 W02, HA7 EAE & o A4

=
=, HHE RS Erx] 2] e (local optimal)-S oF1, 1 A5 HESFY solutiono] Z AL, =]
]

n\l

=,

Zzog L,L—,f— A7} (global) optimal solution ¥

greedy®] 4] ‘JE”%’ ojm Hef& nf 7k X oJojof sl=t, XS HFol= 7]FS greedy
critem’ono]ﬂ,’:ﬂ F. greedy=2 ZA-E SJZE52H greedy criterion< é}_ﬂ TAo] gif g ec= A
= SooF 3. DPO/V?% oS grow BAIZF s B EE AR, greedyoﬂ/‘?’f greedy criterions
;F_O_E,j A7} ol EH

localofl= F]Z]o]E] 2L globalof A= F| A o]el= HGS o B =, greedy criteriono] I 4 getth=
A Ao FFoF gt globalof Al 2] =S Hger o+ QI greedyE K& W ¥5°] X
oOFrO A 0] O
= T AT

DQ, DP7} #AE o] Fi= Zi(ﬂgf/")oi oA e EHchH, D
o ueE. = S} ZAH DPELE Z 5~ Q1 greedyZr =
optimal substructureoof gF.

2. 54 79

grecdy= oFefS} 72 BAZ AH S

1) Selection : | o] AEJOJA] greedy criterionS Z-§ofFo] &S gF.

2) Feasibility Check : @Al &L G5 solutionof] EgHX|7]= Zlo ] 2 Z5lz]
3) Solution Check : HZE2 o0& E‘?j solution©] gjgQIx] —2}0 g},

°
SFA

greedy= Z] &Sl EAof Hjsf

Qs =& DP= #§szd

pel
A
BN

ok
.
o

4.2. Minimum Spanning Tree

4.2.1. Minimum Spanning Tree

Spanning Treei= ¢2 % BHIHFGFY T8l ToAx] 3G 2 & XJ]7-]O]-O-’] Aol =~ Q= EF] Q] Minimum
Spanning Tree= TR/ IoA] 22 2 Sl spanning tree 5 HA] FHFAI0] Fo] Aol A oo
=AY

FQ ga]=0 2L primd} kruscalo] =], sparse graphof A= kruscal©], dense graphol A= prim

25



o] £t

4.2.2. Brute force

BE 37o] Mo P T2} et o}, ofH FUHORRH 2 ¢ UK AAv
U0 Bolor] g A2 N+E A2 B ot & (n-1)PIAY. 5, FHeke] 7e Mize]

OJOI
-

4.2.3. Prim’s algorithm

1. Prim’s Algorithm

Prim’s Algortlinl i v EG TG YE AR, vz ~ va71A FEE opH A
Helog Yo Z£rFslo] MSTE ¢E= diz]5¢l.

Yi= Agbo] a2 JE, Fie 29 edges el A o2 JA E= 2 Fol A1 4H.

ojuff YoFo] ez} 7} 717k FRRE S Yo Eéél/‘]?]ﬂ(greedy criterion), 71 AIE Yo
ek A efof Hry gk

2. nearest?} distance

nearest2} distance Hj 92 A&}

nearestfi : Yol ot JHE & v;of] 71 77 FH ] ¢lH A

distancefi] : nearest[ij2] g Hz}o] A a].

3. Pseudo Code

pseudo code= Of2 o} -2

void prim(int n, const number W[][], set_of_edges& F) {
index i, vnear; number min; edge e;
index nearest[2..n]; number distance[2..n];

F - B
for(i=2; i <= n; i++) { /7 27|38t
nearest[i] = 1; // viO|M 7}& 7f77f‘3‘ dE vif2 275t
distance[i] = W[l] [il; // vid} vig E o|SMe| 7I2%|2 =75t
}

repeat(n-1 times) { // n-17H9| FHES YO| F7I5tCt
min = "infinite";
for(i=2; i <= n; i++) { // 2} Z&0| Tl M
if (0 <= distance[i] <= mln) { // distancel[i]S 74Af3f0:|
min = distancelil; // 7}& 7M710| Q= vnearS
vnear = i; // ZH=C}.

3
}
e = edge connecting vertices indexed by vnear and nearest[vnear];
add e to F;
distance[vnear] = -1; // 22 LEZ YO0 R7}CHC}.

for(i=2; i <= n; i++) {
if (W[i] [vnear] < distance[i]) { // YO E 2t LC0f CHaHA]
distance[i] = W[i] [vnear]; // distance .
nearest[i] = vnear;

l_|
I_]
i -
\J
=
>
_O'E
ul
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FEB 2 T(n)=2(n-1)(n—-1) € On?) Y.

4.2.4. Kruskal’s algorithm

1. Kruskal’s Algorithm
Kruskal’s Algorithm-2 ZF x =& == disjoint set 22 A
THAS ol ¥ ARgoFY disjoint setS gAA] MSTE H+=

2. Pseudo Code
pseudo code= ofg|2} LS.
void kruskal(int n, int m, set_of_edges E, set_of_edges& F) {
index i, j;
set_pointer p, q;
edge e;

Sort the m edges in E by weight in nondecreasing order;
F = 3UY;

2o, MR (9B ) 02 H P
oF
= -1

Eq;ZOI

initial(n);

while (number of edges in F is less than n-1) {
e = edges with least weight not yet considered;
i, j = indices of vertices connected by e;

p = find(i);

q = £find(j);

if (lequal(p,q)) {
merge (p,q) ;
add e to F;

}

3. & &£4

Alzkel dist g5 EA45 3
kruscal algromithm2] % =x]of] ujef galy. E35] merger]of] F
) ol aistol o e e oo ol Pl B A - e

IESF disjoint setof]A] ZE ] oF 7jo] 7HHd o2 H AT E Sl= path compressionS AF&51H find()2]
Hoje] A8 Yoz Bolre 3 L.

m >n—10]B& ZFHo| dominant factord. m7]e] ZHH9] FEo] gjst A 7HEFE = ©O(mlogm) Y
ojuf RE FHo] 2 FHH} 7oz AAHE Hote] Fe, FHo] nfold m = "l ojma,
©(n%logn)o] H.

