= FAA (FE=)

Lee Jun Hyeok (wnsx0000@Qgmail.com)

December 19, 2024

23}

1 Operating System

1.1 Operating System e e
1.2 OSSO HEA . . L
1.3 OSstructure e

2 Process
2.1 Process Execution
2.2 Process e
2.3 Process Management L Lo e
2.4 TPC . . e e

3 Computer Architecture
3.1 Computer System@] TLZ L
3.2 Event AT Z1WH
33 T/ODeviceo

4 CPU Scheduling
4.1 CPU Scheduling« o

5 Thread
5.1 Thread e
5.2 User/Kernal Thread ittt
5.3 Thread Issue e

6 Synchronization
6.1 Synchronization
6.2 Synchromization 2] HFAo
6.3 Semaphore L
6.4 Synchronization T A BA|

7 Memory Management
7.1 Virtual Addresso
7.2 Virtual Memory
7.3 Paging L e
7.4 Page Replacement L
7.5 Pagetable 7N

8 File System
8.1 File e
8.2 File System
8.3 Directory

8.4 File/Directory] 1+¢&

1. Operating System

1.1. Operating System

1.1.1. Operating System

1. Operating System
2GAA(OS, Operating System)= program-= APsF1L, memoryE H2|5l1l, device 7F 4o 21§

o

TF computer systemo] 35T FEH0% FAFER S 59 Ao] AZEGo]9]
LA 4L ofefs] Zo] 27 o] Y2 - 9IS
1. hardwareZ '{57_1_ B.g*’ OE /if—g“ Jr=]‘% bstractions Ag9}

2. system soft'ware
softwares= system software2} application softwarez E-F2& 4 912

system softwarei= computer system2] =ZFS Q5 software=, OS, compiler, assembler o] =
application. software= 575 B8 Jg softwarc2, 03 9ol F214).

OSE= application software2= G2, e T2l - hardwareE #algl. =, OS<= kernel (su-
pervisor) modeZ 26}l application softwares= user mode=Z &2ZFaF.

3. Kernel

A (Kernel):& 089] 4] BHoZ 089 £ 7[5E5L #alsls HE.

OSE kernelfhs Eglsl= /Yo 2 A5 7| 6F11, kernel, GUI, libraryE 25+ X ofol= /g0 2
A7 B

1.1.2. Abstraction

FAISH(Abstraction)= EEFot A AHS thaeSlol= 7] 02 software FHFO HA] AFEEE Y Y.
0SE hardwareo]] tjgl abstractionS AJ-&¢F.

abstractiono] OJoll Al-§2l= ol A|AHS HaJol A Algeh = Q5. oFX| 2 abstraction oFzlof] EX4|
oF= TAA Q] U-&S dofol HeS & o 42@}0} = Q5.

0S+= CPUE= processZ, memory— address spaceZ, disk+ file2, network+ portZ abstraction®r.

1. Process
I 2 A (Process)= A3 591 program] tjjeF abstractio

ong
CPU 59 hardwareZ} {8 591 ZF program& 7-2511 AT + Y= ok

= a’7(pv”og7"am)f computer®] FZo] ojer Falo] ko2 diskol] o] FHE 2gE 0] gl
=. A3 59l program(diskofA] memoryo] S2F7F program)S processaf_ﬂ of.

process—= program counter(PC), Stack, Data section 502 &

2. Address space
Address space= process?| 7FR]= memory -7H] OeF abstraction .

ZF processZ} A]22] memoryE W}z U= SFL, memoryo]] TJHE deviceE AL 5 QEE
she 5] elgrg S

3. File
1Y (File)-& disko]] tf3l abstraction$).
processic file AFED] FAHS Far} $IA1E Bobe diskol] ol YA L AU YL

o] o
=N

4. Port
I E (Port)+= network 948 9] tfgF abstraction®]

2= ip2 FEE T, porti= ZFR] 2 processf] FE-S 9JF communication endpoint2 AF-§E.

1.2. OS9] ¥4

1.2.1. 27]9] computer

#)2.0] computeri= 23} KA AN o1 oA, o] BE B4 52 ARl Sla SHSIAL.
19509t} 29] computeris AFg 7|02 (AR EAXAL FH9L), B AT e I UE

- O 1-
2. olml= Hand-operated SystemBlo] EXjjolo] 7[A| 2 A& RH ZZFolo] 1bit T2 com-
puters] Y.
1950 Y] computers= E2]1 E':Oz’/ wireE 2Fs] ddolo] 23S Xflof(‘%’/xﬁ g ek
&< OFd.)3al, Z]Alo[gF e &2 programs Y51 HS. PLYF OSel= 7fd o] EASEA] ghdal, g+
2 ZFRI7F EASEA] Y

19609t Z9= punch cardE A= mainframe©] §3oFo] &8 1 HEE gIHF-L. punch card
+ program 2o oot JHE ZFx]31 QlojA] ZFR]of el5]H g programs EE T U

1.2.2. Batch System

1. Batch System
Batch System-2 2] (job)S YEZF o =25l ofF toF FEfO] 059

o
Z7] mainframeofA] TH8] punch cardE A|Z5FH fgsls jobTS X 2]oFs system Q2 AFEE 9]
o, sF Hlof 5}L}0] jobBlE 2] a] sk = Q1 Z7Fof] user} A5 25 5F 2. GHSHAI = scheduling
o] E7Fs oA ZpA o= Aol punch card?] A& &S] Aol WA 02 X5 schedulingd]oF
o},

schedulingo] 802 +Y=7] B3}, 1/0 &9(punch cardS HAY, F71E & 5.)of
o8] cpurt idle(¢ FolX] GFS) A2 A7 HEhE.

2. Automatic Job Sequencing
batch systemo]] Automatic Job SequencingS Z-§5F0] jobS A-E O 2 schedulingdl == &F 4~ ¢l2.

SIX|aF o Fs] 1/0 ZFYof 9JF cpul] idle HEfE 9] H2k2 HFX[SFR] 28l spooling = multipro-
gramming O 2 o] HFx]gr 4~ 9l2,

3. Spooling

Spooling(Simultaneous Pem’pheml Operation On-line)& buffer 55 AFg5Fe] I/0 ¢S & 1—‘,7 o=z
Helol= 719 Y. jobs A2l gizpx] cpurt Z]rke]= Hifl, data* bufferofl gol=11 o |7}
bufferofl A dataE 7] ARl = of= A.

spoolingS 2-§5FH 1/0 2F¢jo] 2JeF cpul] idle JH] Hehs YAk + U5 2
sl Al-= spooling batch system= A-&%F.

request
Buffer for spooling ;

e
rocessing a task ‘eed\a\e\\l

sequentially task 1 -

£ task2 | __request
N task 3
return

task 4 immediately

e

Ao = T E 5ol

1.2.3. Multiprogramming

1. Multiprogramming

Multiprogramming: o12] 7] job memoryell 2] £.31 o12] job FA]o] H2/oHE% SHe 7] %)
ol jobo] 1/0& =TI cpuis THE jobs A 2leke S ofo] idle AH|2 2] A2HE WA
multiprogramming-2 cpu2] idle A7 Zo]= 7]H O 2 user7}F Al 91 jobo] FoJst L g2
timesharingS ZJ-§5}0] user7} Brojer-2 & 4~ 912,

multiprogramming A1 jobo] 1/0:& A]2]g uf tRZ job.o.2 HeHEl=t], process7} 0]7] & .2 1/0
2 Aelola] SR A cou AG-E EAT S U A DL FE o jobe $HH Oz

He]Hjolof & 4= 912,

<

1.2.4. Multitasking

1. Timesharing

Timesharing2 cpul] A AJ7FS time slice(FE 10ms) 2 Lol ALgslE Z]9. ZF jobo] time slice
FOE cpu AHEL HE joboll AHE-2 P

o 2] 7§29 job59°] cpu switchingS Eof HFE 1, user= job Q] Het/Fot/5=7of H] W] A Fojer

A 0] O
T RE-
&afo] OSE gIA 2 timesharingS AFEgF. o] interruptE AFEol & H.

2. Multitasking
Multitasking= oJ2] 7 9] task(job= =t Ef A2 o)) 5] cpu 9 RS FFole = of= 7]
H 0 2 Multiprogramming©]] timesharing®] Z-&% Z 02 AzFelF 4~ 9l2,

Z)
multitaskingo A=]2 719 processg50] FA]O] W ET1, ZF processs©] child processE TH5o]
z1ojo gk 2 9le.

multztaskng AL-g5lH o] 2] processE°f tier memory -E7HS #a]/H S 5)oF 5F1, H Qo] ola} job
= memoryol] ST diskol] & 5= lofoF 812, deadlock(27] 0] processZF A] 2 o] 2F-@lof ofoF
o= 7ok El= HH.) 59 ZAIE R0 6Fal, 2 Eet schedulingo] a9l =, & 2ol
OS7}F Z g gf.

U2 ZHe gystemo] oY thA 2 multitasking2 ARESH

1.2.5. Lineage of OS

1. Lineage of OS
0S9] A2 (Linage)= oFeio Z-5- 055 batch system© 22 E] AJZFsFo] Multics, UNIX, LINUX
2817 Windows5o] EX5HA] E]

Multics MS-DOS VMS
(Virtual Memory

| | 7

Windows Windows

¢ I8 |77

Bt System V UNIX MINIX
Berkeley UNIX Windows
l 95

NEXTSTEP/
OPENSTEP Linux ‘

SVR4

(System V Windows
Mac O x Release 4) Xp

2. 7]} system=E

Z} systemo] miep 2 Eek OS7F ARE-H.

A glEEo] X2 computer 52 multiprocessor systemS AF§-¢F. ZF processor(core)7| & ot
7S o= ti & (Symmetric) multiprocessor®}, processor}F ZFZF 0] 3] 7]-5& 5~ 5l= H] A
(Asymmetric) multiprocessor 5-°] =

ola] 7] systemo] LAN/WAN©] oJ&f H5xo] Sl HARX A, cluster system S ZA 3},
servero| A1 F GJo] E] & F4&5]E client-server model @}, ZF system©o] A 2 g]o]E]E £ 11 8H= P2P(Peer-
to-Peer) model 55 AF-&3%}

hardwareo]] OS E+= software”F YAl embeded systemO] -

HRA|ZFo 2 2L jobo] ¢h& A]ZH(Deadline)o] YA 3] FhA Qli= Real-Time systemO] -
deadlineo] B]W 2 A ASH AL hards}o} sF1, H WA Az oFe AL softsiclil of.

1.3. OS structure

1.3.1. OS design principle

OSE #17F 93] 27 Behnz, aRE A/, 5 A0/ SS9l 059 A-§ system
of utz} & HAlsl= Zlo] T2k
policy2} mechanism<s ZF FE2]o}Fo] module®fofo] A A[5]

1. Policy
97 (Policy)-& programo] L} A2 512] 52 yHalo] ojt 29,
5

2]
AFg-E= systemof mef QH s/ H ot/ e 21 o1 OS7} ek policyE A1-&-3loF 2.

2. Mechanism
Mechanism-2 policy o] 7+ BFH 2],

dreE AFRTE o5 Zee

rr
N

d0] OS design principle].

L
1
r

1.3.2. OS design methods

1. Layering
Layering2 softwareE o] layer2 =11, ZF layer+—= Q1 SF layer2lo] BERITF 112{5fo] Z8/ 2] 0 &2
Zefoh= 78 9.

OSi= ol-7 B&el softwareo] B2 o] 5 Hofol7] 91 layerings A2

Y9} 7] B DO, 2F layer H H2lo] SI3t overhead?} EYSFALE, layer 1L Ho]

Hohe & layering & ‘H%’é’ A7) A] gL - Het 4 flego] EAlE & s

layer N
user interface

layer 1

layer 0
hardware

2. Modularity
HES](Modularity)&= softwareE E 8 & o] 11 X2 A& 2-g8F= moduleZ Z2]slo] HA5I= 75 ¢

OSE of-& EZFol softwareo] B2 o] th3}5l7] 9/l modularityS AF&-SF.

kernel:& signal, file system, CPU scheduling, I/0 system, Driver, VM & oj&] Z]s&o°] tjgF module
= 7FR 21 QIS

1.3.3. System call

1. CPU Execution Mode

CPU 49 B E(CPU Ezecution Mode)= CPUZ} AT 4= Q= FH oo FFa 7 Aok ojot
mode]. =, modeo] upe} AFe + Y= Fojel F kst 2] & Aetolo] systems HT
ol= 719 8.

processorBfof oFE = QAL oFll o] 271A] mode 2 7S 5 Ql&.

1. Kernel mode : E HeH(root)S 71 modeZ, OS7F AP EE modeQ]. Privilege B 7 o](system
2F Aol waEo]) Al 1/0 Ao, memory/register H<%, scheduling X% 55 =a]et = QS

2. User mode : kernel mode©] B3} AJot=E] AoFS 7FZ modeZ, applicationo] HAHE= moded].
Privilege & o] 5 23t 4~ gl

2. System Call
A28 Z(System Call)S OSZF user modeofA] HAYEE programo]] A|-&ol= QIEJH O]~ kernel
mode2] AgFo] HQoF 21 (system ¢ o] —)% TP = Y= = gl

user mode2] programoJAE kernel mode2] 7]'5o] "R e w7} ¢17] mfZoj system callo] EAg}.
—.0

kernelojli= system call table®] 7, ZF system call:& T25F 5& HSE 7FX] 17 2. user modeo] 4]
system call-S S ZolH g oo} 5;7':7’5707’ 2] &5t system callo]

User
application ’
open()|)

»

User mode
H System Call Interface }—
Kernel mode Y

3 open()
implementation
i JE=—>] of open)

system call

return

System call
table

olg| o} ZHE system callE50] 2.

EXAMPLES OF WINDOWS AND UNIX SYSTEM CALLS

Windows [

Process Createprocess() fork()
Contrel Exitprocess() exit()
waitrorsingleobject() wit()

File Createrile() open()
Masgenat Readfile() read()
writerile() write()
Closesandle() close()

Device SetConsolevode() foct1()
Manipultion Readconsole() read()
Writeconsole() write()
Information GetCurrentProcessIo() getpid()
Maitenance setTiser() alam()
Sleep() sleep()
Commuication~ Createpipe() pipe)
Createfileapping() shaget()
Napviewdffile() map()
Proection SetFilesecurity() chaod()
Initializesecuritydescriptor() umask()
setsecuritybescriptoriroup() chown()

L oSL

ASIA = CPU execution modet= software Hut oft]2}t hardware(processor 5)2 0 2 &= 2] ¢Jo] F|ojof

1.3.4. Kernel design

kernel design 4ol ofefg} 2 AEo] L.

1. Monolithic kernel
Monolithic kernel:& kernel@] Z} serviceEo] SFLO] moduleof] 0] 9111, SFLFQ] processz2 2 E]o]
E=As memory BIFS AFESFE kernel 9.

application©] memoryo]] S2F.Q H ZF4£19] me mory 27F] kernel ZE 4 9SS o Z5] kernel service
£ AFggl olm kernel:2 hardwareo] tigh TFgl %7 ElHo]~E Xfl—é—Ofﬂi 2} applicationE+ & det
kernel ZEZ o g5l AFE-gF.

applicationZ} 2E kernel 7]50] Z+& memory FI7Fo)] $JR|5}7] wjFZo] kernel service o]-g&x} z}

service?] 8] 0] TZ0JJA] overhead?} &S SEX]EF kernel 7]5 HA7F 5FLES] moduled]] S0 o] 93]
HpzF o] g, F7ko) vl 27F BHAYSHA HA kernelo] S5

Appl’s App2’s App3’s App4’s
AS AS AS AS
0G
Appl App2 App3 App4
[\ A

3G

Kernel Kernel Kernel Kernel
4G

Monolithic HE0WHIAHS =432 HE
(X86—-32bit, ARM—32bit)

2. Micro kernel
Micro kernel-2 kernel2] Z}F serviceZ}F modulesFE]o] M_r_, module ™ 2 = E processZ AP = C}2
memory F7FS AF§SF= kernel®]. ojujjo] Z} B&-5 servergfil ofF.

IPC(Inter-Process Communication)« Z} processZF 4F o 28-S Q15F module Fv= B2 Q). ZF process
zjglo] G RA-gL Z7ko] [IPCE 7-]%]0]3 Sl micro server< service call, system call 59] Tl 7]
S0rS £l i) 7|52 IPCE F-§5F server 7Fo] BXI-S Eof -3¢

service 2 moduleo] EXJ5L7] wjZof] 7kl QX H-7F Ha]skal, ZF services B2 02 235}

T AREE 5 glonE agdel Eo o7 WA | d processtt F2oIH HEE oRHoRs

monolithiclHTF ©] oFF A Q). 1z]ul [PCE E5I 2F9 3 Sof 9]sf] monolithicETF A5o] Bl &
L} O
< a-

[J: user space —: syscall

. . . [C3: kernel —: function call
Monolithic kernel Micro kernel : —: V0

Application

[hardware —: ypcall

Kernel

o]

3. Hypervisor

Hypervisor= 7}FsF Alofl hardware AFlS G-8% 02 A-F5l7] Lo #a] Alxo0=2,

hardware AFo]of $12]510] Z} quest OSo]l 2}£lg £ulg.

quest OS2}

guest OS—= hypermsoroi] OJsF Z7FAFS] BFE-S o]-85F= 0S¢, ZF guest OS= A2 CFE virtual machine

oA e, EHE 0S¢ AXE Fa1e
]--

ol

hypervisori= F2 cloud service2] server computer 5ofJA] AF-&
olLte] computeroi]*f ofa] guest OSE =z oz Hagh 4
(ISAZF of2 F-% 5.) OSIE hypervisoro] 9]l A 4~ QI
o] o]] o] Hlid Wl 4% AL 9
harduareo] $%3o]4] FB2 7d BRI} 28,

G5 A = Hypervisor= kernel Z}FJo]] tjgF design2 of11, OS 2FF o] gjgh AojB =2

Hlo X0,

!

