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Part 1

g AR 7|F

1. AE
1.1. DS

1.1.1. DS

Definition 1 #3402 t]o]el& Ha2/A-8/+457] $3t dlo]e] phel/ g He-2 2H2 72 (DS,
Data Structure)2Fil &F.

M

249 DSE Ags Abgtozm AR/ g or ae4]l =

Z2IPe DS + daeEo
wAsNE Tgoletal & 4= 9

1.1.2. DS £2

Linked List

Non-binary Tree

Data
Structure

Complex DS

Binary Search Tree

Undirected Graph
Directed Graph
Weighted Graph

Non-linear

1.1.3. in-memory model vs disk-based model
DS9]|*= in-memory model¥} disk-based model©] §1-2-.

in-memory model-& G0 6] & v ¢l |2 ajo] &)1 KE dlo]E]7} vl v & 2] (RAM) 9ol At 2Hsgtetar
7H4gE AE 9] DSQL. o] 7oA A 7]st= W-8E-2 in-memory model 7]5FQ].

dis-based model Ho]El7} diskol = ZAfo}s 202 71 Aele] DSY. Hlolele] o] Mal vl2elS
SolLbA B A9 disk7b] Welrk 2Hefek 41
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PO (AR Anale] o ol 4RI/ ARAWAE Bk 4 Y. o]
74, 874 A (time cost, memory cost)-2 H|-§o]=2k1l g

AT ARTEE Aesp] AT AL oot 22
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1.1.6. STL
Definition 2 C++0J4] A-&3H= DSS} 21222 FE8] 7] Template-based) © 2 -85 & A2
STL(Standard Template Library)o]2Fil gF.
HZ3] 7gto|gt AL I AR AEA ARFS AFE 5 A F AL on|eh
1 .2. A.DT
1.2.1. ADT
A=l

Definition 3 Ho]&12] g7} oiH(operation)] FF0Z 2HH =45l 2L
(ADT, Abstract Data Type)o]2fxl &F. ADT= 4k ool 72414 ¢ S
gogk ok A4l

ARgAreE A=Y Atol o] Rl Ho] 2891 A ofuff A= ADTof et HEA diuts 23 7MY &
7 4L, ADTE A off #4129l a2 A%< 2271 8l=

5l

ADTE A A2 0 (O0P, Object-Oriented Programming) 2] class 7'\d-& A&-5}o] A|2ho] 7158t



1 // user’s code
| Book book;
! isread = book.read(10);

Separate
use and implementation

5 ADT of a book
- book object (this)
- bool read(page)

1.2.2. ADT$} DS
Az 72 ADTO] AAA F@4.

(ex. list+= ADT, linked listl} array list+= DS.)

o @ lo]E =

FHio1AL, DSefA o] 4124 FAo] =22 FH Y.

Data Type
AD’_pre Data Items:
Operations Logical Form
Data Structure: Data Items:
Storage Space Physical Form
Subroutines

1.3. DS 849] 44
1.3.1. DS 89| 44

2 B7)(F) M= top-down viewo] A= ZF o

el HB (low level)-2 A9t A2 &A% otgle} 7.

4. ADTE 7|5t & ¢t C++ ¢
5. BHE BA
+ 6. STL A}&H shol

C ~

=] 2 (logical) G2} £ 2| (physical) BENE 71407 9. ADTe| A 2] 244

/ implementer’s code |
ool read(page){ :
this->goto(page); !
1
1

Developers

o,

o7} =2l

Abstract data type

Data structure

r
Hm

(high level) © 2 ELE] FLA]|



Definition 4 ZEEE 823 24 24, Y& (input) 0 ZHE Z2(output) O.2 7}= =a]Z]/
A5 BAE S1e]E (Algorithm)o]2k1L g,

Ol
T

=, daElES As] oldel A=y 292 eS| mtetsfiof

2.1.2. DS9}9] 74

DS At (operation)= &1 FFOE TAT 5= QS
= H 20 Eg S 3ol 4~ 9L
ot FarE|E A4S 5o Aatel deS S o A=

o
Afro] gtobr ol Helshalat B ke 4 9L, Aol BolS BatehA Bolsha e 4

2. Pseudo-code

: NLT} 4} PLS AM8a] ERHE A, 9149 B7]8)a AlRAre 571 vhae
NS It A .