=, 450] O(nlogn) T O(n*logn) AFOJoJA] LIS

'~

L
olr
Mo
S
&
8
3
S
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S
&
Q
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2
oy
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4.3. Dijkstra’s algorithm

4.3.1. Dijkstra’s algorithm

1. Dijkstra’s Alogrithm
Dijkstra’s Alogrithm2 oF EZ] FHojA o2 JF oz 7le HE ot F 25 Fol= due]=9.

prim3} ORI 2 Y= Alfko] ehe E Y H §, F= Z10j9] edgeE 2ok
2. touch@} length
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touch®}F length Hj 9L A3}
touchfi] : FH v oA YeFo] Aal7}F 471 Eli= A, lengthl] : touchfi]ofA1L] 72

3. Pesudo Code
pseudo code= ofg|o} 5.

void dijkstra (int n, const number W[][], set_of_edges& F) {
index i, vnear; edge e;
index touch[2..n]; number length[2..n];
F - 233
for(i=2; i <= n; i++) { // For all vertices, initialize vl to be the last
touch[i] = 1; // vertex on the current shortest path from vi,
length[i] = W[1][i]; // and initialize length of that path to be the
} // weight on the edge from vi.
repeat(n-1 times) { // Add all n-1 vertices to Y.
min = "infinite";
for(i=2; i <= n; i++) { // Check each vertex for having shortest path.
if (0 <= length[i] <= min) {
min = length[i];
vnear = i;
}
}
e = edge from vertex indexed by touch[vnear]
to vertex indexed by vnear;
add e to F;
for(i=2; i <= n; i++) {
if (length[vnear] + Wlvnear][i] < length[i]) {
length[i] = length[vnear] + W[vnear] [i];
touch[i] = vnear; // For each vertex not in Y, update its shortest
} // path. Add vertex indexed by vnear to Y.

}
length[vnear] = -1;
T
}
5 24
(n2)94 Fs= 7.

5. Backtracking

5.1. Backtracking

5.1.1. Backtracking

1. Backtracking
Backtracking2 e EFIFE 2o 4] Zlo] 24 BFAH (Depth-first Searh)S ol=4], 74¢F = Eof 4]
o A2 A o RS G el L NS Fe et e Ho B A

greedyol| Al-= greedy criterion©] =R ACHH, backtrackingo A= oFgflo] HAEo] =28
1) A 27 Eg]o] 74 vhH.
2) F3eks Hdohs Tl

backtracking Yoz 27 BEA|7)E ¢lole] §hg 2] gt WA o=, J|BA =L HHs} 2]

g




| et A2 ofd. & £HE WEohs §e BF oA Hluldls W22 X X0 #AE fE

Mo

backtracking2 brute force2} FAFSFR|Tl, 7ls4]0] He F-SE o o] ZFolslr] U2 o2 i A&
N

backtracking2 7|22 0 2 Zlo] 24 Bl o 2 ey 7L E a5 gHAHel o]ufl depth-first searchi= 7
E Ag5FE 2 backtracking©] 5_507’]/(‘],': MY 2S5 AEE

2. A FIE]

e FILE 2] (State Space Tree)= FERE] 5 2 (F 2 leaf)7FR]S] F27}F ofigo] tfet $H =

EAol= ER| =2, Zlo] 24 QS Fofl 5 FZF g el AS w5 Qs ojuff o]H F=Z7}
5] O

sigoletd sg F2 9o gl =EEo] sfgS 2y
EAIS} 270 WepA] leaf7} oFH X F oA

Eejoly] ge +HERE Y2F + A2
backtmckmgoﬂw Y BAL JHFEH YR L H+E AN +FE - S,

9

S Promising) 2 G 427 2709 SIEA EL JolE. o5 B2} Z el A 5 el
oty oukslz] oh;"l._L 37,
G F9E B i, G BLk AU YLhY o] FE H 2 pruning) 7]

oT = = U
Ho= Solgbackirack). %, SUSIE A% 711, SuEN] oW SRE AF 7] Sobz

FolsAE AftE w25 Aok £ -2ut)

4. backtracking9] 53 73
backtracking®] -=2F ¥}F-L th~5] ofgof Z-

Rl

To

void checknode (node v) {
node u;

/ z|Ast ZAel B2
if (value(v) is better than best) {
best = value(v);

}

if (promising(v)) {
if (there is a solution at v) {
write the solution;

+
else {
for (each child u of v) {
checknode (u) ;
+
+

BE P LEoi A4 ER o5 5 AR Zo] o ek, 94 FAlek S9e mEw i
EolEs pEshs Ao] H &AL 5 oS, ol olalo] HelE 915 $1o] YR pseudo

codeE g2l

backtracking 7'd AHA7} 2kekaly] whEo] T WAl A EHA

5.1.2. Monte Carlo Algorithm
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1. Monte Carlo

Monte Carlo Algorithm-2 backtrackingQ] 4§52 HA5l= Yug]Z0o 2, AefFZIFE o)A Ex]eF
= gl AFHel FRE PR AHelo] 1 F Aol AL L] 5 AL ZHY. B
ﬁEO]] oieh & HRR SI~F HRE A o 2 oy, 7] FHARE FIYX] 2 of =, monte acrlo algorithm
2 73X4X4(determmzstw) OP7E]§0] ol o1& (probabilistic) Yrila]E9]

5] backtrackingoI A= el W} EF ST 45 o, 157 9L & g F, G

BYE g8 9L 4 glong, FEHoT Pk 3.