1, AA hardware2} T3IE|R] &
. ofX[F GASHA T hardwareE
H7LAFSE 52 2-85L7]E GFF]

X rF

I‘ELJ

o gelek

2. Process

2.1. Process Execution

2.1.1. Process Execution

process= program-< Ho, &It 2dH5t] memoryo]] Lal= IS A AHH.

1. source codeE compiler2 Hulslo] object file2 A S}
2. object filegS linker2 linkd]lo] ezecutable fileZ /‘”/“7 07'.
3. executable ﬁle S 2laf5}o] loaderE &5 memoryoi] %%J

Source Code Execgtable
File

2.1.2. Compiler

1. Compiler
FHa} 2 (Compiler)s= PL(Programming Language)2 ZFHE A4 FE2 FZAE A oFA-S object
file22 H3I5F= software .
2. Object file
Z& 1t (Object file)2 cpu?} oJsfe = Sl= 7]777077E 7 ﬁle°7

cpunttl ISAZF EA5}E 2 o]sfer 4 Qli= 7] Ao] o] FFI} UE 7 U FHSIA T object fileo] Y]
&(71401).2 3l file A2]T cpuo] T} %—icmwm>qw F519. o2 cpuol] A
programO]2FH cross compiler, translation 52 AFE3}OF &F.
object file-2 XA 2] 0 2 /‘70”0] E715¢ object filex2 memory 27 Al 45 (Relocatable Address,
Relative Address)2 Eo] 11, gfo]He{g] 5o] xZgrE o] QIX] kS link —5— E35] process=2 H2E]7]
517 Y7} eI FolF o

o]7] A translation> 5§74 cpuZt 1A 4= gli= 71Al0] FobZ ol &= Sl= 71Alo] HE e =] Mok

4SH AlSHE 758 7FA] A9t apple?] Rosetta 50| 0|5 34 4= Q)-8

2.1.3. Linker

1. Linker

2 7] (Linker)<= object fileE7} 2fo]H el2] &S ¢4d5lo] 5[LF9] executable fileS A 5l= software]
2. Executable file

A ot (Executable file)& HdsFd memoryol] S8 + U= filed.

executable file2 header, text, data 55 HZFl. headers= process2 o] HERS 95t YJHE 7FF
0], text= TP Zro] tfer ZE, data= &Y TS Yo DRk flo]g (Y /A)l
e el

header2} A 7ls¢F efo]Heali= 089 waf thg. &, linker+= 0S <2 9]
executable fileo A= memory F£a7F Aol F4(Absolute Address) = o] -5

Oll

—

Z compiler?} linker= cpu®} OSof| ©h2 |82 7124 H

2.1.4. Loader

2] (Loader)= executable files memoryol &8l= &S = software=Z, 0S9] YHQ].
loader= ofef|o] F}HL A= ZZFo}.

. executable fileQ] headerZ 2]0], text2} datao]] ERSF memory F7-S 29l
. program=5 2t address spaceg k-1 =Re1

. textQ} dataol G SF= Y-85 B F address spaceof] EALg)

. programo]| o2 argument—e‘:——é’— stacko]] Y2

. cpu registerE Z7]3}5l1, program= 43S},

]-.

ok

Gr P Lo o~

2.1.5. Runtime System

HELQ] A]AH (Runtime System)2 programS G820 &2 5 93], programo] HPE S of o

10

ZxE]o] A5 285l softwared].
programO] AF-&3sl= 2fo] Haja] [AA|E executable fileo] ESIAZ] W file Z7]7} 12 AXBE, run-
time systemo] H|H e]o] gfo]EalalE e w11 o] et F-2 o2 AlgofEE o

gee2] - link AJoj] Start-up codeZF= object fileS F7}ol1l, Blo]Helg]ES 402 F T exr-
ecutable fileo] 2fo]Hele] HAE ZEA 7= fil, efo|Befa] ALg & WE’{'J ZIX == gF).
program= AYSFH _ start SFIF SEE T, _ start %7'—’,“—',: libc_start _maino]2l= glo]Helg] &=

- = o =]

o] 27]e} 4 e == 7 program2] main g7t S=FH

Memory
PC
(Program Counter) Runtime System

X
()
\ /

Executable > Executable
File File

2.2. Process

2.2.1. Process

1. Process
T2 XA~ (Process)= memory©f] Z2F7F A&l 591 program Q.

OS+= processE exvecution unit(scheduling®] ©HQ])2 ARS8}l Z} process~ protection domain© &2
22| E]A] ZF process7F A2 2] FHS FH o] 2&F.
ZF processS-2 1-9-oF 0o] ofd =~ ID¢] PIDE 7}5.

2. Process memory X
process= text, data, BSS, heap, stack2] memory F+Z& 7.

2F FEo G171 lo]E& ofej 2t -5
text : 58 2Fgjo] thgt FE.

data : z‘7]§}£] XJOd/XJXJ 1:1]_:]/K

BSS : 27]9F5|4] oS e/ YA H
heap : &2] HjH 2] *7F

stack : XjZf o2z 27}

data, BSSE =o1A] data2l 1% g

O]
M

11

Program image in Loader
. disk e

AN Process in memory
a.out file Text size
P Tee—ol Text segment
header 3~)
(i > Text includes the PC and
‘ TS~ P segment the contents of
RANE processors' registers.
' text i S
D"’a}? <
/ Qe
/ e Data
__,/ bss section
! data — v bss contains statically-
i L allocated variables
- that are not explicitly

Heap initialized to any value.

" bssisize from

a.out header
\ ; Stack

B2 A memory &= oFf} 22,

Kernel virtual
memory

Code
w2 NASIE, OlEfYE A
xelpalE gist 2

Kernel Space Data
User Process '# PCBE X%
Process virtual memory Structure CPU, memorySe| 2|8 9I8t Xt =.

T2HAHR JHStE o2

Process A's| [Process C's
PCB PCB
User Stack system data
> structure(segment)
Unused PCB Z2MHAOICHEER =X
Heap
Kernel Stack

Process' 7{d A%
(Z2MIATLAAH 28 S5 SIS T AL8)

Data Section
bbs v
data User Space Process A's | [Process C
kernel stack | | kernel stack
Text Section Process B's
kernel stack

(instruction)

Physical memory
38

Kernel code and data

3. Process state

process= OFefLF 22 stateE 7.

new : process’|F A= &)

running : process’F cpuof] Q5 2= Q= .

waiting : process7F E% eventQ] YIS Zltte]| 7 Ql= AFE].

ready : processZF cpul] 2] E Z]cfa]1l Ql= AP

terminated : process2] Ado] B Al

waiting2 1/0 2L} B signalof] ol tf7] %91 AFE]o]1l, ready= H-E ZH]7F 2R %ol cpul]
2a]g Zohals AE Y. £, waitingo] Bz cpur} ZY Folap BEZ A EE Aol ofa} ready
e = bi7] g

zF stateo]] Tl queues} EAEF processEL Ha]gl.

12

timer
admitted interrupt i terminated

Ready Queue Running Queue

scheduler dispatch

1/O or event completion " M I/O or event wait

¥

Waiting Queue

4. Shared Memory
&9 |2 2] (Shared Memory)L processE7]8] ERIGH= WHH] & 5FLpQ). oJufl o] 2] process”| F2o]
7ks57] wlol] HEgh F7]8 7] o] H-gxooF gt

csol A image= HIOJEE A4t Q= fileo] memory AHS WERE.

2.2.2. Context Switching

1. Process Control Block

Process Contorl Block(PCB)+= OS9J|A] processg He]sl7] Ll Al-g-al= fjo]E] 22 Q. OSE kernel
memoryo]] PCBE x]ZFsf1 2a]gl

PC’BO]]— process state, PC, cpu register, cpu scheduling information, memory management infor-

mation 5 o8] HJHI} HZFE]o] ¢9lL.

process

inter
pointe state

process number

program counter

registers

memory limits

list of open files

2. Context Switching

AEAE AQ0% (Context Swztchmg}t cpu”} A 2] SF process 7FQ] % iﬁi, 2] Zo]d process g
HE PCBE #73Fsl1d,] 2]e process JHE PCBoJA BE]o L= 739l

context switching®] 2J3f processE&-2 FA](concurrently. 2 cpu YZofi= HAZ FX|o] =]
e 72 ofy.) HaE & 9le.

=, 10msolp POBO| 215} PCBERE Fe]e+ ZF¢jo] £+ H. POBE Aol Fe]o+ Y
’:/LE 2pe]zf o] E7Fsofl idle FH|7} BHYSEAL, system call —5—977 AR} H| W S nff @ Ho =7}
= LY. &2 hardware 5o el QHG|E Y= HElE 5 S

& o dIx

13

process P, operating system process P,
interrupt or system call
executing ﬂ
T | save state into PCB,, I
. idle
| reload state from PCB, | 1
- idle interrupt or system call l executing
| save state into PCB, |
. idle
) | reload state from PCB, I
executing U\—l

CISCE E3FSh instruction set-2 AHE-5}7] Uﬂ—._oﬂ Fgo] =11, 327} Basto] gg% A2 AE 2 A}L514]
ot why RISCE w435t instruction set2 AFE35}7] wj&o £&7) w21, S2]A ¢l I 7to] o429
”‘8 HALEHE AHEE 4 Sl olof wet RISColA= PCBE ¢11l A= 2y tﬂ/ﬂ, register window
2= 78S A8 5 S AL JAE Dol ARl o ZRA|A 327H9] 21]1151317} o of 64
7e] A AEE BRI, H% Al 1 e HAAHE E7)9 6t HEE 1A 5k 93 B8
A AE = HA7] 2o AT Adsol T8T AlAado] ofy et o] A= 2 ofA] ¢

2.3. Process Management

o] 7] A= UNIX®] bl uajol] ofaf A elgh. xv6e] 75 Ei

Am
o
o
w2
lo
o,
Ho
>
4z
=
oo
rlo
i)
i
4
%0
mlo

2.3.1. Process Creation

1. Process Creation
fork() system callZ processg& WA + S

fOTk()a Al-§-oFH 0;]77’;7' O] 2]of| 4] parent process2} child process7} 7] =] 0], fork()7}F AF-&-El HFZ2 CFS
HE] o]o]x] =3 E. parent processO A= A El child processe] PIDZ} HFelE] 1, child process

AL o) B fork) HEo] Aol S A 02e) A6 gho] Bare]

exec Y system callZ G processE E7 processQ] FJHEZ GolH& = QS o]uf process X7}

(PID7}) ¥is}= Zo] oftef, ot p?“066$87f o2 s +=doH He AY. &, 54 2gds Fof

she A

exec AlEG system callE2E execl(), execv(), execve(), execvp() 0] U=

14

,f \ New process
[created by
~h z kernel

orl
2 eyoam o— 57
‘ \cath/ L~
\ \ ‘]\ /l\
\ y Copy proces

| | image from ;A \
\ / parentprocess& Exec K
fT/

<__system
Parent / W T l
/ |
u \ /
Load new \ /
program \\//

2. Parent/Child process

fork()E AFS-A] processE HAHS o, 7]Eof A3 0] processE FH T ZAA(Parent Pro-
cess), M= A E processg L] EE2AA(Child Process) 2} oF.

child processi= parent processZ2FE] w|H 2] F7FS EAlgl o]u fjo]gl o] £Ho} A-GE= J]H o]

dhe} 3 S Qi ARE FSE £ U1, ol FHHA e Sk L.

parent process2} child processZF concurrents}r] AP E = oF -~ Q1 11, child process7} &= of
ZIZ] parent processZF t7] (waiting)ol & X & QIS

root process~= OSOJA] 22 HWEL processY. OS YEO HE processs2 root processQ] child
process2, AleX F2E THY.

UNIX(xv6ol| A= AFEolA] ¢EE=ttal §)ollA memory BALof= COW(Copy—On-Write)ﬂ- 2 Fg=.
COW<X child process7} AJA & ™ child process+= parent process2] memory &7+ EH 3] &2 EAf(Shallow
Copy)& 4] AFESELL, child processol| A | memory F7+HS ZZH5HH j.ﬂ] EAHDeep Copy)E
She 7198 Uk oS Eal memoryE HFE 4 902

2.3.2. Process Termination

1. Process Termination
exit() system callZ process&

exit()S AFESIH OS7F a5 processE& E£Rol1 o5 o2 el F7HS vhder.
wait()& AFEolH ollg process2] child pmcess7]- 229 f7}z] 7]che] E2 (waiting) S 5 2.
processO Al 7] 2] @F2 ofle] 7} BT SIGABRT signalS parent process= H&8F.

SF A& o
%7'7— A

2. orphan/zombie process
child processZF F2 E]™H parent processOf A<= reaping©] 5. 52} (reaping)2 child process7} &
E] 0] % parent process7} |G child process] & AE|E HYHr= AS oujgl & Y EHE XJE"’:’E}S

parent process~= G child processQ] system resourceE HFF el wait() 5= o}] reaping= 5ok
A 0].0
T~ ARRm-

ol T EAA(Orphan Process)= parent process”} M2 £ child process®]. parent process7} H*]
Z 2 E]H orphan process= kernelojf] Q]3] root process2] child process=Z ¢ AFE.

ZH] Z 2 (Zombie Process)w= 2 E AX]2F parent processof] 26t reaping©] Y EX] &2 pro-
cess . child proessi= Z82 22 zombie process7F .

2, ¢d%] main 2] returne WHEZAH 0 2 exit() system call-& AF-8-3F

15

2.4. IPC

2.4.1. IPC

IPC(Inter—Pmcess Communication)2 processs 7Foj] tjo|E]E FEF7] 2ok 7] H Q.

ZF process 52 7]E A o2 A2 e &~ Qe E=2] 20l memory IS Z7FX] B2 process § 2 2 H
(Coopemtmg Process Model)& ¢ OH/H IPCE ﬂ'ﬂo}]oﬁ st
gloJel & TS t= o flo]EHE memoryof/ Sol& 522 g5k, o] oAl IPC=
kernelS A2 4~aJx]o]oF gF. processE2 system callS A5} kernelS &3] Ho]E]E F7HRS.

2.4.2. IPC model

IPCeli= 5 742] o] g,

1. Shared Memory
Shared Memroy=]2 processoj] el 39 memoryE A-&dF1l, s &9 memoryof] tlal ¢]17
Ho 24 FLlok= FA].

- memory& Y u]gk kernelo] #Hof5} o}5o] YASRE F19E kernelo] Toiel] g, 5
memory gHgro] HYO Td] Watol ¢ 2 AAY application FEelA] F4I
F 7129 memory F74& AHGHF 5117, B memorye] ¢ ZEH F2o] dojuichd ofe B

HRAer 4~ Q12 5JX]aF 32 memory & o] T ofl= kernelQ] 7 ¢ o] §1.© B 2 message passingof] H] 5|
HH]—E’ 1}79_ 7{] Ex]ﬁ} S ol%_

O

applicationofA] synchronizations 2] 2]3oF &F. kernel:2 &9 memory &g o] S HE] ERlof ZHe]5]x]
ore locking, semaphore 502 =] 2]g}.

database SOJA] F2 Ag5= HRAJQ],

2. Message Passing
Message Passing-2 processZFo| HJo]E] (message)& 2]
message queue, socket 5O 2 &%

ol processoll] Bl messager= G4 kernelS Sl T2 processof] WEH. o] system call &
Al-g-3f message _ZH,:UJ] H. messages= kernel& ojj 7H =2 0]50} = kerneloi]/(i messages°f ek
buffering 28] 5 Y + U5 EIF kernelo] messageS 2| eHl= 718 kernelo] E% 22
processEA] context swztzchng]Of cpuo] 9]l 2] & o]oF strtE= A ¢

o5l kernelS E3f messageE HYFEZE 50 2= shared memoryo] H]S GolZ 4~ QIx]ak,
HoFJome= faEgd = s

EZi
N
ki
g
o
e}
fu
X
ol
o
FIF
)
N}
oo,
al
]
S
)

kernelo] synchronizations 2] 2]5F11, applicationofA{= synchronizationE 112J5FR] &2, message”}
SFAF kernelS AX]BZ BE L kernelo] F.

Zepolol=-Au] YA ALH FolH T2 AFgIHE YA

16

Process A Process A LS

Shared Memory

Process B |4

Process B

Send

Kernel RY:

Shared Memory J| & Message Passing J| &

2.4.3. IPC 73

IPCO] 23] Hlg 0 2L o]ao] Z-e FEo] 9lS. o] 7|49 AEL w67} oft]a} YA AF 0so Al

A-ZSFe sys/*.h Zo] o] Y-S AFLEF.

socket5 A LJoF IPCE-E local system2] process=of tfgr IPC0|1l, socket-> local/remote system2]

process7FX] EFsl= IPCY.

1. Pipe

Pipes= 8FL}9] process”| TFE process2 HJo]E[E 1412 HYsl= HFA] 9.