7] 4= Python 2Bt = 21/33k.

3. PL(Programming language)

W 44 TS FAotE A,

BEE AR/ H-8-& desto] ALtet
1. Empirical measurement : AA| 2 Z75}= HHAL
AlZH Wall-clock timeS Z4sto] & 4= 915, Wall-clock 8o A7 AJAE ou|st=d|, 1 A7
ATFE 2] B2 1w O AZHE AT F b WA mE o A9 AE ZHT 5 98
2L lRe) ALSTS 2
A 58 SRS FolshAet, Be] met ZAgte] Febd 4 9. B Qezte] HE H5HeS
% % 9, A9 AAE 2o A 4 2l
2. Theoretical measurement : 0] 22 0 2 30l5}= HEAL
, 37t £ 88 AHEHE(Time

Complexity)?} F7HE5E (Space Complexity) 2 2FQleh 4= Q1S A]
SR EEEER S

O gl R
2w
BT A )

Ea)

l_ﬂ

rlr

2.2.2. 7|24

Definition 5 /8 F7]o] AFFFglo] =8 X|7Fo] Al=ZF(constant time)S 7FR[= HALFS Z]EHARF
(Basic operation)o]2}1l gf.



2.2.3. AERE 24

Z|2dste] #3E g AA AIERES 72 5 S

ojuf 1] = A F3E fle. A€ &0, forg YHIA Fohe i W5 Sl 54
At

obghi 1 oA
Algorithm A | Algorithm B \ Algorithm C
sum < @ sum < @ sum < n X n
for i in range(@, n): for i in range(@, n):
sum « sum + n for j in range(@, n):

sum « sum + 1

» Count the number of basic operations := T (n)

Algorithm A Algorithm B Algorithm C
Assignments n+1 nxn+1 1
Additions n nxn
Multiplications 1
Total Tu(n)=2n+1 Tg(n) =2n%+1 Te(n) =2

2.3. A4 /BF/Hor] 3%
2.3.1. F4/92/29 34

QJeiglel whet gataol the 4 qliu, A1Q Aol L 492 A 79(Best Cases), B @
AL A AE BEA B (Average Cases), A2 a0 We 795 Foko] 9 (Worst Cases)
27 5t

2.3.2. 49 E44L AT 58 28 WY

DSelA A A% I Aol Hoto] H9E Agd Aol Y ARG 2L H9uo] EAstnR
A5 BAT 5 U8

Aol A9E A5A ARZA Aol Te7t 98,

BEA 297t 2 1 AHgo] A Al F. olu) AAlR BRA Ao et Aske e Fetelw n
£ 492 o Almata Bahe ook 7] tel, BAA /e 02 Pste] FAshe Zlo] A4,
A% AUSA B ol BRA 79 AT AR TATAE 514 k. T glo]H o EAo] ot
ef 24 A7t AAIShs Telvt e 4 9] ujRel (ko] H4el 7991 dlole] 5), £35] Helejufoly
72 Hopol A o 28] AL g DS Aol Al Hote] Ao uwg 3

2.4. Asymptotic analysis
7} BT} A S trehi .

2.4.1. Asymptotic analysis

Definition 6 H[o]E]9] Z7]7} R23ls] AR F$E Azlele AS H2E B4 (Asymptotic analy-
sis)2F1 F.
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totic/Limiting/Tail behavioral:l grcl.