monte carlogE Z-§5l]H e IFE R 7} ofgfjo] = JIX] ZHS ulEg|oF o = 22 level®] &

dm 1

J

So] B FUe 271 glofoF §.
1) HFELNA 2 leveld] L ESL BE FUAG L] 23 GO} T
o) A BN 2 level®] EEE B SAR 48] A EE FH2I0k B

2. AIF A%

monte carloofAl= leveld 2 FoF XA Lt &= 7]77A—J Hit 2] (FR])(m; )2 G level 9] =7} 7]-

A= A = EO] (1 )& E-g-olo] A EQ HE 4. B level(i+1)o] EXol= L E9] o+,

ol level 94 Aol Fat i’:J T2t ol Tevel Hh= 9 lev@lo] IR AA EO] S E
BE Fol HE 7 A5 S, momy - omiati 2 G 5 G 0|5 HE levelo] HiofA] Al fFoFH 5.:7'

1 +to +mots +momata + -+ +momy - -m;_1t; + -+

mE FoHE L D] o B arjoHL thi .
g, m o t; B ZFA] e T O] Fl o] gfer ghol A 72k}
O] & FL5}= pseudo codes= oFefloF ZHe. R 2, mprod= mom;...0] 2, numnodes— ALF 2}
int estimate() {
node v;

int m, mprod, t, numnodes;
vV = root of state space tree;

numnodes = 1; // A =E9| 4
m=1; // m_i
mprod 1; // m Om_1...

while (m != 0) {
t = number of children of v;
mprod = mprod*m;
numnodes = numnodes + mprodxt;
m = number of promising children of v;
if (m '= 0) {
v = randomly selected promising child of v;
}
}

return numnodes;

5.2. n-Queens Problem

5.2.1. n-Queens Problem

n-Queens Problem-2 n7f2] QueensS A2 AFHFS Q¢sIx] Q= (Zhe G/ ot gjzhddsto] &
AJotx] YEE) nx n AL HIRJAIZ]E A Y.
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5.2.2. Brute Force

L
N

WA queens 2 G sh1H HAGHT G2skd, Po] Al D £ oIS HF
o(n™) Y.

5.2.3. Backtracking

1. JHFHES} Gt =4
JeHFIEZE 2k F HZ 51 = EE FJ5)T, T F12 queeno] X[t HHEZ g o]y REE
thees] AJRFH 0 2 EE YEYR] o8 =, ofgel Zro] %)

x X x x x
* x x * * x x

=
=

x x * x x x

el 2L, oY queen] F(FL oln] e FS.)H tjzFdo) tFE queeno] EXfo=X] 2 %}
’5‘Hﬁ*lz':77fXH d 2 o) EXfof= queenEol tiofA] E% Hl W& 5 ofjoF . oJuf &= queeno] A= tjf
21 (diagonal) o] IR SF=R]=, affHE 2] 2fo] o] Mgyl y=f# o] xlo]o] Hulglo] Z-2X] & H| Wl 5]o]

_Q]-O]o]- ~ o]0

UO{l

2. Pseudo Code
queen®] JjE e (n)o2 BFS. queen()Q] QIXIZE= gt dHoJA]o] H XHEZ
Y1 g Agets 1o 0D, colla/==beFel et ol ol BE b¥lA] Fo] ek A
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void queens (index i) {
index j;
if (promising (i)) {
if (i ==n) {
cout << col[1] through coll[n];

}
else {
for (j=1; j<=n; j++) {
col[i+1] = j;
queens (i+1);
}
}
}
}
bool promising (index i) {
index k;
bool switch;
k=1;

switch = TRUE;

while (k<i && switch) {
if (col[il==col[k] || abs(col[i]l-col[k])==abs(i-k)) {
switch = FALSE;
}
k++
}

return switch;

o

bl Tl s R4S A R hEo] g AN RYE 5 e
2

o 20 AFE level HE AA] AFeFHE L ERF. depthF i9] level Q] L E 0] Z~E= ni o] 1,

2E7k2] E3pepd ol 0~n. & A LES AFE L tn+n+ - dnt =2 =1

n—1

ol o] HA|L F(5T H§)E WelF A Lo A5 Yzrsf B ofw e queeno]

2) Monte Carlo
monte carlo® 4510 FAHCZ H5G BT 5 UL
o

=
pseudo coder= OFfIQF 25 t;= n O 2 oA Qo2 m; (71
Rae] F2E HER. 5, olefo] ZEL PH5] F2o] e 4
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int estimate_n_queens (int n) {
index i, j, coll[l..n];
int m, mprod, numnodes;
set_of_index prom_children;
= 0; numnodes = 1; m=1; mprod = 1;

while (m !'= O && i'=n) {

mprod = mprod*m; // m_O m_1 ...
numnodes = numnodes + mprod#n; // XA =E9| {4
i++; m = 0; prom_children = &23/8;
for (j=1; j<=n; j++) {

col[i] = j;

if (promising(i)) {

; // m(RYS = i) M|

prom_chlldren = prom_children &S {j};

}

}

if (m !=0) {
j = random selection from prom_children; // T2 A2 (XAl LE) M

E.ﬁl-l

col[i] =

+

}

return numnodes;

5.3. Sum of Subset Problem

5.3.1. Sum of Subset Problem

Sum of Subset Problem-2 n7fo] ¥+E 7]-X]5_ %759_] A+ HekHw,, -, wp )T FT WL FolHES
o, g5 JF S o wot 5,715 FEHEE de 2AY.

NP-completed].