Of’/f'J pipeofA] Hlo|ElE eHEo =gk o]ggl. =, ofL}9 pipe= FHE processO Al read/receiveE,
o475 write/send & WL o]el uef SFYF A1 slelrl 2709 pipe AFooF 2. ol

1:770]5?% piped] Y& A2 HY =, GAHA = pzpe7]— 2}y o] M4 = gl

PIPE
- 1110101011995, X‘

Process

A
.‘ 11 10l0101101010\ . -

ofgfiel Zro] FEZ FHEE ~ QIS fdfo]] EHo]]/l-] read/receiveS, fd[1]o] HIeiAl= write/sendZ
g o A BEE dose()2 Bol] FE S5 GER B ol it e HAZEE .
Y=g Ao FHZ o ALgols T “’ﬂxf‘” =, fd2l= pipes él“jo]] AFg-oF 74%’ S Aok =
T ERAAT) FYF FLE

= dfl°oF *FE/L@’ faifzje} fd—?/—?/ 22 E o mpo] g - 5l{oF of.

17

int main(void) {

2. Signal

SignalS 9] process”| kernelS &

int fd[2];

if.((pi == fork()) == 0) {
close(£d[0]);

write(£fd[1], "hello world!\n",

}
else {
close(£fd[1]);
read(£fd[0], ...);
}

&4 process= signalS H]-& 7] H S 2 g0,

of gold &= e =&

interrupt2} -SAFSEA] A 2] H.

Process
A

ol oFfjet Zol handler 2FrE °]

void SignalHandlerChild(int signo)

{

}

printf ("signal handler\n");
fflush(stdout) ;

int main(void)

{

. // handler S8 & £3
switch(pid = fork()) {
case 0 :
sigpause (SIGUSR1) ;
default :
sleep(3);
kill(pid, SIGUSR1);
wait();

3. Shared Memory
Shared Memory+= 1= 7l ©]&2] processE 0] SFLF2] memory G 9GS F-7010] &4l B4 ¢l. gojlA]
2 Shared Memory modelS < F&oF 4.

ofgfol Zro] T2 FZHE 4~ Q5. shmget() 22 shared memoryE &G 5[, shmat() 02 A

14);

off oFE processZ eventE H|E7]| & 02 FEsh= E4] ¢

=41 processi= HAGHFL signalof] T}2} signal handler

18

=41 process7} ol signalS | 2]oF2{H schedulerof A K€ o]oF g},

BEA| AL} shared memorya AZs5L1, slg shared memoryE AFESE1L, shedt()2 S Z2AA9F
shared memoryE & A =, 2R shared TrLeTrLov"y_77 shmldE processE0] A2 25}
Tt 212} attachsfo] F410] 7}—0—%}. 22 shared memoryE FASHA AFgste W H2 oFE 2 lock
2 Zoj Ao}

int shmId;
char *ptrShm;

// shared memeory =&
shmId = shmget(IPC_PRIVATE, SHM_SIZE, SHM R | SHM_W);

// shared memory attach
ptrShm = shmat(shmId, 0, 0);

// using shared memory
ptrShm[0] =

// shared memeory detach
shmdt (ptrShm)

4. Message Queue
Message Queue= linked listz2 17°§% F7]9] messages *35fo] ERISH= HHA]¢Ql. oju] F£ER=
message2] FE+= process= /‘f"]OiW nja] g olsjoF 3}

o] 2] processg 7He] A&l AFS-E 1L, Z19] mpef queuel] H2 &7]9F A 2]7F Eof lofof

ofgfje} Zro] Y& 2 FEHeF = QIS msgget()ﬁi message queuel] idE FF = U2 msgsnd()=
NG idE AFE51Y] queueo] messageE Yil, msgrev()= Al idE AFES1Y] queue 22 E] messages

7 el

7_¢

0k

19

typedef struct _MSG {
long type;
char message[256] ;
} MSG, *PMSG, **PPMSG;

int main(void)

{
pid_t pid;
key_t msg_id;
MSG msg;
msg_id = msgget (IPC_PRIVATE, 0660 | IPC_CREAT);
switch (pid = fork()) {
case O:
msg.type = 1;
strcpy(msg.message, "Hello, world.");
msgsnd(msg_id, &msg, MSG_-sizeof(long), 0);
return 0;
default:
waitpid(pid, 0, 0);
memset (&msg, O, MSG_);
msgrcv(msg_id, &msg, MSG_-sizeof(long), 1, 0);
+
return O;
}
5. Socket

Socket=>- -F119 A1 €] end-pointZ, portg o]-§d}o] FLIo}E Hlof AFE-H.

TCP/IP protocol -5 A socket:2 application layer2} transport layer AFo]o] QIE]Ho] A Q. appli-
cationOf Al o Al5 H4] socketBHS 112{sfo] -F41&5 T 5 A& socketo] A= port HE, ip 4
siks X Fo1H &4lo] 7Fsgk

process2] Y]x](machine boundary)ol] ZH X Y. =, process7}F oJH L] X](local/remote)of] Y= FATF
ot Hito] kst local system2] process2F -LI5l= 752 ol process2] port Howro 2 F210]
7153511, remote systemQ] process2l ERIGHE F-L HZSFH = system 9] ip A2 G process 2]
port F127F R 9F local system2] processo]] 2o} oAl portol] Hok= 1o 25 ofE
IPC gHA]H ol QHls|ETF &,

process2F2] 1A AJof] AL§3F= protocolof] mjal ¢1d HFAlS X%

ek

+ 5. (ex. TCP vs. UDP)

3. Computer Architecture

computer architecture ZHo A 2] 0S. F2 1/0 A& o2 A st=A]9l ti3] &

3.1. Computer System®] X

3.1.1. &%¢ Bus F+%

1. 99 Bus #£X
cpu, memory, I/0 device 5 ZF H52] x| 2] £ 7 H]==HE computer system ZZF7]ol= ©FY system
Busoj| cpu, memory, 1/0 deviceg o8] BEo] AZH WS F£2 A&

O AX -

20

H System Bus

< - D

/0 Device

(e.g., disk, Nic)

<t HA AX>
HE di

2.
g4 cpu £ 7F memory, 1/0 device 5o B3] €535 WA & ”57/‘7 & o] WAsIA E Y
=. W2 devicer= =8 device9] A 2]E Z]cte]Al(idle) Eo] FA] system £Z= 8 devicel] £ 2

Al

Z1R device 5 &Y Udel] B, A AH, L1 A|A], L2/L3 7jA], DRAM, SSDY. &2 AH,
L1 L3 7JA|7}A] 7} cpue]l =1, DRAME memory, SSD+= disko]| &=

YEYIE diskEote =,

r‘Oll

3.1.2. A3 Bus +%

A 52 Bus 7L A= BusE AlE3FCPU local Bus, Memory Bus, PCI bus)5} & oS

A Eo] AL SEARS 23S

H] W 2] WFE cpull memory= system busofl, B & =& I/0 device(GPU, disk, NIC 5)& 1/0 bus
| oZsFe] ARESEL, cpu, memory= YR O 2T busE AL

System Bus >
Extension
Bus Interface 1/0 Bus

<

< D

I/0 Device

(e.g., disk, Nic)

<0l= A 22>

3.2. Event g 7|§

deviceEo)| A TAISH= eventE #|2]5t= 7| ¥ of|&= interrupt@} trap©] 9J-&. computer systemof A event+=
T2 A dgelv B4 A 8ol oo TS

3.2.1. 7] vs. H|%7]
olsflalz] €A ﬂ/\(system call)J

blocking2 S Z3%F o
block=] =] 2fi= 134]¢l.
&7](Synchronous)&= Z&oF ’,@F—’F(system call)9] 22 5}olst o] T]S 2F9S SalsHe HFA] O &2
blocking 0 2 -&2F5}1! 5]

H]= 7] (Asynchronous)= S .
4102, non-block©.2 F4s} 11 of 2] 2 elL Exloﬂ gk a8 Folx| o] HEeh

3.2.2. Interrupt

21

1. Interrupt
O1E] & E (Interrupt)+= H]57] %] event(ex. network packet, I/O 273 5)& X 2]s}7] > 7]H Q). F=2
process®] ZF]ik= Pl Rl evento] i, cpu 2F2] 1/0 deviceol Al &9t signal 5] ©]5] 2ok

interrupt handlerof] 9]sj] = z]=.

OSoJl= Z} interrupto]] gt ISR (Interrupt Service Routine)o] FoJEo] Q& E7 interrupt’} Sof
oW g ISRS). FolEo] YA G2 interrupt’} SO L H systemsS CF2A]Z] AL oFX] Tk,
QIakst Z-2of tiefil= HoJ7F Eo]Qls. GF interrupt’} S0]H CFE interrupt] Zl¢]o] gls]7]
wlgof, ISRS 117 A o

interrupt 71 412217} EAS}el, 24517 e FAE A2)E. A2 interrupt A2 Fol
LA} O] =2 interrupt’F 0] 2 H, S5 interruptE 24 P 5Fl, o] CFA] {9 interrupt
2 switchingsl= &] 0 2 ZZFoF,

2. Hardware/Software Interrupt

interrupty= 2 FA o u}a} Hardware/Software 2 U&= 5 15

hardware interruptZ+= timer interrupt, keyboard interrupt, disk(I/0) interrupt 5°] {1, software
interrupt 2= system callof] O]t interrupt 50] U=

timesharing-2 hardware interruptE AFE5] & H.

3. Interrupt A& 73
interrupt®] Azl ojefo] L AH +HF. HEAH0E cvent H2]517] wzo] B Ao e
(state)2 A Fokn 2.

1. interrupt EHAY.
2. interrupt Q] BIEISF(disable).
3. dA A3 el (state) ZIZF.
4. st interruptof] tjgF ISR £~3Y.
5. X ZFeF A3 A1 (state) 2.
6. interrupte] <Jo FEHE AlERE 29 o]o] A 5.
Program Interrupt
Execution Flow Handler

Interrupt
<)Generatedg L Run
Interrupt
] Service
[t E Routine

< Flow of handling interrupt >

.

3.2.3. Trap

E;(Trap)2 5713 event(ex. program o8] 5)& X e]s}7] LJst 7] Q. &2 process] 2z} &
go] Qli= eventZ, system calloJif ofj2] /o 2] 42} z] 2] 5o ALE-H.

trap handlerof] 2]3)] =] &]=.

ISR o4&l TSR(Trap Service Routine)o] EZXI5l= 5 interrupt@} SAFSHA] E2Fslx]al, E7] 20 &2
eventE 2] 2]o}7] giiol @A A Fe(state)F gl H-GFR] g5

22

Program
Execution Flow Trap
] Handler

A
space . System cal - Run
B System call Trap
Kernel J L _ Service

Routine
space T
Service

Routine

Irn to
Bxee,Vioy
Cutjpy, S

ok

N
g o205 F2F Folli= exceptiono] WA 4= 9l=d|, EAof whe} abort, trap, fault 52 &7
X olo
T ARE=

3.3. I/0 Device

3.3.1. I/0 Device

I/0 devices= computer systemOfA] cpul} memory B A2 &2 deviceE o0l 7| HE of2
A, BUE, TaE, disk(SSD, HDD), modem, GPU, audio card 5°] 1=

2} 1/0 devices-2 device register, I/O controller 2] BE2S FZelol1 QIS

H

1. device register

device registeri= Z} 1/0 deviceZ} 7FX] 11 QI gRIAE 2, olgjof Zro] j7}x] 272 FZE2E.
control register : 1/0 device®] Ao}E 15 AX <. B4 g1 Yo H S5 o] +PuE Koz
= XF5T

o 1 13-

status register : 1/0 device2] AE|E *ZoF= 2] A H.
input register : 1/0 device2 9] QB Z1-S X Z}ol= 2R~ E.
output register : I/O device 22 E]] &8 ZFS X ZFol= 2] AH].

2. I/0 controller
I/O controller= cpul] high level I/O T ZE deviceof] teF low level I/O FHZFH o2 Halslo, 1/0

devieeE 27 Zpoto] 2ee Pote 2B (32)Y.

Hl i %] 23 FE) 9] 1/0 device(ex. GPU, SSD 5)04 T2 AF&H.

3.3.2. 1/0 A= 7|

cpu?t I/OE A 2]sl= 7] o= pollingZF DMAZF Q-5

1. Polling
Polling2 cpu?} 1/07} A F Q=] (cvent} BASH=R])E Aeaf4] BHoloke FHOE, cventE
571502 Aejshs Paojeki ofdg 4 Ug.

BE /0 29]0] cpus] F2]of 2af o],

vl g o2 [/0 device] T 7} cpuof Blo a]thH, cpuZl 1/0] &] o] HE A< 319]
slE 2 QHEErF 2 B2 I/0 devicel] 7 2H6] MRE systemo A= 2 &g gpH Q) o~ 9]

2. DMA

DMA (Direct Memory Access)= cpul] 7] Ho] memory} 1/0 device ZFoj] Hlo]ElE 2] & <&}
=5 o H.

DMA controller(engine)S AF&o}o], cpuZl memroye] 53 REAIZ/ER F4 FE= A2 F4290
27] 5)& DMA controllerol] AYsFH DMA controller?} cpu &l s memory &7F% 7Fx] 1 1/0
device2}2] HJo]E] 4L Aols}n 2L s~aHs).

23

DMA= cpu Yol Al= o a&2]o]x[eh, =712 ¢l hardwareo] ©3F costi= A2 EoF1/0 2 el&

DMAo] 271 5 cput OF2 Y-S £ sH= 5 DMAZE & g-gsia]H 2 Fr ¥ g3} Parallelism)
7} 5o] o]k g

Hole] ejeie ofefo] 7ol atal +.

1. cpu= DMA controller& 2Z7]5l6]1 read W =(DMA_MODE _READ)Z x]% ¢l
2. cpus= DMA controllero]] memory AJZF F£49F 7|8 &, (cpue= Y &)

3. DMA controller= disk controllero] tjo]E] XJ* ?“72 Hy.

4. disk controllerZ] tJo]E]E DMA controllero] 4=

5. DMA controlleri= {gHRe fjo]E| & memoryO]] 377'/87?_;7'.

6. DMA controlleri= 85 AFo] ZakE 24 o] Llg E]JH oI interruptES cpuol HdEgf.

Hole] Zele ofelo] o] ufet g,

1. cpu= DMA controllerE Z7]8l6l1 write X =(DMA_MODE_WRITE)Z 2] %F.
2. cpuw= DMA controllero]] memory X2} F42} 718 A&, (cpus ZY Z.)

3. DMA controller= disk controllerd] tJo]E]S HLEotle XSS EL,:’,J.

4. DMA controller-= memoryojJA] tJo]E]-E ¢]o] disk controllero] 7

5. DMA controllers &j5 Afo] RuFE H4o] a2 xm o1 x mterrupt— cpuO]] =25},

5. DMA controller= 1. CPUE DMA controller

HEE|= HIO[EE F2 x9 x7|3stn ME BEE CPU
Moo 7|E. DMA_MODE_READZ

of M&oict cite A 4%

AM7|3, c=0 o] EHIX| HE 5 cpys= pmA

6. CZt0] 00| E|®, F&0| controller®llZ| buffere] Cache
2= § 20|28, DMA F2X), A71(OF LAHF

controllere H&0| 28 | C
EllSS EHEE Sl

ot TG0 mamon sl memor QD

(. PCI bus 0
1

3. DMA controller= disk
controller0®i| | G|OIE| &S
IDE disk controller 2%

4. Disk controllerfi*H byte
1 1 THel2 20 2= OB &
DMA controller®i| A &

3.3.3. I/0O Device Access 7|

cpuZl I/0 deviced accessdl= 7|8 ofl&= 1/0 instructions A-§-6f= B 21, memory mapped 1/OE
AGEL o] U2,

1. 1/0 Instruction

I/0 Instruction< K}—g’o_‘]-—': O Tk 3] cpuof A I/OE $Jer H & o] (instruction)S A8]-—,'_: do].
=, cpu= I/OF QSF instructions AE5F I/0 deviceZ}F ZFZl registero] tfdl] HIE zhS SJALf
24 T/0 2] 2aqfst £ QL.

CISC 7]8F9] computer architectureoA] =2 AFE5F= HFAl Q]

=~ -

2. Memory Mapped I/0

Memory Mapped I/OE device register=5 memory gZFof] ojEslo] AFSSlE Z]H O 2 cpurs Ha
5] memoryE XAFSlE instructions2 1/0 Y-S e + A2

o & = memory 22 o] il QAL R 2FQ]o] device registerof] YA A= ZF]up E51A] 2] H.

cpu?t I/OEF] WEA] Aelg 5 I,]ﬂﬂ?_l instructiongF0 21 A a]7} 7}=5ko] RISC 7]HFO]
computer architectureo| A] F2 AFgsl= BFA]Q].