Asymptotic analysiso 4], no] Fots] 72 o Z3le oF
2 4EF Dominant factorgf1l 3F.
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rr

ol" dugFo]l £ FoIA o agHolok, no] FE| AL F9E AZsHE ARHoR ofH
duF] ool H F2AE vdd &+ e

Asymptotic behavior2+= linearly(2]41), quadratically (©]2}g4) S0 A2

olu] F5to 2 Z+42 Dominant factor®] %Jgkzlo] A& 7

-4
>,

2.4.2. Asymptotic notation

Definition 7 ¢/9]9] B2}l oF~0] Asymptotic behaviorE 7FHs] HAFSL7] 9ot HF71& L& H7]
(Asymptotic notation)2}1l 2}

ok
ol
o)

0,
mlo

Asymptotic notationo]l+= Big-O, Big-Omega, Big-Theta & 7]

2.5. Big-0 X7

2.5.1. Big-O X7

Definition 8 ofgfo] Ayl ZHe B B L 359 JoHS O(f(n))olall of1l, o] Fetez B
I g8 fd2F o2 FErjslE WS Big-O ZE7]Ho]afal gf. o] 9] f(n)-S Basic operation/func-
tiono]2}1l §F. Big-O HEZ]HL cf(n)2 sg % gFof fieh H2& AFeH asymptotically upper
bound)S A|-3-¢F.

O(f(n)) = {g(n)| there is two positive constants ¢ and ng such that g(n) < cf(n) for all n > no}

|

dominant factor

H7|ok= Aol Big-O 27|15 <.
Z, ol® §4 g(n)ol

dish, n > ne 2l WA g(n) < cf (n)E THHA7]

2
<

>n =
g(n)2 O(f(n))oll == el A, FOlE WEot= A5 e npoll gk & 2 Sl
big-O°f| AL =25 & 4= U3, GASHAIE o|uf 11 Fro] 23t B3 = 9=
Big-O& Hgo|nz ot & eg]&9] AFEFLE7E o O(f(n))oll &3the A2 f(n) € O(f(n)2 7]

shidl, =t #7t 7
Z1=2 ng (9]

=] [e5]
= BA H =
Big-O7} O(1)°o]H /A== Agto] A€t

/>
)
lo
>,
oo
o i
N

= Set of functions < ¢f(n) for large input size n

Base function
No-care zone 1

L cf(n)

# of 4
operations

0 | o n: Input size
T
Base input size

2.5.2. Bart49] Big-0




Definition 9 2% §<= T(n) o] TFg}=(polynomial) el F-%, A5 kel s}el k < rol 2ol

rofl digfl T'(n) € O(n") Y.

2.5.3. loose or tight

Definition 10 F2% ¢} B= g4 T(n) A9 gapo] Hlwa 27 454 . Big-0
F7]o] loosesH] §e+& A F T B

HA ekt S el T(n) Ato] 9] gapo] Bl 2] 27 7 F Q1< wf, Big-O 7] o] tights}A]

)

O(n*)e]l &ol= BHE 4 O(n®),0(n?),- -l &otni, 24 Aggto] o B ol Hlw A
O
A g2 7he Rt o tightsHA 214gske 2ol ghef#folal, AA|= "As tight as possible’o]2Zh= ¢ 0]

FAAE F ST ES BAsHY) St tightsH, Th2 shbs loosest Ak RS FelHolA]

2.5.4. AR AL

#Joto] 750l 5t Big-0 H7]% roughsh] FnelE0] A4S vlwst oo g,

g, 2 Fol oA Mg ABsE 2EA AT 4 S

2.5.5. 2|4

bigOF o[ $8 YuelE] VAAAE § F L olnt $A Aol7) wRA ol 29| ol
Zeha olop| 3. %, big-Ot AHg3He 212 roughs] Hlishs 202 AA2E AVt i 945 9le.