5.3.2. Backtracking

1. ejmzrEa]e} e 24
G EEe] s 7} 240 A1 S5 me F2o} e ojd EdE 2YT 5 o

2. 2F glao]

AR T
SN levelolA] D5 4] kL GG s} AGE IS, OEE 4 mEE oF Lt A}
SEX PSS oJuF 7 ki ol HEANY] GAE FOE Y. FEE ARHOE, IS
PIHA] 2.

ofu] 2} Pl M PR (EE 0 EAE) 02 THE.
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Y] 272, theo] o mEOJA 9] o] WE YR Y.
2. Pseudo Code
pseudo code= oo} ZHS. i level, weight= X F7FX] 9] &%}, totalL 9Fo2 7lsoF Zizlel.

void sum_of_subsets (index i, int weight, int total) {
if (promising(i)) {

if (weight == W) { // JY YA
cout << include[1] through include[i];

is

else {
// T2 level EGH
include[i+1] = "yes";
sum_of_subsets(i+l, weight+w[i+1], total-w[i+1]);

// Tt level EShx
include[i+1] = "no";
sum_of_subsets(i+1l, weight, total-w[i+1]);

}

bool promising (index i) {

return (weight+total >= W) && (weight == W || weight+w[i+1] <= W);
}

promising®] % 70] EE5]7] Fe]xlo] glon £ ol5la}.

3. 4% 24

Kizhe] e G BAE o13. W w9 2 B4
=
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S SUSCE 102 Sl 99 5 W PR hse] AR 11242
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5.4. Graph Coloring

5.4.1. Graph Coloring

Graph Coloring(m-coloring)2 m7j2o] A& 7}x]31, Q1o L o} Zh2 S ZIX| 2] QI & o
45k A9,
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off Lol o]t FeJo] g AS 7} gl A}
H 72 I (Planar Graph)=2 HFo] HZe = Q5.

Vi 0'0

AT 28 9100 AE= feEE

e

NP-complete?].

5.4.2. Backtracking

1. JHFHE} FGote] =4

Y EHERE 2} FH U levelE FAES 51, S levelo] EoHe EE(ESY] )= m
Holu] 2z} og A2] A& LFEFH. Z, obelo} 2.

9] £ dHe Hwslo], Jam o dao] £l
djo] Zowl A e Ao, 1A kel KT Ao .

.

2. Pseudo Code
pseudo code= O} g ne FHL A, me Ae] A, Y Wi T2 oIH HH.
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void m_coloring (index i) {
int color;

if (promising(i)) {

if (1 ==n) {

cout << vcolor[1] through vcolor[n]
}
else

for (color = 1; color<=m; color++) {
vcolor [i+1] color;

m_coloring(i+1);
}

}

bool promising(index i) {
int j; bool switch

switch = TRUE;
i=1

while (j<i && switch) {
if (W[i] [j] && vcolor[il]

vcolor[j]) switch = FALSE;
J+t;
}
return switch;
+
3. ¥& &4
Hzholl g GBS Sk WRAE mEo AR B4
mo] 2013, v,0] RE ThE YHT AEH] UL, vo 13} va20] AHFO] Y7, TFE JHEL o
51 9] 2 A yelRUE P ik HF”‘M] s Hjope] F29l. YeF e )
o x=9f 7Hﬁ>{§ T+m+m?+-- m——loj
Einmmwmﬁéé%ﬂﬁﬁ%ﬁéyﬁﬁﬁE%%
5.5. Hamiltonian Circuit Problem
5.5.1. Hamiltonian Circuit Problem
Hamiltonian Circuit Problem(HCP)& 12 ZojJA] hamiltonian circuits 6= ZA] <.
hamiltonian circuit==- ——E,ch oA Zoto] e o] BE FHS oF MAT wiEsl ZEel
FJHoz Zole ﬁi ,j f, tourd]. TSPE optimal tourE ”E]-’?j, HCPLE ts5] HE tourZ
25 &8 FE oyl 2k FEFEE SlA, HE HE o)A optimalet AYFE T ESFEE
- 9lo.
I ¢
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NP-completed].

.5.2. Backtracking

1. JHFAENYG RFF 27

JHBREE 2] THT - g, 2} levelo] A= AT A0 HEhE FHS L EZ b, o]
0] 4 (0, )2 B Aol 2ejotd] gron g oA FHez o, e n-17]9] FEE 1 ~ n-l
WAz B REE 09A Y e,

Y moRL oo 37}X1E AFGE
1) i) S i1 T o] LHoF 3
2) n-1917) S EE 09 YT o] 2HOF g
9) WA FHE G L~ i~ LA FHT FAE oHE.

o1 i

2. Pesudo Code
pesudo codes= OFf2F T8 n& FF O] 5, Wiz 1 o] o1 Y. i= iHA FH
vindezofl= 1HIA] 2 E] n-1H %0 HHS 27k vindex[0]=1Y.

o

o, v
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void hamiltonian(index i) {
index j;
if (promising(i)) {
if (i == n-1) {
cout << vindex[1] through vindex[n-1];

s
else {
for (j = 2; j<=n; j++) { // Try all vertices as
vindex[i+1] = j; // next one.
hamiltonian (i+1);
}
¥

}

bool promising(index i) {
int j; bool switch;

while (j<i && switch) {
if (vindex[i] == vindex[j]) switch = FALSE;
jtts
}

}

return switch;

3. 4% B4
Alzhe] gk A BAE S B0 WE A2 BAY
l

242 7137 2.

5, Fope] ¢ Areh o AES H52 .

I4(n-1D+n-1)4+n-2)n-1D+n-3)n-2)n-1)+-+n—-1)n—-2)---

if (i== n-1 && !W[vindex[n-1]] [vindex[0]]) switch = FALSE; // 2Hi
else if (i>0 && !W[vindex[i-1]] [vindex[i]]) switch = FALSE; // 1®i
else {

// 34

switch = TRUE;

i= 1;

7} e E7) ne17)9] A4 e EE I 5 T F ] levelo] 90 B, Y| FIE I 7 Hof
= 7”4‘7‘31-&-@— )+(n—1)2+...+(n_1)n71 :%07’

B2 R A8 Gedle F oo 25 G o] 49 TPYH HA. 01 0518 A F 5]
AL, viE A2t L]‘”?’ | &S 2= AEEo] Qi 3}Z]-, o] A 1’5731}]07']5';"0}]/(-]0]: Az}
=A[5F=] “‘ﬂg%ﬁﬁ:?ﬂﬁﬂiyW@W%§@i§ﬂ4HWT#WWWﬂ7HQi:Hm