24

4. CPU Scheduling

4.1. CPU Scheduling

4.1.1. CPU Scheduling

1. CPU Scheduling
CPU Scheduling2 ready AEJ Q] processs & O]H processg cpu’} THEX]E ZHAoH= 2 9.
cpu scheduling2- ofgloF =2 7]F 0 2 HAIgl cpu AFEFET A elge =7, §H/H7] AR &L
Zlo] o] A ¢l.
CPU AF&E(CPU Utilization) : FAA] A A8 7l AIZFAF cpuF AFEEE A7) H]E-
X77 E] F(Throughput) : cpu} E}-r] AlZE 5 A 2]5]= process®] T
o AJZFH(Response Time) : 273 & 3'37’0] 2 mj7tz] o] AJ7F.
EH7] A ZH Waiting Time) :process7]- ready AE|Z O]7]5F= X]7Fo] &g}
2F9] A Z7H Turnaround Time) : process’F A|ZFellA] B wfj7pz] A g]gl= AJZF

2. Burst Cycle

Burst Cycles2 processZF cpu F+= I/0 deviceE S 2] 02 Al-gol= 420l AI7F 7FH Q. process

9] burst cycle> CPU Burst2} I/0 Burst2 Us = 3, YUFE Q] process= o] T burstg HlZof

gk

CPU Burst : CPUZ processoj] tjoF ¢iFS ali5l= 27 o] FE7Foj] tfol A7 cpu burst time
ola}1l gof.
1/0 Burst : 1/0 A5 $18f process7F 7|chale 771 o] 77H]

07-

cpu burst2} I/0 burst-J o] ajaf O]'EH—QJ' o] processs 7 = 1, ofH F72] process7}
o] Zxfsl=x]of] Holsl= scheduling 7] S A&

CPU-Bound Process : -2 7]9] 71 cpu burstE 7FX|= process. (cpu ZFY L.
I/0-Bound Process : 77 —r7]—17 #2 cpu burstgE 7FX]E process. (1/0 & z%oi 9=)

5”7”} Yur2] Q] Zg-2-of] tiefl processs2] cpu burst times Sgo HH tfFZo] 10ms o] o] FL&
ZH. =, I/O-Bound Process&°] 322 ¢]. a4 H-g&2 0] OSoA= cpu &Gho] X 7F & 10ms
B X—]E]o]— o] oJup],

3. Scheduling9] £
cpu scheduling®] 7= o] X F] schedulingS Z-gdF=X]9] u}2} L}& o 12, cpu scheduling©]
AeE £ ol /(]x-l OEL ofg|o} Zro] 47X 7} Q&

1. processZ} runningo Al waiting 0 2 7}= F->. (I/0 2AY)
2. processZF running9fA] readyZ 7= F-%. (scheduling] 2])
3. processZF runningoflA] ZFHo] kg F-¢. (AFY 98)

4. processZ| readyofJA] running S 2 7= -

HIAHE AAZ 5 (Non-preemptive Scheduling) : OS7F ZAIZ E7 processQ] cpu AFHS-S afAe
oL gra] = 1kHJ,]-4EHO]] s Al gt schedulingS $F.

L
=)
>

JZFS I/0 burst timeo] 21

HAF G 2717 (Preemptive Scheduling) : OS7F FAZ B3 processO] cpu AFHE-S Al = U=
HFA] é7 2 o] Tl Al scehdulingS &}
N 28lo] o] whet 2 AR schedulingo]) i 2|45} wrako] 2ebd. FAHE WEH o= AHgHE

OS5 5‘4149}7P ol# &

4.1.2. Scheduling Algorithms

Scheduling Algorithmolli= ofglle} Z+-2 AEo] 1. of7]ofA1 9] schedulingS processor/coreF 17]¢]
Aoz 71Hsl

25

}F process | 7] AIZFS %l F, o]F {5 HSLA process T2 Lol Fwt of7] AIZHAE S
XLLLE g 7f)= AlFe 7 QS
1. FCFS Scheduling
FCFS(First-Come, First-Served) Scheduling2 HX] cpu &g
M HE R PHE - U2

R} processFE] 2 2]5k= AT Y.

o

queuve(ready queue)E AFEslo] 7HFs] FZ2de = ¢f
=X]of wfat Hat giz] Alzko] gapy.
2. SJF Scheduling
SJE(Shortest Job First) Scheduling<2 cpu burst time©] B2 processiZE] X2|ol= WA 02 Wit
O7] X7FS 24 51817] 95k 7]H Q). AP Ao 2 JZEsH = 92,

] 1A SIF schedulingo A= o] H process2] 2] 2]7} &FFs] B1}1 tF2.0 2 2] 2|8 processE 4
o} o 7} B2 cpu burst timeE T} AL &,

H?j%i SJF schedulingof A{= o] ® processO]] st 2] <o oFE process=2] cpu burst timeS A<
Slo]s)

- ojuf B¢IsA = of H processE HA @5}

o

&

oroF &zl z]a] 2291 process2] B2 cpu burst timeXH] F-L ZFS 7FX= Ao] QIttH cpus

O]
Rl

-
AZE SIF scheduling2 SRTF(Shortest Remaining Time First) scheduling®]2f1l % &

3. Priority Scheduling
Priority Scheduling2 -9 (priority) & v]2] FfFI1 =2 priorityE 7} processFE] =] 25}
L ogpalo) uHAFT HHE0E AFHGF = 9L

MY prionity scheduling9| AT oW processo] Azl7} S5] BLT o602 AAY processE
AP 1] 7 £2 prionityE S} AL TF,

RAu)
2

/,‘j,:, 5] pmomty schedulzngoz']/(']L A2 AHE process7F SR 2 2] =9l process T} =2 priorityE

priority schedulingoi]k],': Lre priorityE 7IX]E= process’} Y EIX] 2S£~ Qleg]. o]HA EXY
processF A5l A] AP E]R] o= H-2 STt processZF Z]oF AFE] (Starvation)of QITla @F. priority
schedulingol| A= T 7] A|ZFo] Eofdof waf priorityE S 7FAI# starvations @ + 9 A=, o] &
ZI¥l& Agingo]2kal k.

4. Round Robin Scheduling

Round Robin Scheduling2 1]2] & AlZF 7FHH (Time Quantum)o] XUFH Aok dx x{2] &9l
processE cpuofA] Wel= BHAIQ] HPYP oz AT £~ QIS

o

queuve(ready queue)E AFgolo] Fde 4= QS queueoX] processE AU =] E]5]1, time quantum
o] AL}l 012 queue(W)0 58 BE processo] |27} SR HGLFH 5] hS processE AL
X—]E]o]—

ready queue Y9 process 7J+E n, time quantum-S q2F SFH ZF processQ] C}-2 R 2lE {JoF o
oj7] A7k FASHAIE (n— 1) x ¢

oroF time quantum©] VR FoFH FCFSQF =dskA] &2kl E 1, time quantumo] 7 ZFciH
context switchingo]] tfjgt H]-go] o #AxJA] B]|GE&Z 2. HHSF time quantum-S X|ZF= ZHo] =
279k

round robin schedulingS H-§&2] 0l OSoJA] YHIZ 02 XG5l 7] E scheduling 78 ¢]. o]u] time
quantum-2 10 ~ 100ms, 2 10ms= gk

5. Multilevel Queue Scheduling
Multilevel Queue Scheduling2 ready queues oj&] 7|2 Ha]sfe] zFzFo] tsf] scheduling 7] S &
25} HFA O],

queuesE X Z o] LFA=0]A] scheduling 7]HS 34 oFal, ZF queueo] Hio) cpus F ol ;.

queue XLAof] oioF priorityl} time quantum-S X] % o] AFE7] = F.

o] 8

rlr
o

26

ojuf Z} queues= 2 2[SH= process®] 7 &l wet £7ek & 501, AFERF 519 interactivedl
s2Fo] " QSF processE X 2]ol= queues foreground queuedfil SFil, round robin 7] AF§gF.
IS cpu YR 59 ZYS FSH= processE X E]oF= queues background queuesfil dFail, FCFS
7] H-E& AFESF real-time process, mormal process, batch process 5 processQ] E7o] WEl queues
AF&S17 I GF,

6. Multilevel Feedback Queue Scheduling

Multilevel Feedback Queue SchedulingS multilevel queuefJA] process&©] CIE queue® o]EFg 4
QS ol B9l 5, HEWE Wb quencd §7.

= 20
o]& FEslE{H of 2] 7]9] queue, queued scheduling 7%, processgE A TA 2 52 XA, processE
ofgll BA = 52 X1, processE TFE queueZ 54 W 55 FolofloF 3.
ZF 2 cpu burst time©] 71 processE A ZGF queue2 54 ¢ B2 z] 2] AJ71S A-&E5F= Xlo2 2 E,

=, agingS A& ¢ A& 591, ofell ZH I} Zo] queues 7—‘4"‘ 7 5. QoollA A el7F FEER]

FoH Q1 =, Q1A= XJEV% oA growl Qy 2 WA process7]— Ei B cpu time2 SFEHEIS
T == ok
—’I Q,(Quantum = 8) ’_—’
->| Q,(Quantum = 16) ’_—’
. Q,(FCFS) —
W20 AR OSof| A= W82 9l AFgte] A5t scheduling 7]H-S AFEaoF & & Sof, gl

o A= BE processs #551HA A s= CFS(Completely Fair Scheduhng) 71He AF8Sh

4.1.3. Multiprocessor Scheduling

processor/coreZ| oj&] 7JQl FHL o= f Eﬂ'ﬂ scheduling YA]& A-&5HA] H. E35] Z} processord]
A2 oFE 1/0 ZR7F dd =] o] YA, ZF processor H2 5aF ISAZ} TFE = =1 OW?’ 71 A9 S
o]™ processoro] SFgFerz]E A A sloF %1_

oFes} T2 J|UES G
1. asymmetric multiprocessing
HItf 2] HE] X 2 XA (Asymmetric Multiprocessing)< multiprocessor A|ZEIoJJA] ZF processorZ| A1 2

2 oors ool BFAo] 1, g HE]Z 2 A4 (Symmetric Multiprocessing)2 ZF processorZF 7
e 95 —/Fgoyo;]'—:_: gralel.
| —

2 Zof 089 3t) (schedulmg, I/0 A2] 5)&

s Ai0] F& processor L7} SHH 02 HE
1 ok Ao B o] 95 o A 48 EAE £ ol 4 A B L

A8 A AHIOJ A= asymmetric multz’pmcessing% AFESF
2. processor affinity
processor affinity(RIBHE)&= o] & of] AFEHE processor/cores AL A] AFSo= 7] Q.

caches= processor/core W2 EAJSFHEE EZ processor/cores YHEZ O 2 AFESIH cache2] E8%
w9l 912

3. load balancing

load balancing2 &1 & processoro]] 2FH-& w5517
I Ql1, SFLF9] ready queueTHS A-E5Fo] processorof]
ol Z} processorof] A A 2]l= processor= 3] 02 CFE
Sk

o -

Y
M

= Hsle 7] Q).
processor2fC} ready queueE —,—E% ol
processS HJYSL=E 79 olo o]
processoro]] 23] HH/‘(-Io]-Oj —777-—0]-7-]] =] a]

27

5. Thread

5.1. Thread

5.1.1. Thread

1. Thread
AT (Thread)E= process Y O] A3 S50 2, processECF 212 91 9] execution unity.

thread= hﬂi”’f&}(pamllelzsm)g" ol 7f o2 SFLEO] processof] gjs) o2 7f2Q] thread”F }—XHOI'L
multi-thread 2 A2 £~ Q. OFoF sfLfo] process7]- sfLfo] 4l s 20rS 712 4~ 9oty WEHslE
A= o] A 22 processE ﬁ(coopemtwe process)OHO]-' OL o] F-L Z} process7]2] 2] IPC’7]-
g Q35k1, ofd] process {FO] context swztzchmgol R A = =) ,QHiO;’]E7]- _——7’_7] - 2o] thread2l= T

["0]!

Zro ooj2 HEslE Zagl BE o] FL 5FLLY] processol Tiol threadE-2 processQ] protection
domaino] HZFE]Z] 9F2,
&= ofd] oR= &Fef o] ol i A= Al 22 processE A ol= Ao] HFgl. thread= 57 process

W Zpgle] gt 7)o

oFoJJ A= schedulingd} 710f] W& core eFg-S process T2 HAEHFX]al, A2 multi-thread 23S
TR R 4 osollA] Ol thread HAR .

2. Thread 7424

2} thread+= ofeljef gro] APy} AEH YHE FH 2 o2 7} QloJoF gf.
Thread ID : thread 4] id.

PC(Program Counter) : A& 5 instruction 4. (register2] d&o]7l g}.)
Register Set : AR 59 regzsterJ HE.

Stack

HHe SpLto] processof] £oh= 2f threadi= of el -2 FES &7k

Code section : process@] code section.

Data section : processQ] data section.
File : process2} AEE(Fe] &) file.

| code | | data | | files | | code | | data | | files |

registers | stack | | registers ” registers H registers |

| stack |

thread —» g ; g g <—— thread

stack ‘ stack |

single-threaded multithreaded

28

Processes Threads
P1 P2 P3

Kernel Kernel Kernel
Stack H T1 Stack

Heap Heap Heap
BSS BSS BSS
Data Data Data
Text Text Text

FASHAE sHtL] process= XA Stt9] threadE 7HA.

5.1.2. Multi-Thread Programming®] ©]%

F51o] TR oAl multi-thread programming2 ofefel Z-2 ZFg o] ¢S

1. CPU Utilization

2} thread= A= T2 cpu/cored]] eigE o] WE 2] o2 zald 4 Ql.© B & multi-thread programming
L HA cpuo] Ae]gFL = £~ 9l L.

ojuff thread & 5 2]H HA| cpu] 2] 2]g:e A< SolUt7], thread 7} YAIXE Hol7FH 2]
o] o}l 225k oI thrad itling —°7 Eoj7he t]§o] #]7] W2, ofaf cpu/core] T}
UESE AR} oz, o] ufal 2 threadE AFEdl= A o] 72 &.

7§, cpu/core] J4E YA S Al X 2] = &8 Ao] GPUY. GPU A2 cpu/core
QJuF=I o] cpuld Tl EH tlaesly 2F7] oo 07877 Fdo] 752t

l‘lr D;

throughput

Number of cpu =x
Numberof cpu=y (x >y > z)

Number of cpu =z

Thread =

2. Responsiveness

process @] AH thread?] - ol= ZF¢jo] @] 4]} blockEH el E, CFE thread= S0Pl Q1S
==} process7]- AR-gzFol Al o] 23] interactiveg}.

3. Economy

thread-= processEH L] ¢

ZF7F =2 E] memory S 7IX]E process2F= G, process Y2 2] threadS-2 memory FIFHS -9
oF1 ZIRP7L ZFR[E= FL7Fo] 2o B 2 switching, communication H]-§0] Z-S. FEGF A4 o] ZHoj A=
Ho Fhe WL FHo17] iRl Hlgo] .

5t9] processor(chip)of| 2] 7J9] computing coreE 7}A]3l 1+ multicore processoro]| A E3] multi-
thread7} &2 Y. stEO] A Q1 SHo|A = FASHAT 2t cored] threadE FEste] HHA o2 AT
T AL AT E Y o]F el ZHo| A= ZF core”} processor?] cached F-7-5F7] W&o process?] data/code
segmentE cacheo] 22]H Z+ threadoﬂ oot A 2|7} wabA.

multithread /multiprocessor2] 4=38-& Z¢jof tfgt SA| 4 (Concurrency) e THS 4 ==

ust

5.2. User/Kernal Thread

5.2.1. User/Kernel Thread

29

thread= 1 28] FA]o] el user thread2l kernel thread= L.

1. User Thread

User Thread= AF§-ZF 2041 %EJEJ t thread®]. kernel®] 7HY glo]] ¢I=[H], F &2 AFEAF 72
glo]H 2|27} thread A4, scheduling 55 530l

kernel AZ|A] G002 SE7} MEA]E, user threadhg AFEHAE AFHl B Yol A
7F U

2. Kernel Thread

Kernel Thread kernel(os) 504 #E|EE thread®]. kernelo] thread A4, scheduling 55
P

kernelS AR B2 user threadoj] Bl £ = a]x]al, HZ A9l theading®] 5 %E. =, o]H thread
ZF blocking®=]H kernel:& CFE threadE A 2|5l = gF

5.2.2. Mapping

user thread= ofg]2} 2+ HF2] O 2 kernel thread2} o E]o] =305,
user thead= kernel thread2} v g o] E]oJoF cpuo] QJ5) A o2 a2 -~ Q2.

1. Many-to-One

of 2] 7H9] user thread-E oFL}-2] kernel threado ofj Fol+= 4], g 25]= user thread 2] 2Fo] H 2 2] o]l 4]
o 2] threadE schedulingslo] oj 2] 7]9] thread7F HEH A 02 X2|El= ZAAH HolA] sf= A 9.
kernel Q7oA PO threadE AF§Sl= Avp gonz, 3F Hof 5}Lpo] user threadTh kernelo]]
HZT + 2. o]uf] 3FLt] user thread©] system callS AF&SIAU I/0] 23] blockEtlH Cf2
user threado] X e|=[2] 2ot =, AEH 2L threadgo] FWHXOZ Ae|E]z] 23} (G =
multiprocessor?l 7-2of &= oFRF7E=] Q)

A 2= 1/O%F system call:S AF§-Sh= F-27F A7 ZAYSIEE kernel threads 2| H3IA] k= Al
5ol many-to-one WAL AFINL, & ALHAE A2 B gL,

T

Kernel

T10l system call2 &=8{ct= =¢t
2= HE &0l 20ts

2. One-to-One
SILLO] user threadE SFLFQ] kernel threadoj] ol Fsl= BFR]. user thread”}F AJA =M O]-LE= kernel
thread& AJGol= Z1Y.

o] yser thread”} blockE]o]Z= CFE threadS-L 7|

user thread =0FE AJAJSH= AL H|g8F A 4= 9

A= = Q2. SFX]TF kernel threadE

Iy

o

3. Many-to-Many

of 2] 7] 9] user threadE of2] 72| kernel threado]] v o= HF4].