2.6. Big-Omega 7|

2.6.1. Big-Omega ¥7|%9

Definition 11 ofzjfo] 4]} 2 ZHE gFB0] FRS O(f(n))o]ak 811, o] FHeroZ HiF
I ol 2 Haz o2 FIlsH= Y F —g— ig-Omega FE7]Ho]akal g} o]ufo] f(n)-L Basic Opemtwn/
functz'onO]E]-_T_’ g} Big-Omega 2 cf(n)2 g B2l grof il H2&] 5}5t (asymptotically
lower bound)S A%

ol FIO

Q(f(n)) = {g(n)| there is two positive constants ¢ and ny such that g(n) > cf(n) for allm > ng}

=, of® g g(n)oll thish, n > ne o] WA g(n) > cf (n)E WHFA7]E 7 F A4 coF ng7k A5
g(n)= Q(f(n))oll == =l A Fos WSt = cot ngol] T3 —élﬂ o fuks it s
big-Omega"ﬂ E%‘ﬂ% =g %1;, FASHAE olnf 11 gho] Hsgd 28= fl=

BH} oW ()] STee AL f(n) € Oz EAF, ~F £1

7]

O
= -
02 1 00 8 4 98 001 YA 2 A

rlo
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» Set of functions = ¢f(n) for large input size n

base function

No-care zone l
L 9:(n)
# of 4 :
operations ( ( ))
Q(f(n
ge(n)
cf(n)
0 ‘ no n: Input size
)
base input size Assume ¢ and ng are fixed.

2.6.2. T3l 9] Big-Omega

Definition 12 E%& 3= T(n)o] tFaFg=>(polynomial) 9l 72, 55 ket 510 k > rol 2pel

rofl His T(n) € Qn") ¢

Chaal A4T0 2 BigOmegaS 78 & 9L

2.6.3. loose or tight

ZI]Ho] 100560}7-]] x} 5117 3) ol

HE4 5}5}4 BT ok T(n) AFo]9] gapo] B]w 2] A A= S uff, Big-Omega F 7] 0] tight
O]-}” /(]"o‘ = ]X‘]o]-]:]-_,_ o’-‘

Q(n10)o] SaHE BIE Fok 0(n), 0n%), o= &5pR R, YA shatol T BUE G vla
o 50 AL A5 9 S

Definition 13 &2 f?'_# T o T(n) AFol9] gapo] vl & ZA] H7FE A& mf, Big-Omega
A%
(n

2

A7 Shehe JPs et 9 tightshA] AaHe Rl Tl Hola, AAR "As tight as possible’o]ehs 915
A5 ALE

2.6.4. AA A&

#oto] 79 B4 Ao big-Omegats 4-2J01g ARE AT 5 917] TEol, AA 2 big-Omegas 7143
W mE AP .

2.7. Big-Theta 17|

Big-O¢} Big-omega ] 7j\9-& B % AL-&oto] AFSta} o1st RS 214 sh= U, big-Theta= big-O2} big-
omegal] WA T, o] T2 wHGro] EA5teH ZHzto]| tightdfof .

2.7.1. Big-Theta Z7|Y

Definition 14 o#o] 47} e 54 Bae 9459 §a-e O(f(n)oleh s, o] Hitoz
Bw gtE FH2H o2 HI|olE BHHE Big-Theta EZ7]Ho]2l17 & o]af9] f(n)S Basic opera-
tzon/functzonO]E]'_Tl Sl Big-Theta E ]E’jg c1f(n), cof (n) 2 5t B3 ghof tfel FH24 4Fsh
(asymptotically upper bound)_L]- 2] 5}5H (asymptotically lower bound)S A|-&¢F.

O(f(n)) = {g(n)| there is three positive constants ci, ca and ng such that c1f(n) < g(n) < caf(n)
for alln > ng}

=, of® &< g(n)oll tishl, n > no 2] HHe~
no7k A g(n)= O(f(n))°ll 2




!
rO
Ol

1514 s big-Thetao] ZA==2E & 4 1AL, ol 1 gro] 2&¢d HaE e

= Setofc,f(n) < functions < c,f(n) foralln = ng,
g(m)

No-care zone

- c2f (n)

# of 4
operations g1(m)
e(f(m)
ge(n)
c1f(n)
0 | No n:In;;ut size
base in:)ut size Assume ¢ and ng are fixed.
2.7.2. 4354 9] Big-Theta
Definition 15 H & g T'(n)o] tfFgh(polynomial) 91 75-2, X+F kefal 5FH k > r ¢l 2FH T~
rof i T(n) € ©(n") 9.