(n—(n—2))

6. Branch and Bound

6.1. Branch and Bound

6.1.1. Branch and Bound
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£718Hg ] (Branch and Bound)i= YA FIHER]E FWo 2 HH3] EAE FE 2 WA, o]
backtrackingT} SAFSIXIEE, £ EE PFE o boundeHs WEE AMESLL, HElEERE B
£ o] A|gElo] Yx] gk, A =5 BAolE AEE.

l

bound= E7F3] BAIS o1 gf Ao HHRE AE 2 Qe AR, s YA 2R E o g
AAS of 1S = Qs HHo] Y 077 et el Y F22 E7IR] ks o YA =2 2FQlet JJXJJ
ﬂo boundﬂﬁf =] JJ"‘“’ T gl TroF A2 ghy Fof WHE FlEc) 5—%4 = E9] bound glo] T
£2] grpd, glg b EE el 9L Aoz {*EFOF

branch and bound o Al= Zl o] 24 B4 Bk ofu]af, 1u] 24 BRA] & of 2] BRA Z]H-S AFgeF 1 5
HollA dgeh K 94 gas ALgel FralZ, vH]$ ‘dn‘—’?’%’ Fq-F ueueﬁ} HRERO 2
gl

6.2. Knapsack Problem

6.2.1. Knapsack Problem

Knapsack Problem-= 7}279,‘ —r77’]°z’/ ek & 07 Aole dss B + e o FA7F Fod
]

= e mny
knapsack problemoilé = 71z] 5—57]- ole.
1) 0-1 knapsack problem : ZF BHS HE5lAL, AE5]z] gr= HEX]EF ZASH= knapsack problem.
7} B7

2) fractional kanpsack problem : ZF = knapsack problem.

Ml
3
X9,

knapsack problem-2 NP-complete$]

6.2.2. 0-1 Knapsack Problem : Brute Force

2710] e 1 FEHF] A 2ol BE 52 0(2) 9.

6.2.3. Knapsack Problem : Greedy

1. 0-1 Kanpsack Problem

0-1 knapsack problem=S greedy= A=t X 71| Fi= ] FA] & 7I2 5 2= 2047 E 22
= As greedy criterion© &2 g = Qli=0, o] -7 g A o] HYH = gFS(HA v E 2E
—’,‘— H=.). =, 0-1 knapsack pmblemoﬂ—— greedy § Z,—gt?g' = gS

2. Fractional Knapsack Problem
g 2 oF 7} 2 ZHe BAHE oL AL greedy criterion© 2 SlA] &
wpA]ot 22, Hedtel Aapd Yol . o 39 34 JH9.

4
X0,
mjo
oft
&
Ol
Ry
ki

6.2.4. 0-1 Knapsack Problem : DP

1. F54

nole] E2(1UA] ~ niiA)o] E52, 2} 1AE pi, FAE w2} S WA B ZAT wE
W3] e we] g ol Plifujal oW, 1 HIAL ohelsl 2. =, iwn] B2 BAF w
B} 20e YA o, with Ao §x) g A $e A F o 2 AE e A2 H

T XE LT

201 )max(Pli = 1][w], p; + Pli — 1][w — wy]) (if w; <w)
Plillw] = {P[i 1] Gif wi > w)
P[0][w]=P[i][0]=0].

Zof FAIZF Watd, 9o FAlS B-gole] Plnj[W]E FFloF o iBIAZIXE ARl s 7ol
-1HA7IR] AFS-oF gro] BastEz, AMg-ohs e 5 ol 87k AlkFspd H. o z}
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ol oA, wel ghs 078 W7p] 527k Aol F.

Capacity remaining

=) =1 g=2 =3 =g =5 =t =7 =8
k=0 fl,g) = 0 0 0 (1] 0 0 0 0 0
k=1 f{l,g)= 0 15 15 15 15 15 15 15 15
k=2 filg)= 0 15 15 15 15 15 25 25 25
k=3 fi3.g)= 0 15 15 15 24 24 25 25 25
k=4 fi4, g) = 0 15 15 15 24 24 25 25 29

2. ¥ 24 " A

1) bottom-up

Hj g P& U5 FoljoF ofal, nif Wi FEHeHA7F gle B2, 2F gk tigh Aljls ZE dife 2
RE F20] o O(niV) 9.

2) top-down 0= 74

bottom-up 2 2 P[n][W]E Fole]H BE Y4F M5 AIjFjoF g BHA Plijfw]E 6= dlofl= Pli-
iulSF Pli1]fuwy)e] Zoto] BRFEE topdowno s ARG A e = o2 BEyBoE
AdE - 9

<

el

\S)
R
L
)
ol

Fo] EAGFEE F 142422420 =21 -1

£jo1o] Fol top-down© 2 AFE AE O(mW)2] 4%5-& 71, % e DPe 5F g2

6.2.5. 0-1 Knapsack Problem : Backtracking

0-1 knapsack problem= backtracking© 2 Eol2. = o ZHgo] L} goprl 7|25 =11, 2E
Here oo 49 52 28

=79 W= 0, §E T e o FAE W, ZF ZEXF FAIE p1 ~ pp, w1 ~ 5, 22 B
AR boundE AFESFEZ branch and bound©]l, depth-first=2 AzFel 4~ Ql-2.