T2 7 user threadﬁl]— EAL B Z& 9] kernel threadE AF§-019] (S ASIA I user thread 2 T}
e gors ¢l e °.) many-to-oned} one-to-one] AL sHAgF ojuf user thread2} kernel thread
A]'O]/] o 52 kernelo] % 2] gl

ojujj oH user threadZ W] v Fs}o] AP A= LZ9] scheduling s oz %z;g%;_ é, many-
to-many o A= user thread2} kernel thread2] b oA schedulingo] =11, o] & kernel thread2]
cpu egrofl st scheduling EoF 3.

30

?4— user thread

<«— kernel thread

5.3. Thread Issue
5.3.1. Thread Issue

thread] AFgo] ahe} ZedoF ol AFFEL olefo} 22,
1. Creation

fork(), exec() 6= E-EF process] XY threadE 112 foF gF.

process U2 o]H thread} fork()E ZESFH 7]E process®] threadE A5 7IX 1 li= processE
/lﬁfj@' Z{I?JX], fork()—e'?‘ i‘%?;} threadﬂf—g— 7]'X]_ﬂ /?,Zlf- pmcess—e‘?— /gl/gli‘ij- Z{](g—]x]_;;'_ z(;]_g]g—”o]:]O;j]_' (E]
HAOAE = ZF] B9 fork()E X Elg).

5] evec()F CES}H 7]& process®] OBl AAE B R, evec()F 2E5}X] =t AL
evec() & BETFIE T} gAY,

2. Cancellation

thread cancellation®]] 2]E T slloF &F. Thread Cancellation2 thread?] ZF¢jo] Z1L}7] Hoj 9]H
oA e FEAT AL B

5fL9] thread?} cancellation’d wf T2 @2HE threadz cancellationdf|OF 51=%], cancellationd] 2=
threado] SgEl RS TFE threado| Al AF&oFal QIR 23] 55 125l cancellationdfoF &F.
3. Thread pool

Thread poolQ] AF-&-S 112 s}oF &F.

o @ s} ujofr} threadE AW 5)T AJ-go] BY-S o A, WA A7} vlH sl] AE oAl
QHFEI} Z = Qs Eoh o XFof mfaf thread 2] 7]=oll= AekS FoF . o]of w2} Thread
Pool:& A[-§-3}9] threadE t]2] A48l Fi1, processo] H3F B grghgirtr} cpA] HhgEkE HRAl S
AFg3}F o] thread pooloflA] Fa]sls= threadQ] 7= XA H o) ofal 7.

4. Thread ZF IPC

thread 7Fo] E4IS 112/ 5]oF g}

53} process RO thread7]2]= data 98 F-FSFEZ, shared memory Y402 E{ls]= Ao]
8839 CFE processQ] thread2lFo] E41.& IPCE &rgsflof sl=g], o]& F-Lr} HlHlslz] -2
programs & A} F oF.

6. Synchronization

6.1. Synchronization

6.1.1. Synchronization

31

1. Synchronization
577§f(5ynchmnizati0n){— &1 bl] ol o 2] process/thread”} FLek uf tlo]E] o] Yy} FEHY
SZI5F= ZFY Q). =, race conditionS 2] 2]5F= Z.

OFprocess 2 thread 7] 2] 9] synchronizatoinS A ZFsll HH, ZF threadaf o} ¥ = 9] register setT} stack
= ZIX)7] mjiZo) 2] GRlgo] oAl e D7) GliS. thread”7]2] F7ol= 1Y W4 (data), 4
?_25*57 w22 2] (heap)oll THof Al L2 2{offoF 3}

synchronization 7]¥-S 288 o= consistency’} BFEEE=X], deadlock F-= starvation©] BFAISIE=
2], concurrencyE Yot A Fol=AE SF¢l5oF gt

2. Race Condition

Race Condition-2 37 tjo]E] o] tfsf] &]&] process/thread’} {/HF-S Al Lol= A1oFS 2hek
race conditionS & X 2|5l 251 (synchronization] 2]& oFX] @O ™) program®] Au}7} = 2]
epo] ol w2} T HHE + A1, o Heja 42 Sy (Consistency)E 912 + 912
gl F =of, o el Zo] balancedt= F-7 HTE #9] FAlol +5l= 7 processZF QItFal ol2F. 7]t

Hi P 10000] 2] Ef"]“’/schedulmgofl sl AA= FFEE G AR Y 5000171, 1500
oj7i}, #af olhlZ 1000¥ = {ls5-

< Process A : incoming> < Process B : outgoing>
Register:1 = Balance Register. = Balance

Register: = Register: + 500 Register: = Registerz - 500

Balance = Register: Balance = Register2

To: A process execute Registeri=Balance [Registeri=1000]
Ti: A process execute Registeri=Register: + 500 [Registeri=1500]
T2: B process execute Register.=Balance [Register>=1000]
Ts: B process execute Register.=Register2 - 500 [Register= 500]

Ta: A process execute Balance =Register: [Balance =1500]

Ts: B process execute Balance =Registerz [Balance = 500]

A1 (Concurrency) ¥} € 3#A (Consistency)+= tradeoff WA 912, &2 consistency”’} § F Q3122
consistencyS HASHHA] concurrencyS SHSIEE AASH= Ao =435

6.1.2. Critical Section

1. Critical Section
Critical Section2]2 process/thread”} J-7 Ho]Elof FHZo= code FGY. =, race condition©]

HRANSF 2= o]l H.Ho]

critical section 0 2 ¢Jol= B ES Entry Section, LF.Q= 228 Exit Sectiono]2f1 &F. EoF critical
sectiono] ofd HHE-S Remainder Sectiono]2l1 &F.

Entry Section

Critical Section

Exit Section

Remainder Section

synchronization& ¢F Boj s}L}o] process/thread'jfo] critical sectiono] FLeF &= =

ol. =, concurrencyE 7|5}l consistencyE BFHSF o]of m}2l concurrencyE FUer gH 5l
critical section& 7}5oFH A 5]l= Zlo] »oz_,ﬁ_

2. Critical Section9] ‘7]@ x4

ely7a]Z0] critical sections ZF 2]l H olgo] XS ukFEs|of gf.

32

1) 4% viA](Mutex, Mutual Exclustion)

o] ® process/thread?} critical sectionof] Y5} QUCFH, TFE process/thread= el = §lofoF gk
=, @ wol et Solrlof @

2) & (Progress)

critical sectionof] Z1¢JeF process/thread’F §137, Q512 = process/thread”} EASHIH remainder

ol

=, 21go] HoloF 7
3) Bounded Waiting
process thread 7} Y5HE Hlo] Zee Akl Agto] EAshoF 3

=, F2oFs] Z]ota]=(starvation) Sgro] EAeAE oF H.

©
Rl

6.2. Synchronization # 2] 4]
peterson solution, atomic instruction, semaphore, monitor 5-2] 2] ®Alo] >

6.2.1. Peterson Solution

oofy = oy
s Jo
T
o, >
=
3
3
o
>
o
Ol
~
£
2
rE
s
3
o
9
v
V)
Y
o,
)
&
e
=
S
o
e
A
>
>
3
=}
ISH
9
R
=)
£
Y
2
4o
N
s
S
(@)
e
w»
v
ku
)
o,
ol
<

/1 3% H

int turn = 0; // 022 ZR7|g}

// PO

while(turn != 0) ; // waiting
... // critical section

turn = 1;

... // remainder section

// P1

while(turn != 1) ; // waiting
... // critical section

turn = 0;

... // remainder section

3
2
g
o
IS
iy
)
I
Ol
~—
R
3
3
&
3
v
\EIJ
o
e}
I
3
IS
[
ISH
S
IS
s
S
<
o
29,
Y
1,
i,
R
&2,
oo
o
N
:Oé
kx
)
o
o,
4n
=3
3
o
e
v
v
N
~
I
N
N

2. F% ¥ flag AF§
5 Y flagE Aol o] H process7} critical sectiono] Hiol& 1 of=X]E LEFY. ofafoF Zro|
2z} processoll disl] Htoel= o trues, 1P Yo falses XYl

/] B A

oTr T

boolean flag[2] = { false, false };

33

// PO

flag[0] = true;
while(flag[1]) ; // waiting
... // critical section
false[0] = false;

... // remainder section

// P1

flag[1] = true;
while(flag[0]) ; // waiting
... // critical section
flag[1] = false;

... // remainder section

mutexS TFESEX]EF, progress, bounded waiting®] 2] 2]E]] kL. GHSIAE = process B+ flag”7}
trueo] W QFZ = HZ51x] 2o} (deadlocko] HH).

3. Peterson Solution
Peterson Solution turni} flagE 2= &-g5l= HFRIQ. Qoj Aol Zro] turng o] H processo] =z}
IRIE YY1, flagi= o H process?} Lol 1l o}=X]& LEF.

peterson solution=2 &7 o] E]o] HoFe processZF & 27]0]11, ?F Hof FLf2] processTF F20]
ZFeot &F&ol dier daze]E¢l.

ofgflof Zro] FEZ FHE, peterson solutionS flageF SAFeFH], turn =5 ®M2] X &6l process7} &
A 2ol SF 6Fo] deadlockS SfE 5. A2 BHHHO] turng X5} Y=t BFx]ato] ofH zlo]
Y E[=X]E A2lof B 184 2 21 o] g 5~ Uss. & 2JoHH, A process7| ol 1
olx] o= 2ol ® flagglell ool 1 HZolA =1, HTfH process?} FLol# il Sl ol H
turng 2] gok= A Eof B2 ZE el process7F HEoFA] H.

/1 B% A
int turn;
boolean flag[2] = { false, false };

// PO

flag[0] = true;

turn = 1;

while(flag[1] && (turn == 1)) ; // waiting
... // critical section

false[0] = false;

... // remainder section

// P1

flag[1] = true;

turn = O;

while(flag[0] && (turn == 0)) ; // waiting
... // critical section

flag[1] = false;

... // remainder section

mutex, progress, bounded waitingE 2+ TFEgl

peterson solution2 27]9] processo]] jsfAl= 2F ZF=oX]5F, process7} 27 H C} BFE ZH 2= 2] 2]5)%]
i=1573
A H -

34

4. Peterson Solution9] -3

peterson solutiong 27] 8 of EEE processol] 2-§ 7} ol & gFgol= A& HaolX] o5 ©f
EgJojx oz s ds}7]ofli= scheduling, compile & oJ2] B2} EAot. 53], H

ZgSHH compilero]] O]of 7]& HZEZ} Ok or A= of2A] Z]Alo]2 Hekd £ 9
oA HFE FGoloF 3F. FEoh gper dglso] BE -0 YEo=X] Higt 5 A=
TIFEE 7 U5

O of sfE Qo] 0 2 & interruptE XPHolAL) & instructionS A ol= 02 Hl WA 7Ho}
Al FEE = Q5. olmf application©] interruptE XZ&Foh= Zlo] A FoIR] ¢fal, FitofE= process
O] =7} ol H interruptZF L el B Yo El= EAIZF A7 12 A] architecturedFof AEol= syn-
chronization instructions AFESF.

6.2.2. Synchronization Instrucstion

1. Synchronization Instrucstion

architecture(cpu) o A] A&5l= Synchronization Instructions &85 synchronizations =] 2]ek
gle.

oJmf O] instructiong~> YA 0 &2 (atmoically) -&2F5l= Atomic Instruction®. atomicdl7] -&2FF
o A2 afg 295 Afojof] thE &Yo] scheduling 5o 9Jaf 7]o]EE AL 5§57 s AL
=1ger

synchronization instructiono] AF§L -3 HJo]Elof] HEl&# = process?} & nrjo]il, gF Blof sfL}o]
process Tk F20] 7pigt AFgoll tgt 2]2] WA,

synchronization instruction] AF-§-2 mutexBHS H3Fer =, L)X 7L programofJA] &ropA] = 2]
gt 5 QlofoF sh=tl, o]A] g HEEH 7= ol 25

2. Instruction 9JA]

A1) ofefje} e FEg E o] QI cpud] ol o of FIAZE atomicS}A 7 E= Tes-
tAndSet()S AJzFer = Q2. locko] trueo]H AL trueE HFelsl1l, locko] falseo]H falseE HF2ls} 1
lock% true2 2] gk

// atomic instruction

boolean TestAndSet(boolean *target) {
boolean rv = *target;
*target = true;
retunr rv;

3

/1 B HA

boolean lock = false;

// P_i

while(TestAndSet (&lock)) ;
... // critical section
lock = false;

... // remainder section

o] & circular queued AFE-ste] Z]oj T 7] AJZko] A 74> BFEC] process7| 2] 2] &= A]ZFo] H =&

ANA12) cpulll o] slig ek A 7F atomicolA] ==& Swap ()& HAEY 5 QU5 Swap()2 He9]
IR}z B2 7 gls B A Yo, waiting B 9] gk oS process’F HE 7] S & HEH

(flage}t =AoF 7]5). locko] trueo]H waiting gEo] #H< trueo]1l, locko] falseo] ™ waiting o] false
ZF 2] 1 locko] trueZ} E]HA] critical sectiono] F+L¢}.

35

/I 37 B
boolean lock = false;

boolean waiting([n]; // # of process

// P_i

waiting[i] = true;

while(waiting[i] == true) swap(&lock, &(waiting[il));
. // critical section

lock = false;
. // remainder section

6.2.3. Monitor

Monitori= -5 o] (H.E)9} 5 Hlo]E]29] 2 712 (Y A.E)2 H&35He, high-level language
o] /9] synchronization BFA]Q].

25t processE queueof Al TIZJAIA, &F Hof] FLFO] processTHo] mf Al &= + o] g o] He
T Q=& 3 o] met user programOf A= P/V 2] 18 §lo] Hrd] Ui]dES’ AF-&517]aF sFH
=,

java & 7 2] high-level languageoll 4] P&l 2 HE A& 9} javao Al St classol sl synchronized
Y EE A-LSH monitor2 X 2]H.

6.3. Semaphore

semaphore'= U]-8-0] ol wt= wjA] A 2]gt.

6.3.1. Semaphore

1. Semaphore
AlEFE o] (Semaphore)= &= 7] 9] atomic operations ZIA &= 4 B4l 7+ FAlo] mpef of g
QU219 semaphore -2 critical sectionof] A YL 7153SF processQ] 7j4& 2]n]gl.

2% semaporei= 3 WO F2 715k process®] 5 EE HAY 2, ghoflA] FEgh)7} upz
72 G4 ST 57I5HE B 2k H@s] 7] Lol starvation S0 WAL 5
o] o
AR

semaphores= &7 o] E]of] o} processZF & n7l0]1l, @F Hloj of 2] (G FA]of ajef 7j7F

FallE)e] process7} Fto] 7l =kl dieh 2 2] ¥rAlQl.

2. HRF

semaphore ofgfol 22 HRES ZIx|H o] 914
HAolA = sfLfo] PT’OCGSS"?’W PO V()E =

Eo]-

J

FEZ20F o] 7}538} oJuj zF RS atomicsFE 2,
S& Zolald f 2 processoi]/(‘],_ PO V()& Z&5HA]

Wait()/P() : critical section &g 27 T&. semaphore kS 1 &Y.
Signal()/V() : critical section FZ]S S&. semaphore FF= 1 5.

=, IE oAl ofgoF Zro] AFgH
PO;

... // critical section
VO ;

. // remainder section

36

5. ©
Semaphores 2 182 B¢ deadiocke] WA 5 YT, P)S} V(S H Abgo] Fyetnz

7o 3]

o T o=
human errorZ} BHAIer = Qlof= o] QS o] high-level languageolA] monitor 55 AF§-5F
synchronizations | 2]olH s de + 9IS

5
plo} P()ie =] V()E ﬁs 2] QIolTHEl lock EojE o] glon deadlocko] WAs]
3, V()L AYBET P()S AY5h P lockS HolFi HHo] glonE muterS HHES]
25,

Deadlock=2 F 7f O]/G_,] processEo] A E]Z] Bl AlLsiA] o]HIE 7] AEo] nlREL HAF
= el g& 50, F process7} A 20] ZF¢jo] elrE7|E Zope]1 Qo ol gt £ zF¢lo]

%]—EE]X] 23] deadlockO] 4.

6.3.2. Semaphore?] &

semaphore®] & WA= = F}R|7} Q.

1. Busy Waiting
Busy Waiting:& critical sectiono] 2 = Sli= ez} §i& o, a7l Y wf7pz] loopE &1 A%
e =5 o= BHAQl.

oo} Zo] 7HE 7 UL

P(S) {
while(S <= 0) ;
S=98-1;

}

v(s) {
S=8+1;

}

2kl o] ool BFHEZ ol A] Bl kS A& 54 RSFEE cpudf FE O] 2 EoF ofgof] Fe
me€557]' oIRF glo]glof oJs) AYE B2 o] process7F HLER] &+ HS-

2. Sleep Queue

Sleep Queues critical sectionof] JZE 4 QU&= 2|7} HS o, FE]7F G w7kR] process7} sleep
Ly o]
. -

SRS ofx 1 YHE sleep queued] Foh= &4]'377]- LI sleep queueoi]/(i processE ZAU]
XJ:LO]_E_iE_" o].'

ofeo} Zo] FHE 4 UL

37

typedef struct {
int value; // semaphore value
struct process *list; // sleep queue

} semaphore;

P(semaphore *S) {
S->value—-;
if (S->value < 0) {
add this process to S->list;
sleepQ;

}

V(semaphore *S) {
S->value++;
if (S->value <= 0) {
remove a process P from S->list;
wakeup (P) ;

(S

FEL BT pu LB F 9

To

6.3.3. Semaphore F&

semaphoreZ} 7F& 4~ Q= ZFoj] wief semaphorel] EFE & 4 =

1. Binary Semaphore
Binary Semaphore= semaphoreZF 03F 18RS g1 o2 712 4+ Q= HFA] ¢l

binary semaphore= SFEGo]of] 2] E5F] atomic instructions AFE&SFe] Fo e 4~ 912, ofgjo} Zo]
TestAndSet()S AFgslo] ZHY = S S semaphoreZ, critical sectionof] {29F process7F UL©
M true, YO H falseE ZFro= 717,

P(boolean *S) {
while (TestAndSet (&S)) ;
}
V(boolean *S) {
S = false;
+

Cr<~5] TestAndSet()S E-8-3F synchronizationd} CFE2X] FS.