gt 24440 2 Big-ThetaZ 18 4= 918

A dueFe) A& vlwshks Heol A %, Big Thetats

egaﬂ o2 7 51eke Hsh] ol
Aol A= Big-ThetaS A& 4

iy
i)
ol »—-
0 G
r}m g

AR = .
Z, o2 d0] 58 BAF o, Foto] F-$ o g3 Big-ThetaZ &¢I5tH . Big-ThetaZS 75 B3
o9lz] 32 AL Big-OZ roughdt 248 3

m2730) AES AR HhE ATELEES A4t BE Aol dde] 1R 74

2.7.4. 397

A2 242 no| RATE & wl fastAY, T2 dolHg F48] Jeste] AgstAE o7
w el st o

E3] no] B3t &2 7H7] g
;Qcﬂ— 7\1]‘3H_E._ = _4;442]__ o]_

S e

J;L
ol
_lhI o

2.7.5. WARS7E o2 A 7

Aol 27]7} F A o] A (parameter) S 7ML Qe 7 felle sl mi sl dis) S8 E s
ZFA] —5Ho]: S},
—1 O =

dE 50 EFE et n,mel sl 2H3E A9 T(n,m) € O(n x m)et Zo] & Haof it 8
AFAIGH
o -

4

12



2.8. BH T 7HH|11¥

2.8.1. B& % 7}¢ 13
el Zo] AN BEE F4E 24 JlEor Gehw gAle B2ie she|ne oo EehE. ofefel
Zol 7 FE| e ok Bo] 98

F1EQste] A SPD4E Aol FI, AHEFES TR o]obr] g,

T [e3N6) -
HE AAZ ARG T S S nlogn7hA] )AL, 7|74 7 2217 452 518 71 W9l

log(logn)©1t} nlog(logn) 591 BaIME A tiels) BAY, 12 m8 shelshs Sof tlan|ae 725t

=2 uad 5 98,

b

il

Base Func. Name Scalability
1 Contant Good SEREN (i) end R
O(n!) [O27n) oMnr2)
logn Logarithmic t
n Linear
nlogn o oflog )
kY
n? Quadratic 3
[e)
n3 Cubic
v -
n Polynomial on
2n Exponential ‘ O(log n), O(1)
- Elements
n! Factorial Poor

9

N
O

S8t 7%

2)010] 9ol ol BRAES LA uf, 7 052 ofel o] 5744 o o 1 HHL sk
gl 2 RA 0, 0= A g FF5

N2 N
ol
kU

s
o

.0

=2

2.9.1. Rule 1 : T304 A

Definition 16 If T'(n) € O(f(n)) and f(n) € O(g(n)), then T'(n) € O(g(n))

T(n)O] O(f n))oﬂ ﬁ—l\—ﬁ]'_l__’., f(TL) (g( ) _-_6]-131 T(’I’L) '6‘ O(g( )01 :_61_1_\:]_

AQdate e st A T'(n) 1ol eif(n)el AL, f(n) Al cag(n)ol A

do rr

2.9.2. Rule 2 : A4 &HA 715

Definition 17 If T'(n) € O(kf(n)) for constant k > 0, then T'(n) € O(f(n))

T(n)o] %3He big-Oell ol 24w, O() W13 §H40] A4 A7 7M. big-09] Aol Azks)
g

=)

O

ok

2.9.3. Rule 3 : = yH A A 7HEZ o] gl

Definition 18 If T1(n) € O(f1(n)) and Tz(n) € O(f2(n)), then T1(n) + Tz2(n) = (11 + T2)(n) €
O(max(fi(n), f2(n)))

T AERE 2R gl big-O&, & AZFEHIE 712+ big-O 5 basic funcitono] © & Zd. F2
g g3 YoA SAYR AdEs T Feo thsa] L3




N2, AEAE S S5 big-09] basic function W47F i, . n 52 EHHE BAE FUNAN
25 98 dE o], ()9} O(n?)oll 247} el & BAE G55 okt 49 0()& O(n) 02 B
O(n?)a}31 el 1. o1 the FABOIAE sha71A .

def main(n):
# Part 1 T,(n) € 0(n)
sum = ©
for i in range(@, n):
sum += 1

# Part 2 T,(n) € 0(n?)
for i in range(@, n):
for j in range(@, n):
sum += 1

(T, + T»)(n) € 0(max(n,n?)) = 0(n?)