1. Y4HFHES]

SHSIFER] A 2F level:> B =7 tiet HEE YEp 1, o S5 JEA o 2F =140
2, HEsha] giolonl 0 B& AA 0= pE A OR §h REL o] RAL Agsl] ghe AH]el.
ojnf YejFIESE Fgols =9 == FA T I B gk VI ez H e EX e (HHA)
o= 243
T — profit
- weight
... hound
Item 1 [%0]
maxprofit = 90
tem 2 [$g°]
maxprofit = 70
Item3[$15(§)] 3.1
maxprofit = 70 maxprofit = 90

Item 4 [ $;0]

maxprofit = 80
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2. Fet 24

Latsre mpx] 7] QI5) profit, weight, bound, mazprofit HE AFESE profitdF weightS g =&
o] AFej7}z] o] 7Fz] 9] gFul 2 AJO] $FQ]. bound= fractional knapsack problem S 7 HS o dAf
QARINA] Alrber 4= Q= ] ZFR] . mazprofit:e A 7F] LR profit & FHZH(EF]) Y.

Gzl - =oF o)1, Sl FZ oA AL X70”0H3j kY of 2502 weight > W7} Hrlil ]2} bound+=
ofefje} Zro] Ajker = IS &, k oJ-7IR= ©ed] TIRE FFE Blofil, kolAl+& fmctz’onalo]ﬂ,"_ﬂ
71gsto] gk HAZE fracionalo] of] B2 ﬁ#i EZE JHL boundErt F = 15

k

bound = (profit + Z p;j) + (W — weight — Z w;) X Pr
j=i+1 j=i+1

weight < Wo|l, bound > mazprofito]H gt == Qlsl = BAZ] 2315Fx] 9FQk1l, mazprofit
B} 42 Tp5g0] ZAE

3. Pseudo Code

= o
n, W; P1 ~ Pn, W1 ™~ Spn= ?:I”i:ry—EE rtg—’fx_-

41




void knapsack (index i, int profit, int weight) {
if (weight <= W && profit > maxprofit) { // best so far

maxprofit = profit;
numbest = i;
bestset = include;

}
if (promising(i)) {

include[i+1] = "YES";

// Include w[i+1]

knapsack(i+1, profit+p[i+1], weight+w[i+1]);
include[i+1] = "NO"; // Not include w([i+1]
knapsack(i+1l, profit, weight);

}

bool promising(index i) {
index j, k;
int totweight;
float bound;

if (weight >= W) {
return FALSE;

}
else {
Jj = i+1;
bound = profit;
totweight = weight;
while ((j <= n) && (totweight +w[j] <= W)) {
totweight = totweight + w[jl;
bound = bound + p[jl;
j++
}
k=j;
if (k <= n) {
bound = bound +(W-totweight)x*p[k]/w[k];
}
return bound > maxprofit;
}

mff e 2ol A o] &7 -2 include H F ol 2ok, 2 &l

ojH I}

4- &

2y

Yo, 7 A4 e

5 AL A F.

9 9] include -2 bestsetof] o}z z]ZFef.

SHFFE 2= 2"t —

1] =EE A1E (5

=10] nfo]x WZF n¢l p; = i,w; = i¢l 757%2
Hesl= Aojm 2 /U'EH—'—77-EE,7_J 2

=, 3Joro] A ot _9sje] mE e E AL
NS off, worst caseof] TSl order+= ©(2™) &].
DPE O(min(2™,nW)) 0] 1 backtracking-2 ©(2™) 0] B2 orderZt H 11 4A]= o] ¢Filg]Zo] o Wrfil

oJof7]5l7] o] &&. SFRTF monte carloS A4 BFQISFH backtrackingo] DPHCl QJHRz] o 2 =
£o 45E By B
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6.2.6. 0-1 Knapsack Problem : Branch and Bound(breadth-first)

1. Bread-first
bread-first B8 AFE5lA] branch and boundE Z-&%F o]F 5] queueE AFESFL, queued] o]

EE §7] 9Iet 72AIE AHEE S5, oFel £ 2 E AFE

void breadth_first_branch_and_bound(state_space_tree T, number& best){
queue_of_node Q;
node u, v;
initialize(Q); // Initialize Q to be empty
v = root of T; // Visit root
enqueue (Q,v) ;
best = value(v);

while('empty(Q)) {
dequeue (Q,v) ;
for(each child u of v) { // Visit each child
if (value(u) is better than best)
best = value(u);
if (bound(u) is better than best)
enqueue (Q,u) ;

(o}

AEFIFE 2] = 9FofA] TRE backtrackingo] YHAJZF EQgF ZEL AJZFF o 2 o,

$50 10 $5 _
ap.6 Branch-and-Bound 8 $10 5 $2

2. §% 24
o5] - E HEE SI~2 ilo] H Zlo] QLAERA H ] 1 & HER o] ] HFS AfSlo] Zxfsl. o] = BRAY
2 550f mac profi o2 2 gro] 5 € ek Ui AR AIAE HE A5 Aol
ol =, A Alo] 2 maz profit g5 MLEA] ZHS > Qlojof Sh=t, o]F ¥l Ao best-first
oJ
.

6.2.7. 0-1 Knapsack Problem : Branch and Bound(best-first)

1. Best-first
Best-first GAeA= 2]29] boundghs 7131 EE 94502 BHsH7] S B queue T4

priority queue(heap)E AF§5Fe] & gF.
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=, ofefef 2ol T3] queueE priority queve2 BFEFZ]EE opE 5o ZiH.

void best_first_branch_and_bound (state_space_tree T,number best) {
priority_queue_of_node PQ;
node u,v;
initialize(PQ); // initialize PQ to empty
v = root of T;
best = value(v);
insert (PQ,v) ;

while(!empty(PQ)) { // Remove node with best bound
remove (PQ, V) ;
if (bound(v) is better than best) { // Check if node is still
// promising
for(each child u of v) {
if (value(u) is better than best)
best = value(u);
if (bound(u) is better than best) // promising ZA}
insert (PQ,u);

ol queueoA] AL w Y etE HAl AAFR boundglke T &Yt best g HFE 7 7]

gﬂtioL

6.3. Traveling Salesperson Problem

6.3.1. Traveling Salesperson Problem

Traveling Salesperson Problem(TSP)&= 12 ZojlA] optimal tour& o= 24 Y.

tour= HE kFCF B2l gafo] L EZ FOoFQE path(cycle)S BFeh = TSP= HE &8
sk U o2 Eolok A o Tohe EAY

7| A= HHF 2L Z} AA HFF 2 E Fols YalelES AHE.