2. Counting Semaphore
Counting Semaphores= semaphoreZ} 7}2 5= Q= gho] Zallx U] &1,
o] 5 27IFteR FhAJ= B3,

counting semaphore= oFFo} ZFo] binary semaphoreE E-§35) Y = Q2. counting semaphore
C®@}, binary semaphore S1, S2& AF&SF. o] 7] 4] 2Q] binary semaphore= —,—]_J —7—04 aJA]ol= of 27
Hol Q= 2Fe] o] Z)E 2gFel S1:2 mutexrE HFoF7] flek 210] 11, S2i= RFel7F Yl F-2 waiting
SlE== x]4sl7] QoF A Y. wait()T} signal()S counting semaphorel] ¢4{Fo]1l, P()JO—]- V()= binary
semaphore2] H4FQ].

ol

FElo] H 7Fset process

38

c =5; // ot Hof| d2 Jts8h process?| & A|F

S1 1;
S2 = 0;
Wait() {
P(S1);
C-—-;
if(C < 0) {
P(S2); // 827} 00|22 HEZ Jtset A2|7t QICHH waiting
}
V(s1);
+
Signal() {
P(S1)
C++;
if(C <= 0) {
V(S2)
+
V(S1)
}
=, binary semaphoreBFS XY= A|AHOJA L o] o]-&5F] counting semaphoreE e 4
o] o
AR

6.4. Synchronization &g 114 24
synchronization T 17174 EA| S 4w H 2}

6.4.1. Bounded Buffer Problem

1. Bounded Bujffer Problem
Bounded Buffer Problem-& n7}9Q] item= 4 5+ Q&= buffer2 oJ&] producer?l consumer’} 8=
Zs5F AF3FO] synchronizations * 2]ol= ZA <.

producer+= ofLt9] item-S A-F ol bufferof 2Zold = ti-dFo]1l, consumer+s bufferZ22Ef o;]-L,L,] item
S 710 H = giAFel. of 8] producer@f consumer?F bufferof] H25Fe] 2 e ojj, oF Hoj] sfLfal FHZLo]
7}%3}55 synchronizationS =] 2]3]JoF gF.

2. Solution

th5] semaphores AF§ofo] Sl der = QIS ofgoF 22 371X] semaphoreE AF&-gl. buffero] e
2] Z sl semaphored]

empty : buffer<] 4] 510} L= 4219 |5 Lpepd

full - bufferel] 3F 1= F2)o] H7E P,

mutex : mutex X 2]E ,037-

ofefe} Zro] A = U muter LJo . producero A= bufferZ} Z ZF F-L-0f, cosumerof A=
buffer7} B]o] Rl g7l {25 75k &.

empty = n; // buffer =7+9| | 44 viA
full = 0;
mutex = 1; // &t HO|| StLPF HISt=S &

39

// producer
while(1) {

P(empty); // bufferOf Zf2[7f QoM S}
P (mutex) ;

... // bufferOf item ¥

V(mutex) ;

V(full);

// consumer
while(1) {

P(full); // buffer0 itemO| QU2 EI}
P (mutex)
. // bufferO| A item 7HH
V(mutex) ;
V(empty) ;

2112, co| A pthread.h, semaphore.h 52 AF&oA L@ wj= mutex?} empty/fulle] AFR §H4=7} of
& mutex©f| = pthread _mutex_ init(), pthread mutex_lock(), pthread mutex_unlock() 52 AF83}1L,
emtpy/fullof+= sem__init(), sem_ wait(), sem_ post() 5 A8

6.4.2. Readers and Writers Problem

1. Readers and Writers Problem

Readers and Writers Problem-2 &7 HJo]E] (buffer &)2 o] 2] reader2} writer7} {2 7FsoF AFgro]
synchronizationS x| 2]ol= ZA Y.

readeri= &+ H|OJEE readst=t], Hlo|E]E oA gfo Bz FA]of o] 2] reader?} o] 7}&al
oF eF. writeri= &7 Ho]E o] tfa writes]=tj], ¢F Hlo] SFLFO] writer¥h F2o] ZFsoffoF o FEgl
reader®} writerZF Ao HLoks A2 E7FsoloF o

Writers Writers
N N N TN R\
W (W \[/Vv\l\ \{/W\x /W\) (W </vv\> (/W)
NN NN B NN NN

L5

Data Data

Critical Section Critical Section

4 Y 3
R (R) [R)] [R] RJ\R/,‘R‘(R,J
NN N NV B O O
Readers Readers
<012 reader= SA|0f read7}5> <6tLtO| writer Bt write 7>

2. Solutionl
olgfo} Z+o] semaphoreE A3l SEE + U=

readcount : &7 HIOJE[o] < 52 reader?] 7|5 LIEH.

wrt : writero]] gl mutex X 2]E of.
mutex : readero] ol mutex 2| E ¢

ofefet o] 7HY 4 9IS

Q
aal

readcount = 0;

wrt = 1; // o HOj| StLEH Yot F o

mutex = 1; // S HO|| SILIPH FIst=F o

// writer

P(wrt);

... // 35 GIO[E{0f CH3H write

V(wrt) ;

// reader

P (mutex) ; // readerO| CHSlI mutex
readcount++;
if (readcount == 1) { // 222 ISt E read?l F2.

P(wt); // writerOf| CHSI mutex

}

V(mutex) ;

... // 7 HOIH read. LI HZES RIS P/VE AMA| SIS

P (mutex)
readcount--;
if (readcount == 0) {
V(wt) ;
}
V(mutex)

=

3. Solution2

solution2= writerS 4 * 2]5}o] solution12] starvationS si-&EF o]u] wrtpendingo] HolkE =Y
oH &&Fol7]&= ofX|gt, HA 2 write o} read”} H& Fo] Y¥FHo]7] mjFof writed] 7|25]
Fofslz] Qlek ¢l o el Zro] LS o Q5.

readcount = 0

rd = 1
sl =1
writecount = 0O
wrt = 1
s2 =1
wrtpending = 1

41

// writer

P(s2);

writecount++;

if (writecount == 1) {
P(rd);

}

V(s2)

P(wrtpending)

P(wrt);

... // &7 HOIE{0f Clsh write
V(wrt);

V(wrtpending)

P(s2);

writecount--;

if (writecount == 0) {
V(rd);

}

V(s2);

// reader
P(writepending) ;
V(writepending) ;

P(rd);

P(s1);

readcount++;

if (readcount == 1) {
P(wrt);

}

V(sl);

V(rd);

... // &% HlO|E read

P(s1);

readount——;

if (readcount == 0) {
V(wrt) ;

}

V(sl);

6.4.3. Dining Philosophers Problem

1. Dining Philosophers Problem

Dining Philosopher problem-2 57 9] ZofAp7F 2JARS Sh=t] Z17Fefo] Apgh Apo]oj] spipy] & 57)%k
Z35]o], 7} Ho}x}7} [H 5] AP 5 QEE synchronizationS A 2]ah EA]9. ofu] 7} A=
Apa1o] vz g AP HL 4 i, F A7bee] Wi glojof Mg 5 i, A7bee Heow
S B ool e 5 2lg.

42

YAz HFE L G S et B

2. Solutionl
ofels} Zo] 7} A7}efell gt semaphore S AFG-]] Brs] A7k te synchronization-S AZFet

A 0] Oo
a2

// philosopher

P(chopstick[i]) // ZBEA 2z[0f T2 EF AIE EY
P(chopstick[(i + 1) % 51) // 1 ¥ &7t &7
. // eat
P(chopstick[(i + 1) % 51)
P(chopstick[i])

o

| 39 2 o) Ahels ehpe B e 999 deadiocke] . o1l mi offs} 2 A

g 4zr 2 2lS

A9+ AYE
. golrlo] o g o]-O:] A Blgl= QEES,
3. 7] dell HARE OHH Qo] A7fefo] BIE ARg k5ot -0

=& o]Z7] deadlock:S o o] FZ]TF starvationsS Y 5= 5. o= aging & TNEZ Q1 7
ojef o do] ZFsek.

3. Solution2

7] Holl ARE allA] o] A7lefo] B ARg Zhsof Z-2-ofuk A gt

o] 2 95 Hs}x}o] AFEj(THINKING, HUNGRY, EATING)E ZFslHe B state, H7FeF 22 o]
st semaphore muter, KA7Fef 27018 2= 22 Ae]o] Ol6t semaphore B E selfE A-&3F.

ohels} o] e

state[5] = {THINKING, THINKING, THINKING, THINKING, THINKING};
mutex = 1;
self[6] = { 0 }

oE

DS~

// philosopher
. // thinking

take_chopsticks(i) // iR ZSHAt0f| CHSt &Y
. // eating

put_chopsticks(i) // iR ZStZ}0f| CHSh 2N
. // thinking

43

take_chopsticks(int i) {
P(mutex) ;
state[i] = HUNGRY; // AEH7} HUNGRYO|®H CH7| AEHQI Z
test(1); /] LEO| 25 ZASt=A 4 Y self[i] =Y
V(mutex) ;
P(self[il); // test OO0IM =@l 2 Zen S0/
}

put_chopsticks(int i) {
P (mutex) ;
state[i] = THINKING;
test (LEFT) ;
test (RIGHT) ;
V(mutex) ;

+

test(int i) {
if (state[i] == HUNGRY && state[LEFT] != EATING
&& state[RIGHT] != EATING) {
state[i] = EATING;
V(self[i]);

slo8lt dojae el7} HUNGRYZ %), 598 #xjs}e] B BATINGO] ohjw
2}7} EATINGo] 51, & & shtete EATINGo]® HUNGRY AFe)2 P(selfli]);o) Al 7] 3F.
ZsIz}= EATINGo] &l zJOu}y} 2} 0] ZFojo] Bk B Aslere A 2Fo]S g}

AR
P} A7beke WA ol 295 Yl 399 B8R F SHF 7] F(HUNGRY)o]
o} B glx) o S HAE A7behe WelsS uf o AYe +UslA grow 7] 4

Fao) A71ehe g7 24

7. Memory Management

7.1. Virtual Address

7.1.1. Virtual Address

1. Address Space
7 T (i Spoce) & procesel] B8 3 i Pk W) EE TR, processs] 11
2 &

address spaceQ] F7]& cpul] F4 B A (address bus) o oJ5f AAE. cpur address busE Ef FAE

ZF "Hro a2 qgddress bus7F n bitgFH G cpu= & 20 9] F *E AJHSE £~ 9lo ojuf A]AH]
o] addressmgop £ ol A memory »5—{7-% 757"170]-7-]]5 address space/,7 :—7_’7]9]- 77' FE71 IR =
memory 27| 5 FA S 5 UL A= , cpu2] address busZF 32bito] I FA4 SFLF G 1byteQ]
2718 7RI, 0]7”:} AlAHo] g-get 21% A memory Z7]= 2°2B = 4GB ¢J.

32bit/64bit cpuBtal o]oFr]el mf 32bit/64bit= G busS] Z7]Q. o HE memory EIHS Y8l 64bit
A Eo] SYHATE, AZE] JYAAE 0fbite] Fi BRE o 2 4L YA 2.

2. Physical Address vs. Virtual Address
= 2] F£4(PA, Physical Address)= memoryof A 4

Zo YA Fio0lal, 7R FA(VA,
Virtual/Logical Address)&= process T oA K}JQO;]-% —,Z—

rr

o2 AME
o],

44

VAE logical address®]. ZF processoflAl= VAR F40] HZ6lof, olx] gt process ZXFA] memory
A2 AHEohD Q= AHE FHE 5, process 2 AHE 755 memory FIS ot o} gl
of 2] 7§ process7F A= F& A glo] Al HAE + U

Z237] A" Al= ZF program=S compile timeo]] PAZ} AP =] 5. o] HA] 02L& of 2] programS
Aol memoryof loadsl=ro SFAIZF Y=, Z7] AFEEQE MS-DOS 22 osi= CLI Z]5to]
o] 2 EA7} UL, windows 5 GUIZF S3FSFHA] multiprogramminge] B Qo] A7} VME
AFE-SEZ] AIZAFES

3. VM9 A2 77

Lo FEL VMO AEE 71T B4,

compile timeofJA] compiler= A2 FE2 symbol table(42 FEO] AHRIET o] tf A
= Aok HolE)S Agel olnf table2] symbol&-2 tabled] tfof Haj&Ql F4F ZIXA =11,
table(object file):2 FA27F 0 E |21

link timeollA] linker= object TFU=7} efo]Hele|&& ol oo tables A4 el ol FHH
table(executable file) ESF FA47F 02 E] A]ZFgl

load timeofJA] loaders ezecutable file> memoryd]] =2]=g], o] os7} table} PA Alo]o] njjZlS
AAI S,

5o BYols F4 B Aels MMUzHE SEEFolE AF&g

T Q3 VAS AST SE QAT SRR A AAelAE

O

A]
=

%

memory o] ujet PATHE AF§%
VAS A8

3

7.1.2. MMU

MMU(Memory Mangement Unit)«= VAX} PA Z7FO] Hi2l(translation)S Tdol= sLEgo] ZFR] Y.
MMU= cpu o PR] gk

MMUE FHojJA] dE e page tableS 3 translations TFgF.

memory T2 ¥ME) WgoHs Holn2 MMUE 45o] vl3)= o] 2.

CPUE= MMUUI A virtual
addressE 2 HCH

CPU
e M Disk
emory icontroller
MMU|
™ Bus

MMU= CPUZ 2H 22 virtual
address= physical address 2 <
ot 0 memoryZ & WM CH

7.2. Virtual Memory

7.2.1. Virtual Memory

1. Virtual Memroy

ZIF o2 2] (VM, Virtual/logical Memory)= A2 EAoFR]= GR]TF, AFERFA] memoryZ A]2]
oJskS 5= memory. HHH &) o2 2] (PM, Physical Memory)= A sfEgJo]Z] 02 EX5l=
memory .

VM2 PME disk 771 2-gek.

=, VM2 VA gr-gof oot ZF4-0] memory©]7] = o1al, WA A
goFe BEORS memoryo] S8 AME EIHS &

2IHAl, T3t a&F o= ALgSE] I3t E 07

45

gl o] Eloj & HEHSF page tableX} demand paging 2 ol H.

olef e} VM PMELE 2 Ao] Uyl VAZ} 71X F4 319 W9g B2paeke gelgk VM
o PMETt FB 2 VMO &2 pagesS 7'% frameo]] g %7 = QS

Virtual Memory(4GB)
Virtual Memory(4GB) \hysica Memory(4GB)

I —

@

o[qe], aSed

Virtual Memory(AGB/

®)

2. VM-S /(]'-g-’a"' memory <
VME Al-g35F memory {2 78] QoFsHH ofafo} -2,

ZF process= memory G Ao VMoj] HJZoF= Ao 2 7Pgsk Z2FsF VAE AREs] VMo HZ
OfEiU— SFH, MMU+= page tableS AF§-ol] ol VA2 o g ¥ FiZo] PMo| Sefet =35 %“’70‘-
PMoj Zefel QoW translation 78 & o)1, Sefof A grow ofg FES PMoj &4 F
translationsfo] H+LaF.

7.3. Paging

7.3.1. Page

1. Page
Page(virtual page),_ VMOoJA] address spaceE FFa]sls ©F]Q). BFHO) Frame(physical page)S PM
oA address spaceS E2]ol= TR Q).

2, VM3} PME 27} paged} frameo]2hs 114E @92 memoryE o] 2He]gh
P 5 AL pages) frmee] 2] 4KBS). ol pages} frume, 22132 dish 2])

271 B (FUalA e rHo] ARaE.)
F A paged] Tj-§F= HA Hlo|E= PMo] &2kt & & {11l (paged] frameo] S &
ety 3F.), disko] YL & AL

2. Page Number/Address

Page Number£ process?F 7} page ZFZ}of] —,—O# ;E, 7F pageE FE517] QoF M5 9. Page
Address(Page Offset)~= £7% page W 2oJA 9] ZES 5] AFgolE= F4¢.

cpuZt Balsl= BE F4E page number2} page addressZ LH. MMUE VAE page number2} page
addressZ —,’i’—E]é]—O:] PA=Z di3lg}

page®] 27]7F JKBO| T F4 SJLE7} 1byteo] W & 2127)0] Fa7F Qlo B R, page o] FE-Z o]
Al page addressiZ= 12bit7F H QSF. SF9] 12bitE A|L]er L X] bit= page numberZ A&,

o5 5o, page] Z7]7F JKBO|T F4 SFLZF 1byte9] 52bit systemo A= page numberd]] 20bit7}
ALEE] 11, page addressof 12bit7} A-§-=.

7.3.2. Page Table

46

1. Page Table
Page Table-2& Z} process & page YHE 2Z5l= tabled]. process&5L 21z} 78
7.

ny

19] page table=

page tablel] QIEIALE page numbero]il, 1 ZF PTES].