2.9.4. Rule 4 : XA B7] A3

Definition 19 If T(n) varies by conditions, then take greater complexity.

o
d

a
°

7|
g

S HEATELEE A B W, & Fol 8 2 Ae A8 Hote] Aol tis) 42

=
HU

@8

%0 N

def main(n):

if some condition:
do something in 0(n)

else:
do something in 0(n?)

T(n) € 0(max(n,n?)) = 0(n?)

2.9.5. Rule 5 : & A A 7HEFT o] Hgl

Definition 20 If T} (n) € O(f1(n)) and Ta(n) € O(f2(n)), then Ti(n) X To(n) € O(f1(n) x fa(n))

A o, WHEE Sl Al 25k W ol gt AIZFE I O] big-Ox=, W52k 9179 big-O basic func-

Suppose func(n) takes 0(n?) times

for i in range(@, n): for i in range(@, n):
for j in range(@, n): call func(n)
sum += 1 T,(n) € 0(n) T,(n) € 0(n?)
T,(n) € 0(n) T;(n) € O(n)
T, (n)XT,(n) € 0(nxn) = 0(n?) T, (n)XT,(n) € 0(nxn?) = 0(n3)
oluf Folsfof & L, WHEE io] wiio] o5 W] e Wi A9 T o AN weld
loose upper bound7} RS olAThs A9l o] A 2 AN ASHE Aol uig At £ 2719 loop7t
S =] AL, W loop?] ¥ 317} HP’* loop®] M2 2 Q== ¢ @<5] O(n?)o]2tal 5l loose

S} upper boundE e A,

otei= 1 o“lW A A71A e 19, 29, L il AR YR AZERE oS Om)= S HEE 7t
i nl SEE Aoz v }5401 looseal Al 2.



Example of loose upper bound Example of tight upper bound

Assume n = 2X where K is # of
for(i = 1; i <= n; i *= 2) loops of the outer for-loopt
for(j = 1; j <= 1i; j++)

= 2 4 ... K
sum 4= 1 T,(n) € 0() € O(n) Tn)=14+2+2+--4+2

T,(n) € 0(log, n) 2K+1 _q
T, (n)XT,(n) € 0(nlog,n) To2-1
=2n—1€0(n)

Part 11
C++ 7% &9

1. 7| &Y

cH- o 71 ol ¢o] BHE JBA 0z Aght), ol At e Aelsta Jeid Ad o)
Foli ¢ B go] 2¥ sk

1.1. 5 =49

1.1.1. & J=9

Definition 21 c++9A]= std::cin ZY](character input)Q} std::cout ZYA](character output)E A&
stol TE YZES 7 ol «, » BUAE AFEIT] 1 UL offo} T2

std::cin > H4H
std:cout << &gk

EN

= 4 (insertion) YRR}, »= F&(extraction) ARIRFY. cout} cind Y
A AP Ao A2 AYH. «/»2 cout/cin] classofA] HXRF 2B ZY

ozl 9] «, » ALAE AGolH A1F A% HE] oEEo R iy YEeE

std::inof| 4] 2 H|o]E]= whitespaceZ -5 38, 7} 3), 5 5-©] whitespaceZ F|FH. std::in2 scanf() 2}
e =47 ohal Woane 2t

&) 7] A std::= std2h= namespaceS A A 5= A Y. namespace= 0]5-2 AA st HE o] Z7H9. using
O~
T

std::cout SO A] std:: S =S 4= Q)&

ct 2] c++9 std:cintd} std::couto A= A
249 55 ojzl AR BolH 2l 5 M

stream-2 ]2} E2of] gk SFO & olsfjoiAL.