ISP NP-completed]. 3, TSPol shal A55} H5-8 AP ol g, 18 el
ZA5F 2 Qe AHo] ZHE R oS

6.3.2. Brute Force

HE w271 A2 edge2 HEE n7fo k=71 EXfol= jaﬁgg BrFslx]. RE LT} oA E]o]
gong A Wal L CZ A9l Lfz] L EE ths] LpsEr]al 5fH . =, o] 7)o el
tour®] = (n —1)!gl. DPO?V‘]—J A3} A= 2oz 2} o5 JF dliwste] FHAO gls
Zkom g prute force] F-L H5L O((n— 1))

6.3.3. DP

1. Y44
n7fe] L E7F QI 517}, W] /LA A L EZ 3. BE wCo tjgt Y-S Vel g 18
T oy PE W e, H2o) ZAol] e Pl Rett(FHe] 2 )7F §o 2 AFE-E.
_7_3]]_155 H}ok/do]f H]HFeE o] = AF7F 912

D[i][AJ= idl#] x EHE] JgF Ao digsl= rE5S AR

|"0h

FRIY 21 A AR L E2 7l P2
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(7).
ojmf Dfi][FHeH=W[i][1]¥.

dupz] oz Fojjof of= g2 offfjo 5. ARA =EFH, jEAel AWAE Aot LEE 71H
CRA] AEIA] e E2 Fole= gl 5 FSgks 719

DV = vl] = mina<jieqn(W[j] + DIV = v1,vj]);
olF Fol7] PIet Yol ofef o 5. A kEFE EWofo] Ao £oli: EES 71A Y

A e Fof= gh2, oA JHAZ The ZFSXI9F jRIAIA jRIAS A 2et AS] kESS A
AHAZ 7hE ghs He A § gk 72 5, (84 vl2 ofgo] jAAel F-2E Blusls A

D[i][A] = mina<j<n(W[i][j] + D[j][A — {v;}])

Qli

PlJ[AJE i) 2 ERE g Ad] Ao L EES AR o WK AA e RER e Hg
Aol o] A H2 tgoz o ke, DI 23 uf o 2o ghe FU eluio] P
o A3 F. HPH2 A Plij[Cl=a, Plal[C — {v}] = b o]d 402 Cof S Fho]
Faele] 2 f71x) vEd 28 5 L.
2. Pseudo Code
oy e WE ggoz we.
void travel(int n, const number W[], index P[][], number& minlength){

index i, j, k;

number D[1..n] [subset of V-{vi}];

for(i=2; i<=n; i++) {

DLl [ZART = wlil[1];

r

}

// A°| 37| ¥ 37| 1Y)
for(k=1; k<= n-2; k++) {
/7 Y A7le] 2t SEYRM YB DY)
for(all subsets A in V-{v1} containing k vertices) {
// B A4S SHY OB #4 1Y)
for(i such that i !'= 1 and vi is not in A){
/1 A9 A F 2[RUS JRe A HE
D[i]1[A] = min {j : vj in AR(W[il[j1+D[j]1[A-{vj}]1);
P[i] [A] = value of j that gave the minimum;

}

D[1] [V-{v1}]
P[1] [V-{v1}]

min_{j : vj in AY(W[11[j1+D[j1 [V-{v1,vj}]1);
value of j that gave the minimum;

minlength = D[1] [V-{v1}];

2 e EoAE & H JPOR L EE v 5 Qg HYA k), A%}, o] B A2e o]
X1¢](0]3} B). #]9] AEL AS] 27]E 132 n-27x] XIFeHn-12 2] FE.). T 27]9] A%}
Inf ZAf5HE B 2} 4] cfsh DO} PE 73 mino] A 1 HH A Y] B 4 shpo] Hha,
BUlE g0z A F ol gk} gJof UG RAXNE HEgtoR
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A

gelobd, F oA AlZFell Ae] 275 slyH] E&i e 2} A7 9] A O] Zrs kg k 2Zof
Aie flao] AZ7F k17091 Dfij[A-vj|2 9522] 7j==7F k791 Dfij[A}E A&

npz]ate] Do} PE 78 ufi= A9 A4£7F n-17]0]1l, Bi= FH o] B2 ofd FILoi= A 2olR]
2o}, 12 ARHE of mX|E} ke Hstao] Halso] Ui A7 2L o] 9.

3. & 24

1) AEFE 24

Al zZvo]l gt B3 %—E’- AJ3] 2. every caseo] e 78 4 s

Do} PE Agbebe FES Z]EAoR gk =n2 A= (""), i = nl-k j = ko]B2 2o
ofE 2 25

ofel<] Y2l E A 3IY Aol ZHE BE 1< nol tohH HE

galsopd ofe el 5.

[ V)

n—

(n — 1) (n—1— k) = S (“ N 2) (n— 1)k = (n— 1)(n — 2)2"% € O(n22")

k=1

2) B7HERE B4
dominant factor— D2}l Pel. o] Eo] 77| ZHe.
nZf o] e EZ} Qo o, V—{vi } o] FEYFFE F 20 Y. &, FUEHELE 202" € O(n2") Q.

o
=, DPE AgoH AIZHE =7} ©(n?27) o] 1 S 7Ha = O(n2") Y. g0l oF FX7H, brute force

Hebe g,

Qle)~ ghe] [gt A 7t

ESL
e

49 52 17} 022 LA 1]

6.3.4. Branch and Bound
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best-first EFAH-S AFESF branch and boundzZ TSPE 34 3)] HAL.