2. Page Table Entry

Page Table Entry(PTE)+= page table®] HZE=(F). PTEE page base address®l flag bit 52 g-=
iol-ol—

Page Base Address(Frame Number)+= |5 pageo]] eFatEl framel] AJZF 4. page base address2]
b o] 1 Do) mage adimectle s A%, ol BeISAL PAcl H4 ot P
=27]of] o5 gofjx]1l, VAC] Ao](32bit 5)2h= HE 7 U

Flag Bit'= 51 page] Fe12 LR bitZ, ofeio} 22 A5l 91,

Accessed Bit : pageo] ter FHZ LAY of 2,

Dirty Bit : page U]-§2] 757 07—,—

Present Bit : pageof] &gE frameo] EXJ] o E,

Read/Write Bit : read/write #¢ HeF £ of 2.

3. PTBR/PTLR

page tables> 71 A &= B Z F7He XPR[SFE 2 PMof 9]2]5] 5. page table?] Fa0f VME AF-gek
= glo o page tabled] g PAE X ZFol= registerE /K]-EOP

olefol ZHe register& AF-Egl E-E register 0]-5-2 architectured[TF TS 5~ QIS

PTBR(Page Table Base Register) : page tableof] tf¢F PAE X35l register.

PTLR(Page Table Length Register) : page tableQ] sizeE *]7Zo}= register.

4. &3 4
MMU— VAE page number2} page address= E2]5}1, PTBROi] X7’ =]l FA42 page tableof] {26l
H page numberE QEIAR2 PTEE ZH2. o]% PTE9] flag bit 5= 219I5F17 3|5 page base address

£ page address@] AgFslo] PAE HFelgl

logical physical
address address f0000 . . . 0000

v [T o] o]

f1111 ... 1111

|
il

physical
memory

page table

7.3.3. Demand Paging

1. Demand Paging
Demand Paging2 process H3J-S QJoF HE pageE memoryol] 22l= g4, dHE diskol] z]%Fa]
FATF7} pageol] Hier AF§ Qo] BAAS wff memoryol &2l 7] Y.

demand paging2 valid bit 52 AF§}o] 2EH. =, S pageo] Hjst HEo] PMo] 2o} =]
52 HEF.

47

0
1
0 A 2
valid—invalid
1 B 3
2| ¢ 4] A
3| o 5
6 C
4 E
7
5 F
8
6 G
9 7
7 H
10
logical page table
memory n

demand paging2 process 23S SHAIE diskE g-§ofo]

F2Y 5 =S F.

demand paging= AF-§-3l= 7F-% pageo] Gsls FiEo] PMoj EAo}2] 9= Z-¢7F BAeH=1] (page
fault), o]of et 2ja] Et e efloF &F.

2. Page Fault

Page Faulti= process7F pageE FZ WS E/?’ oS page”} g B frameo] Rl F-25 Y3l 5, page
of AEFat S0l PMo] £ebef 313 gre A,

page faultZ} BRAISFH MMUE 0s9] event S-S 2FE] 11, os+= page fault handler& $&35}o] ofZf2]

12
1. disko] 4] page°] alE= Y& 25

2. ol paged] free frameS &gl

2-1. free frameo] QICIH o}]‘:} fmme— AFgal

=2 Aglls =

2-2. free frame©] SICFH page replacementE el =, victim frameS PMOJJA] disk2 Ul2] 1 (swap

out), page tableoA] G frameS

5. 85 pagee]] AFH= f-&2
4. page tableoA] 2T pageE
5. process@] ZFH-S A 2FF.

SrFEQE pages invalid = 2]g}.
disko| Al empty frameo] &2 (swap in).

valid 2 2]}

(3) page is on
/ backing store

\ S —— I’
operating
system —
(2)
reference lép
(1)
load M \ [i
(8)
restart page table
instruction
free frame — i
(s) (4}
reset page bring in
table missing page

3. Working Set

physical
memory

48

Working Set:& £3 Al7F 72 59F FZEF page numberE 2& g9 (Fgolnz F2 g

Z}x] 2] oF-L

sS4
g
i
)
>
)
S
N
L

working set-S localityS LFEFY. o] working seto] 7}X= {4 0] Fj47F H-S4E local-
ity7} & g-§E o] page f(wlt F Y 2sl g, vl 2 ¢4 HECH page faultZ}F Hro] BRAYSH 710 2
offT + L. FAFE] F-P thrashingo] HATE 7 U8

4. Thrashing

ThrashingZ processQ] FZ|]| Xa§ A|7lofJA] ZF¢] A ZEECF page fault 2 2] A]ZFo] ©f 71 A}8FS gFgl

de=E 2 %-

4

. Z}7}9] process?7} AF&SH= memoryZ}
2] gHete, PMo] 9 o] pl“OC@SSOﬂ ‘ﬂﬁi HHg wo] 29 4 9LO0 2 page faultr} @ WAIGH
7} oS 2 9le o

AR

applicationo]] @} page fault] WAY oF4foll 2to|7} Q& 4= A= YWHA QI application®] -9 g ¥ page
fault7} A oto] frameo] =T, OlioﬂL 1ocality°ﬂ olal] 1 F91¢] dlo|E & AHESIER fault TAY o]
Zol&. Hte, 2] ¥ application®] 7-¢- o] HES A4 B A ofYEZ page fault7} AA5H]|
ek 12 4] o] & application2 EA4] & 1477}11 0]g] PMo]| &85 Ao g FaHh

=2

i}

=2 page replacemento]] WZ page table 7% A]o]l= TLB X35t -2 5joF & 4=

%9,
qlo

7.3.4. Paging?] W QA

Z37] Al=H 0] memory AFE FELE o] F &l paging®] B R-g& LropHAL.
1. Contiguous Memory Allocation

memory A-gof g 1ol dHAHE rmH B ofgof Z+E. contiguous memory allocationof=
signal parition allocationZF multiple partition allocation©] -=.

1) Single Partition Allocation : user program ¥ -5 oF Hof] 5FLLQ] user process7} ¢14=2] 0 &2 Al-&

=
=11

2) Multiple Partition Allocation : user program %< % of 2] 7]19] user process’F Z}FZF H<LZ o2

&o
A&l HFAL multiprogramming©] 5736 Al-&oF HFA] Q).

o] Z-+ 54 process YL ofH F7ho] B AQIx]E A Fo] YL 5 oloF 7. =, allocation
problemo] ZA3F. 7F3F W] BEASH 2o vjRIele AL first-fit, 7FRF RS 7ol HIR]GFe AL
best-fit, 7F&F 2 27F] HiR|SH= F-E worst-fito]2F1 . o] &]o 2 WX SFAF fragmentation

of uLgS hals] A 23k

o] Z-L MMUE protectionZ} relocations 530 gF. Protection2 kernel memory ¥ IF user memory
ojojo] A2 Z]Hs}z] BolL & E_Q_;o;]-T_L— ﬁ ISk, limit registergf= oF= "J]Ofi FdE. Reloca-
ton> user progron A7) Tt 4 welape] 44 memory 171o] SR Y el

HLo] 7ol = 5f= S uhslal, relocatzon registergf+= sf= o] 2 L& =

Limit Regzster— X7'17} 5]-8 5= F49] FUiglS 25k, Relocation Register<= program©] X}X]
SF= memory ¥ = A HR F4AE 2] AFg)

limit relocation
register register
\

S~—]—

/\

logical 4 physical

address yes Y address
CPU + memory

no

A\
trap; addressing error

3) No Partition : pagingS AF&5Fo] Z}F process7| H Qo] mlaf <2l o]z] QFA] user program ¥ Y-S

49

Ag R Fre] YAl

external fragmentation< of-2 aF.

X =
User
Program 3
User
Program User
Program 2
User
Program 1
oS (01 (0
[1] [2] [3]
Single Multiple N
Partition Partition Partition
Allocation Allocation

2. Fragmentation

Fragmentation® AF§ 7Hs8 memory7} ZASH=tlE o] EEH.0E Bgolx] Lo Glse H4
Q. external/internal fragmentationo] -2
1) External Fmgmentation ;Y& memory &7Fo] SESEX|0F 1 -F7Fo] ¢<ZFo]z] orol A-L5)R]

)=

2ol F-2. memoryE partztzonO}O# Al-gel oj H“”OLL, paging O &2 sjjAo] 7}5gk.
2) Internal Fragmentation : erghe memory_J F717F QA E F7]Ho} #AA gigho= A-22eiz]al

Hie 3HS o2 XA ARgE 7 §ls 787 pagingl] JO}/’ NAE = YR8 2HA 6] ol A A=
%?:

o Eof, Q&= F7Fo] 3900Bo] 11 page] 277} 4JKBo]™H 100B2] internal fragmentationo] YAY
ol A &

7.4. Page Replacement

7.4.1. Page Replacement

1. Page Replacement
Page Replacement= 7]& frame(Victim Frame)2] \-§-& diskol] #]ZFol1l, Q75 page} frame(Free
Frame)& eg W= o= 215 2al
memory2] FFoF e (Over Allocation)2 H2-E user process’} A-&5Fei+= pagel] 7HH T} A frame
O A7k A& 2. page fault 2 2] G- page replacements 5o o]F afde + S
2. pel duelE
page replacement:2- ofelloF Zhe eFi1a]Eof o5 2kl
Frame Allocation Algorithm : Z} processol 7] o]H 7]F 0 2 frames Eufer Z1Q1z]of sl &z &.
Page Replacement Algorithm : 07”177 frameS victim frame S 2 e]07’] st ek =.

o

o] dTEEL A /0 Zel(disk H2)& H43} 517] 918 ASY.

7.4.2. Page Replacement Algorithm

rlo
3,
L,
39,
o

Page Replacement Algorithm 0 2= ofzfjo} ZF

S page fault WA/ 29 +3)0] 345 EEH9 ST F.

1. Optimal Algorithm

Optimal Algorithm-& 9F0 2 7}ZF Q el =0l ALEE|X] 9k page E] HA] WAsl= gral<l.

2E duE]E F page faultZ} 7 A A BYSH= 2]2] 9] ohaia]Fo] 2] n]gl Q] page ARES o
7] o) SrASHAE 7ol E7F5E.

2. FIFO

FIFO(First In First Out)2 frameo] Hx] ot page R E] M= W Aol= BFA 4.

7 Yo, queveE &9l LS| o] Zhsek ol flo]E 7l gF Bl ARgHI O H OfA] 5 oFR]
SF Ho]E] HEHer. HEITIE]o] Hjo]E])o] tfHAL R ElE

3. SCR

SCR(Second Chance Replacement)= pagellc} X bitE AF§oFo] 5 A-EEE pagel] WA E HF
2ol HFA] o2 FIFOE 73 9.

oo} Zro] AZ bitE ALl

1. A frame FFIYLE W pager} FEELE W HE bit 2E 12 B

2. FZ bit= dF Z7]olc} 902 Z7]514E.

3. victim fmmeﬁﬁ X]%j%] o, 2R bit7} 19] F-2o= victime frame L X FEE= il ZFX bitE
0o = gF

2R bitE AFESlE diil, ZFRE pageo]] SFFE frameL queuel] W BOo 2 L7l dRAl oz JLHs}]
7%= &f.

4. Clock

Clock=2 SCRY} & 2t], queue ThRI circular queueE Al-§oF= BFAQ).

hand2l= ZOIE]E AR5} ciruclar queueE ZH victim-S 2] F.
Y7 soli= AL ofd.

5. LFU
LFU(Least Frequently Userd)s A}-§ HIE7} 7F4 H-& pageE WA mAel= HFAQ. =, a5k A| &7}
2] 713 A A FZH pageE victim© 2 LE]gF.

£ Aol o] A pagei= O] Fol AHEA] Q= FLE frame A Aok BA} 2.
6. NRU

NRU(Not Recently Used)= Z]Z0) AFEER] &2 pageE WA WA5l= HHA] Y.

% biteh Y bitE olefof Zo] AFE R ¥go] WU O] 4 Aol 9ot Honz ¥g
bitE A-g3F.

ZFZ bit.
1. A2 fromeS TS wl2) page’} FRE QS] FHE bit S 12 -
2. AR bit= Y3 Fo]nfct 0o 2 =70k,
hﬂ%j bit.
AL frameS SFHIQNS o WY bit ZHS 002 GF.
2- page?] Uj-go] = oH
ofefjo] AT = victimE &2l
1. &7=x 0, 99 0
2. 7,#1 1, Hg 0
3. ZZ 0, HY 1
4. Fx 1, WY 1

o
BN

7. LRU
LRU(Least Recently Used)= 7}gF Qe AJ7F 2 E]2] 92 pageE WA mFol= W49l
temporal localityE T 2Jeh HF&l o2 QJukz] ol o] Ef]b:]] A19] optimal algorithmof] &8 FJE =2

H'—o] = O om]—x—lo] /k}_Q_ /(]/KE-NO{]/(-] —T—E /(]. o;]._:_: HFA]

e vprl o 2= ofglof Zho] 27FR]7F Q2
1. Counter®] AM§- : pageZt HEH A7kg 25l vl g
2. Queue] A : page?t FEEIOH quened] 71 912 S,

7.4.3. Swapping

1. Swapping
Swapping2 page replacementZ memory BEZ5 A = HS o process HAE diskZ swap out
SHe A9

2. Swap 99
swap ¥ 9L page replacement FE-= swapping A]of st tJo|E] & A ZSF= disk 9 Y. swap §F Y

?K']O]' H}'EH.Q 0513]-1:]' E]‘———

o

oS 0S 0S 0S
process 5 process 5 process 5 process 5
:r‘: :> :> process 9
process 8 process 8 SWAPOUT
process 2 process 2 process 2 process 2

7.5. Page table 74l

7.5.1. Page Table 7| A

B page table2 OFeS} Zo] 2812 PM H23h memory Ful7} U ofF S Foks 7]Hg Po
Bz},

1. 2819 PM FHZ

page table2 PMoj EAJ5IE2 o]H memoryof YLofe]H o2 28o] HZo] HQSF main
memoryo] TIPAE cacheE T HES AZFe] EH, page table 2121 5] v¥ main memoryo]
FHdohs A2 vl a&A Q. o] ulef page tableo] .z TLBel= SFEFJo]E AFE-519] cachinget

2. Page Tablef] memory YH|
processIFCE page table©] EX5}L, ZF process7} |G table X E A&}
7]&9] page table2] AF-g memory_J YH]Z ofr]gF &~ QlL.

Z]&2] T2 page tables A2}l HA}. PTEE= 2200]1 Z} entry WE /B(32bit)2}1 SFH process G
page tablel] I 7|7} JMBQ]. 100719] process?F ZAoFctH JOOMBO]E 2 page table XFA7F AF&6}=
memoryZF &. H2]o] 64bit A|AHo] SGFHA] 1 WH]= o5 A g

o]of] o}2f page tablel] F 7] 7JA5l= 7]HEo] EXEL multilevel page tableZ}F inverted page table
o] f#A Iy, HA O] g A Ao A= multilevel page tableS AR}

g & sl mEel,

rr

7.5.2. TLB

1. TLB
Hol Aol B m (TLB, Translation Look-aside Buffer)<= page tables cachingdl= registerd]. TLB+=
MMU B o 2Iz]3}.

TLBoJ= page tableZ AF-g5Fo] s~ = translation FJHE 2|7

(28
PA 9] frame number& *{ggF. MMUE page tableo]] H25F7] &
ZAle=AE 2l

=, VA/] page numbero]] Oj-& &=
of TLBE BHelste] tjg51= PAT}

52

logical
address
CPU p

page frame
number number

TLB hit

physical
address

TLB

’ {
TLB miss

f

physical
memory

page table

2. TLB hit ratio

TLB hit ratio= 2 202 TLBOJA] hit7} @A HI& Q. o] glo] =&+& H =71 FH.
TLB+= registero] B2 1 377} F3Fs] 25 (cache T} 21S.). 31X g TLBE &HA] H = localityo]l
o5l gIAZ hit ratio’} ==, AZFs] B page’} 4KBo]E 2 locality”} 2 1 &= applicationo] 2FH
AFE-5l= pageol 2 BB}7F AFE QIR S A Y.

7.5.3. Multilevel Page Table

1. Multilevel Page Table
Multilevel Page Table:2 page tableX™ paging®l &7Foj] XZoF= 7]H Q). =, page tableS o2 7f9]
22 page tableZ Uil levels Fojste] Al 22 F+gek

multilevel page tableo A= ZF page tableo] fgt PME B ufupc} FgFsto] memory AH§-S 4
2518t multilevelo] oFH page tableoflAlE page table FF-E PMoj 22, HFH multilevel page table
O A= level 1 page tableBRS PMo 22 F11, R wuft} page table BHe. ZHH I 42
ofeofl Y= 2-level page tableo 4] 2] gk

A i F20] g A|AFoAlE 5709 levelS AFE®E &2 levelo] HopXH £E7F Lz B =,
TLBO] 9glo] 523t

2. 2-Level Page Table

2-Level Page Table-2 27]9] level& 7IX]= A= FZ29] page table}]. 2-level page tabled]= level 1 page
table(page directory, outer page table)Z} level 2 page tableo] Q. o] HFAl2 F &2 32bit AJAH|OJA]
AFE-RE ofef o] A2 32bit A|AE I JKB2O page 27|15 7FIer A Y.