1. JeFHES]
A HZIE B]ofA] Z} e E= HFRSIE HHS LFENf T, sigF HHIR]o] ARE ﬂ'oi . BEE
2 04 G (01) 2 LFEP. o]t] leaf =Bl A] EEtobe H 27} S HEE bound 52 AHSHA OFS.
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[1
[1.2,3, 4,5 1]

2. bound

zh EOA] bound= HE FHE 2gfste] Athel ojm FHL oo Aife kE, HAA i ¢
LE, o2 WEopx] gl ko] ufal glo] o2 ARFE. gl 2epd, aig YA vEd e

2441 FolA] 2L AEshe A,
1) o]u] AupL 1= : g5 Y FRANN EAE GO T

2) @A FE F¢l kE c o]n] A kEZ Zl= FEel v 02 Jhe FJRE AL s 5 FEdl
= # 22 B leafo A& boundE A{FolA] gfeB 2 v e2 Jhe J2E Welohe F-Pe ZA61A]

oF %] WHEGIA] ORI o]u] AUk ER Jhe ARl @A) 4B 59l kER Sl FRE
o AE F HAEAL GO
olglA] HHHE A ghe W HshE boundg).

3. Pseudo Code
pesudo code= ofgjo} ZHS. nfzJult HH T} 22| = 2= 0 & AT B 82 Jeyelo] n-20]H leafd]. min-
length= leafof] A aF 7J 15,
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void travel2(int n, const number W[][], ordered_set &opttour,
number &minlength) {

priority_queue_of_node PQ;

node u, Vv;

initialize(PQ);
v.level =0;
v.path = [1];

v.bound = bound(v) ;
minlength = INFINITE;
insert(PQ, v);

while (lempty(PQ)) {
remove (PQ, Vv);
if (v.bound < minlength) {
u.level = v.level + 1;
for ((all i such that 2< i< n) && (i is not in v.path)) {
u.path = v.path;
put i at the end of u.path;
if (u.level == n-2) {
put index of only vertex
not in u.path at the end of u.path;
put 1 at the end of u.path;
if (length(u)<minlength) {
minlength = length(u);
opttour = u.path;
X
}
else {
u.bound = bound(u);
if (u.bound < minlength) insert(PQ, u);
X

4 85 24
o] WAL g AU, of 3] XL} A= 2.

B2, Y58 o NP7 o 24} FTE 52 AEHIE . 24} L1
Bake R AL HFo] 77} Hge Bk duelFY.

r
TN
Mo
B
L)

.

=2,
L
=)

7. 7| €T FS

& [RE GEANARE B Shps Felste] BASHE WAIY.
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void segsearch(int n, // ¥
const keytype S[],
keytype x,
index& location) { // &%

location = 1;
while (location <= n && S[location]
if (location > n) location = 0;

!= x) location++;

+
2. ¥& 24
Azkel] et S PR dm g FE dom gor Foke] 49 o), Hde] 3
B(n)=1¢.
TroF Zp Zro gji= gjgro] uj o EAIol (EX|FA] b EAGIA] gl= F-2ol digh gEE
efaloF ) 2} SiAjol ZAE S0l [t PriE(o] 1YL HaHY.), B FoL Aln) = 2L
oJ
=4

7.2. WEUR] 4 73]
7.2.1. B A E
. 2

nHYR] 5 BeygRor ok ¢ QIS FuE 08H A o= 1.
pseudo code= ofg|o} -2

int fib(int n) {

if(n <= 1) return n;
else return (fib(n - 1) + fib(n - 2));

}
2. 4% HYy
AlZbe] tigt B m g FeiE). g S&S 72 diloE g
HHr = every casedl] o T(n) = T(n—1)+T(n—2)+19¢. ofgfo] =24 0 & orderg& 7+ = Sl
T(0), T(1). no] &2k 7Fgek T(n) = T(n — 1) + T(n —2) > 2T(n —2) > --- > 25T(0) = 2%.
Z, T(n)L 23 Hr} 45o] Golz]. o] Jrut oo}z DPE 235]skA Hl B2 © Ha]ak a7} ¢S
3. Hs
Bge) g AGHCR PHODE, AE} o 0 YL e AodH o AEY 4
912, 92je] n > 20] oA T(n) > 2% 92 Holdl 8
induction base : QI HH T(2), T(3)o A & HE
induction hypothesis : 2 < m < n¢l BE moj] gsj4] T(m) > 2% 7} g et 7} gl
induction step : T(n) =T(n—-1)+T(n—2) > 2 T41>..->252 HagF Qe = RE

nofl i - ek

7.2.2. DP

1. DP
S B 8 DPE 78
pseudo code= of2| o} Z-2.
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int fib2 (int n) {

index i;
int £[0..n];
f[0] = 0;
if (n > 0) {
£f[1] = 1;
for (i = 2; i <= n; i++)
f[i] = f[i-1] + f[i-2];
}

return f[n];

1. 28 §d
@3} G2 (Eachange sort)& A 7)ol Hallx], 5 $)2]9] 719} a5 7] &) WE 7]E v]@s}o]
PRE g L D)

vl Rl (gho] €714 L83 el F-9) 22 JEoE pseudo code= oFf 2 -

void exchangesort(int n, keytype S[]) {
index 1i,j;

for(int 1 = 1; i <=n - 1; i++) {
for(int j =1 + 1; j <= n; j++) {
if(S[il > S
exchange S[i] and S[j];

}
}
+
2. ¥& &4
AlZhel dist B =5 ol HAf
MW GRRS 7] ko 2 I every cased] tial AjZFek 5= Y, BFE gl T(n) = MU o)
WL AL ) gleko 2 giehEl A4 Flol/Haol el A21E 5 9lg. Hote] He BAE P
LV(n)::7“i;1)%J
7] A4S H WL & Sk 22 {hstet o] 21 W every caseolth. | o] FA| EUiH 2 W HH T 7] A4S
weko 2 | H A}, worst, best, average case’} L. 7| Ht}.
5, 418F9] 452 olop|d "= of| 7|E A Vo R PeAE P aelsfof gtk A3,
7] A4k, caseE KT o]of7|sfof gt}
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