2-level page tableo A= VAQ] page number(20bit)E 10bit¥] Lol ZFzZF level 13} level 20f Tk
ol A2 RI-ESF ZFZFS page directory index, page table index2f 1T F.

page number page offset
IENE d |
10 10 12

level 1 page table> HF7F PMoj] Z2loF 9l-2. o] table2 VAQ] A HA 10bit ZHS Q€ A2 51,
level 2 page tableQ] frame number& (& "o ufzt clE = Q5.)22 ¢F zF F7]7} 4B(PA)
ol 21070 o] B ZEE I B2 F 4KBO] F7]5 714, o] A7]E frame o]H2] F7]9} dx[o1H0 2
BZEH.

level 2 page table2 & QF mfjofct PMoj] A H. o] table2 VA = Hl&] 10bit -5 QlEl A2 S},
F5lEE PAQ] frame numberE gHO 2 §F O] table® nfR7IR| 2 ZF Z7]7F 4Bl 219 7)9] gl EE
JIRIE &2 F JKBeO] 275 7F.

MMUE VAE dto i TLBE HAF5l1, ufjZ o] gl 0™ PTBROJ &= PASE AF-&5f level 1 page table
off HZek A HA] 10bitE Q1E A2 level 1 page tableofA] level 2 page table?] PAE ¢-S5. o] =

53

HAZ 10bitE Q1E A2 level 2 page tableofA] frame numberE Y. ©] frame number@} page address
= §AA PAE &3,

7.5.4. Inverted Page Table

o] mjjo|z] g]o]E (Inverted Page Table)E pageE 4O & frameS = 7]E9] BFA]FI= EE]) frame
o =402 A6l page tabled].

inverted page table-2 PMoj] sJLFat EXSF =, 7] & page tablex] 8 process'@ 2 page tableo] EXJol=
Al ofal, BE process?F FLFQ] page tables AFEeF o]m] Z}F gl EE frame ¥HE EXPSFEZ page
tableo] Z7]= PM2] 2 7]oj ufe} FshZ.

inverted page table:2 frame numberE QIEARE 5131, PID2I page numberg ZFo2 o = E7

process’| VAE MMUoJ AYsFH MMUE dfE process@] PIDL} VA9 page numberZ page table<
ERASIe] QR[] QlEl A ZES frame number2 PAE 74 ¢l

logical
adgress physical

[v :
CPU (»pd|[p [d]|[i]d }%. physical
|~

memory
search l } !

pid[p

page table

7] &9] page tables2 processifrl EAJSF=t], ZF process7} tablel] HE HES X252 F2. in-
verted page table2 PMO] T}E 177 table o]-L]-Ul'—g— AFg5Lo] memory AFES &

7]=9] page table L oF 22 memoryE AF§-017]= SFX[EL tH tables =2]o1H flol= gle Hofof
ol ZHAllo] AJ7Fo] mo] 0L ofxo] 9L,

8. File System

8.1. File
8.1.1. File
1. File

119 (File)& disk AF&of tsl abstraction© 2, {2 02X tl435] byteo] LJF Y.

address space@} H| W SIXFH, address space= 7|7} 7FH A o] 11, 7’7‘7'—’*7}077 —ﬁ,\—X—f?J e 2 S]HRA]
2 XJFE. el e AEF O TYH TAIE A, AFEDN %) Fel= A
2 7= B2 5 tf process IFH 771 758

fileX= pagex] & Disk Block(Data Block)o]gl= T2 LR o] QlS. gFoj&] ZJ et ZIX] & page, frame,
78] 1 disk block-S 1 F7]7F BFEz] Ql= o] ulEA o],

2. File Attribute
file2 ofglo}F Z+2 attribute, metadataS 7}H.

name : AFgo] gofa £ Qli= 7] 291 file o).

54

type : o057} AET 3 YEE TR filed] FF
location : fileo] diskof] *]73F= 9Jx].

size : file2] Z7].

protection : fileo] OjgF HoF FH.

05 ﬁle headero]] 23] type FH 2 oY
type _g]—O]oT- S OIEE O].z]u R]Z] 2 © 2

=, 2 =2 71—

O F7E pHsel B HYe +UF. AL B
= headerd] typeo] HA|Eo] Ql2.

.1.2. File Operation

1. File Operation
fileof] YHrA] 0 2 AL ElL operationg~> OF2}F £

create : file2 disko]] 236l7] Yof H7FE SFHSL, oot 27k tf gl entryE A
write : fileo]] Y-&2 writedr.

read : file Y-85 readg}.

file seek : fileQ] cpE E YR 2 o] FAIZ.

delete : fileZ AFA el

open : diskQ] directory structureE 2}QI5Fo] memoryo] =

close : memoryoj] S22l Q= directory structureE disko]| Xfﬂ'ol

current-file-position pointer(cp)= o process’| G fileo] tfsl ZFYjsl1l QZ% SR E EFfE X
Q1] @]. o1& process7} SFLFE] fileo] Hioh &A] 077 et = Q7] Wizl epi= process HE AL
ol £ 2 write/readE TYo}H HIZ CFS R4F 7127 EE o] ¢S

2. Open File Table

of 2] process7F Aol sp9] fileo] F2e = 7] w20, openi} close 5o tfet 2YS Open File
Tablex2 Z2]8}. open file table2-= ofgl|o} Zro] 27}2] tableo] Ql-=.

1) Per Process Table : process & JH-E *]%ol= table. processtfc} ZXeF. cp gt 55 *&Heh

2) System- wzde Table : fileo]] Tl JHE 236l table. A]AE o] sfLf et FZ A7} file YA,
open count 5= *]%Fgk.

%

open count= X E 79 processofA] H&] Q=X]E YEFY. process”F files opendFH open count
#o] spLt S7F= 12, closestH off g, delete LR open countE HAFSFO] FF 591 process7F
olL o ey

= T o4

== o2 process7F FAO Hols gl dieh At F7)3ke A= ofoF

S

.1.3. File Access Method

ﬁle9J £ gAo] YEoHE BYLS oo 2.
&5 Fa
les] 54 5190 S 4 W QE S Sl B, ofANS) 22 aperation AT
read next : cpof fgols HES readdt.
write next : cpof] igol= HEf writedl.
reset : W 9Fo 2 Zolzl

current position
beginning P end

@ rewind :l:
read or write >

DA A o2 ARfolli= F AR E] oS A ol tape FHI Q] storageE AFE-FH7] wlol o] €
H o el .

55

2. 919 Fz
fied] 5 970 B HEE oz AL YA, 3, Hoke FA vz Y2F. ol 2L
operations A-&%F.
read n : QIRFZ AT block numbero] siErEl= QIR E read.
write n : QIXF2 ZFASE block numbero] SGHE]= $JX]of write.

8.2. File System

8.2.1. File System

1. File System

oA A AH (File System)2 file2] file blockZ} physical disk2] disk blockol] Tl o &S AF6l= A~
9. =, ol fieg diskel o B o] 4FE AUANE 2He. FL disko] EANSE fled] Y
HAIE ofn|st7] = g

ARSI file system& AFE-510] diskel giet A& Z ol AT Fe] 20l YXE Eefr ofo] AF§O]
7].}_—_57-.

disko] Tt Bj B} F2 WA file systemo] o) E Hpo] upe} T2,

2. Al52t
OJHFA] © &2 file system-2 o} g} ZFo] AZ3}E]o] L.

application programs

H

virtual file system

file-organization module

v

basic file system

v

1/0O control

v

devices

I diskoteh OFE file systems AFSE = Ye=dl. A5 O;P/}J Al2g]of Al of 2] file systemf
29 5 U2 517, file system e g £o14

E3] VFS(Virtual File System)2 Z} file system] tfjeF QlE]mlo] A2 A] 7]5
file systemo] ™ gk A]AHIO]A] Al-go] 7}53)

}'Oll J\l

Ol

) Z, VFSe SghE]i

Jal

Z+ 1 2 windowsel| = Diskmgmt.msc, linuxo]| A= Fdiskeh= AT E ¢]o] & A}8-35) disk Y file system A H S

8.2.2. Mount

Mount= 2} disk deviceE directory®] P Fsl= ZC &2, device®} directoryE #2[ofo] & 7 Y&
St= g Q). 2 linux A E osof]A] AFEEl

o] deviceE o0s7| X YSF= file systemS Eof] AFESFEHH mountE A o]H directoryLl ¢4 5] oF
oF

56

Disk2

Diskl

=

#mount disk2 /usr/
(Disk22| mYU A|ABIS fusr/ CIHER|0f OF2

mountS A-&SFH distributed file system 2% 3Fgo] 2a/gh

8.2.3. Protection

A

e
p
o,

Protection2 file systemoj] EXol= file2 2] H & doF F S dF.
Uniz 7]8F9] 057} AFE-8FE= file system O A=, HoFS & 9bit=Z read, write, execute ZF¢ o] sl owner,
group, public AFERFL] oS zFzF X[Aol &, o] & szl2]9o] 87142 WElslo] x{ZFsl. filed] directory
of tisl Ats ek 4 QU5 (2lFL0 A= chmod FF o] AHE.).

groupe AFE-ZFOY Tt group . £ fileo] Tl groupE G 5 A& (BlFL0 A= chgrp FE Ol
A1)

9g& 591, owner= read/write/execute©] 7FsoF1l, group<S read/writeTF, publics2 executeTF 7}-&5}
T2 FolS] HeHT s}RF. 111 110 0010] B2 7618 Hol FH 2 27Fs).

8.3. Directory

8.3.1. Directory

g2 2] (Directory)= 18] fileS S+ abstractionC 2, filegol o JHE 7FX] 1 = filed.

AT
Dircctory Structure’= disk AelA] filet directoryS 41540 2 wjx]51e] 435H FZE Y. file system
2 directory structurez ﬁlegE]k ofao} 22 directory structure50] Q2. Ff SJuFZol A]
éE”Oth tree 229 link 5 A&k

1. Single-level Directory
= A1 Aol thaflA] sLFe] T dircctoryTS A1G3HE WA

dlrectory cat a test | data ma/I cont hex records

T

2. Two-level Directory
zF ARGz E 2 1 directoryE A= A

57

master

file user 1 | user2 | user 3 | user4 |
directory
fil Y
ser file
:irecml,y cat | bo | a | test a | data a | test X |data| a
Padb bbb
‘\\ \J k) g \\) \\) W/) \/
APl directoryofli= ZF AFEXFLE, ol E = directoryE& *]7ZFel. AFEXF B 51 directoryofl= s AR

2Fe] file FHE 2k

3. Tree-Structed Directory
Tree X2 directoryS 74 5F= 4

A]

-
. =] = = 5L A& o
gmupmg— E5F _8.5*707 E]-/(H_L]h __,_E__ of = /?AL—

'~

4. Acyclic-Graph Directory

tree £ A aliasing© 2 fileo]L} directoryg.a— B2 5F= dFHA]
Aliasing2 & Y3t Ho]E| & A2 Of2 o] 50 2 Hoh= A5 Zhel uniz A F osofl A= link=2 ¢ H.
aliasingS A& =9 tjirS 2HAlS o Dangling Pointer(7}2]7]&= djdlo] gl= Qg)7F ErAer
o] o
I -

AR

General Graph Directory

oJuFAI O] graph F+ZX 2 directoryE 5= B4/
oloj] cycleo] BIAWSIX] Q- = filedlo] linksE & = YT= 5FA L, link A Alatct Cycle Detection
AlgorithmE A-g-3F] cyclel] A4 of HE HESL

P
B
5.
o

8.4. File/Directory 9] +d
8.4.1. Filed] 7@

O]
Rl

fileo] 2EYAL fileo] Y-&S G YE data blocke] $Iz] HHE o]PA SIS HHOF 3
ol nfe} ofest g2 7 WSl e
1. Contiguous Allocation

Contiguous Allocation-& fileS Sa]& 02 H=E data blocko]] *ZsF= HFA] 9.

Tedo] Zhdstal, file HAAIE oF Hol ¢ofof ol AgtofA] 2@k HFH fileo] @F Hlo] ASIHE
E7FR] X“‘VE]OfO]-' 5L, external fragmentationo] BAYEr 4~ Q1.2

frameol| A 2] contiguous memory allocation®} FAFeF. £ 2 tapeE diskZ AF-§SFE A]7]of] A-&35}E
HFa]o],

2. Linked List Allocation

Linked List Allocation fileQ] Z} data block-S linked list2 HAS) =] Zol= 449l

ojuf ZIE|Z}F 2FR[SF= A 7]+ disk2] FA] 27|} block size &l 2]l &4 H

fileQ] data blocko] ¢<% F7Fo] FAE Q7] ¢l11, external fragmentationS- BFEX|gF. HrHo] E7Y
2| Z o] glo]e]of] FZole]H linked liste] *SFE «3]5]oF gF(random access &7}.). EF pointer
AR&o] wpep F7FA Q1 F7hS AREooF 5Fal, 2] F7ko] uF Wolz|] gfs 4 QS

2, B2 o] Fol A Mt o F2 A B2

75 O

3. Linked List Allocation using Index
Linked List Allocation using Indez= fileQ] data block = SFLFE Index Block© 2 X]Z35}c], 1} z]
data blocko]] ol x| FH HEE index blocko]] XZFol= BFA]¢.

58

file index block

o] 10 2[1 3] jeep 19

28[]29[]30[]31[]

g

linked list allocation=- random access7F 7F58l = 744l SEX]EF index blockoj] 2] ZFel 4=~ Qle 91 2]
YHo= oHAIZ} QLo B2 index block®] Z 7] mte} file SFLFE] Z7]7F ZHA] A2t

o] - Z7|7F & tlo]E o] tiof Al ofe] 7] files AFESOF oF.

4. Inode

Inode= fileoj] tfjoF data block indexE table = multilevel tableZ Ha]ol= FH4]9].

inodeofl= direct indezx, single/double/triple indirect B2]o] FE2fgl.

1) Direct : data blockS 2] F 7Fe]7]= WA 02 data blocko] st FaE 25 #7246l inode X2
AL directZ} =2 1279 entryE 7F4.

direct index”| 127]]0] B2, data block S-S 4KBEl1l S1H & JSKB 327]9] filed] tjoF x| JHE
et 9

2) Single/Double/Triple Indirect : index blockS A-§-3F] data blocks multilevel 2 7}2]7]= HF4] Q).
Al-83lE index block2] A& =of we} single/double/triple © 2 2.

single indirect& AzFell H R} data block] 2 7] 4KB, data block®] F4 s }E JB=Z $H]H, sfLf
9] index block2 = 210 = 102479 L2 7}l = 9L, =, single indirect= £ 1024 x 4 = 4M B
of tfiel 9J2] HHE HZFSF 4= QL. double indirect= single indirectZ} 21° 7}, triple indirecti= double
indirectZ} 2'° 7] Y= Ao]B2 Z}ZF 4GB, 4TBY) g 9Ix] JEE g8 + s

inodei= ZF filenfol EX5Fo] metadata s *]gol= FXA|Y. inode= ofef 2] 21t ZHo] fileo] gt
attributeE 3ol field2}, directof] tfel index& *]%ol= 28, single/double/triple indirecto] tff
TaE AYole FEoRE FYH.

ZF fileol&= inode numberZ| HoJE] 11, S5t Y1 G 2 inoded]] {2 + Q=

59

mode

owners (2)
timestamps (3)
size block
count
direct index — :
5
— [F—{data] -
single indirect ——>|: | :_’@
double indirect =—>{ data | 15— data |

triple indirect |— > _'_’I data

page tableS multilevel 2 o1 ZH A&, index block= multilevel 2 o1 H Q). daf JHE O] }l-g A AHLS
I-node BH]S F2 AFg-g}.

8.4.2. Directory Q] L€

Directory Entry= directoryS FEdsl7] ot A2 7 F Y. directory= RF4lo] EGF5l= fileo] tfoF
HAHE g Q= directory entry=2 4=,

directory entry= fileQ] 7+9 BFA]o]] ujef Z7}R|= field7} Gepg]. ofeflef o] MS-DOSC] BFA]ZF Unia
o A0z ol & 4 9g.

1. MS-DOS2] yra]

MS-DOSE linked list allocation© 2 file2 Fe9F ol DAl WA o2 ofge} ZFL directory
entryE ZFY. linked listo 4] 2 H1A] blocko]] Hiet FJHE first block number fieldo] sl Q=

© oF A o]Jo
Zde E}T/MID'

bytes 8 3 1 10 2 2 2 4
file name reserved size
1 PARE RN
extension attributes time date first block
number

2. Unixz2] Yt4]
Uniz= inodeZ file2 #&58F11, directory entryZ} file] named} inode number2 A=, 35t fileo]
st Y HE inodeo]] ZGFE]o] Q0 H 2 inode numberfFr QIO H H.

bytes 2 14
T File name
I-node
number

ofels} Zo] £ $I|ell Sl fileo] F2o] 75

60

usr directory Of /usrljlgﬁlor:y = usr/ast 2 98 /ﬁrg}li’[}{i

CH 8t Inode 6 Inode 26

Root Directory 132 block 206 blowk
1]. Mode 6. Mode 26].
11.. §ize 11.. §ize 6]..
4 blIl times 19 dlck times 64 grants
7 |dev 132 30| erik 406 92 books
14|1ib 51]jim 60| mbox
9 |etc 26| ast 81| linux
6 |usr 45| bal 17| sre
£ 28t
usgr dit:::? = hllggeb?:llk/\;iF lust/ast = - Iné‘%}z%lg l::;EgIlIStE /usr/ast/n:boxﬂ
Inode 601?)%‘;0* iy g;f"’%'yo? Inode 260 X3 g0l Sof Inode<= 60
oICtD & UCHD &

61