i
O,
rSt e
W,
%
-,
An
1o
2
U
ofll
-0,
v
u
)
i
)
2
ol
i
i)
fo
N
%9,
o

1.1.2. iostream
EZ 429 golue,

e+l ABeHE BE STl el hE G4 e 8R4 SEiutdel] e hE
AHA L.
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1.1.3. /|3
ct++9 A& std:endl(end line) 2 7H3B3}. « 2 std::endl-S YHSIH s Y x]of 7isio] L5

rr
N

1.2. A28

1.2.1. bool¥

Definition 22 c++9l= =2]3k(boolean)o]] Hieh A2 F 0 2 boolF-S A}
boolg © 2= FAAE L= 1HFO]E 27]9] Hlo|E& A gt Flo2E trued} fulseE AFEE

o]ﬁ_

bool® Bi5=0] 0]l SFEH= FH(0, 0.0, NULL 5)& tejstd 002 4355, 187] oFe GHE-e
12 2=},

AL Wt A4 WA ARGOR AT AEF

1.2.2. reference

Definition 23 reference(27}, 28 ¥l42)= #l5=0] 71 (alias)S o=
& (ampersand) S A-gslo] g ogl

int &test2 = test;

int& test2 = test;

¥l ot} Zol

Fln

Z, test27} testo]] HGF A2 o] &, testo] FAE 717 Bl HE= A,

references AH8-5HH Sl reference”t et Mo tis] & of2 AERIZ2 A 75 ZAE HES o
7]‘?}3}— p=Rs]
[e] LERRRLEN. =

1.2.3. nullptr

ol Ag5HE mille A7} ozt Béd) 002 gAlslE ZIYERS. mlptre 08 o The
ZolE Y.

c++9) A= null A1 nullptrg Af

1.3. 249 47

1.3.1. string A

oo
ol
-
rr
2

Definition 24 <string> o] H2]2] & A15}0] string A& AT 5 9. string A= ofzf2}
Zro] A o1}
E S =

std::string s = "game over";

string ZAoll= chary v Gy} & LolA HoJE|7} G X|T, QB2 H ALk} gk ALgofo
DS WIS 5

+=: A& I_X]'(’:’—J nullﬁ A AL Elof] 9 2& Bz}
s. szze() s9] Zlo]Z vl3la}.

o
o
N
L
&

AE FgatdofA o2 ot o] &S xSt A7t 917] "9, <iostream> F2 ARESh
<str1ng> gho| B & 8| & AFRSHR] 9ol string WA S AT 5 2. SHA|HE 71=A], o]AlA E9]
of| A <string> @to]H &2 E AF8st= Zlo] P HE.

I L
=)

16



1.4. &4 2o g3
1.4.1. Stera} vy
Definition 25 c++9JA]= new2} delete 7] Q=2 oo} Zro] pjR 2] E& FX O F

A 0] O

9
of
\Oi
N
&
o
s

int* ptrl = new int; // intP2 &G
delete prti; // gte

int* arrl = new int[10]; // int[10]CHE &G
delete [larri; /7 Bte

A malloc/callocT} frees AFEATHH, c++0J| A= new®} deleteE AFHEE 4= Q12

2 I R el A5 WA opsd), o2 Qlsh ulEE HEe s AY)E 2 Hne et
2 o Wk 2ol £

coll
7;I

1o

1:10‘I ol-n

1.5. 2R

1.5.1. W9 7]8t for

Definition 26 c++9fAl= Bl Y, vector 5ol tjof gtS © g7 A& 5 == oF= fori 9l B9
215k forg AFEE 7 U

ot o o] z-ggl. kel Z-g et ol Bl g, vecotr52] gho] At 2 =AFE.

for(data_type val : data_list)
{

3

1.6. 3t

a2, B £AAE uj7/f H4E formal arguments, 1A}E- actual arguments= H

olt
a

Jal

1.6.1. gk oH|2Y

Definition 27 c++9JA]= gF< _QHfEd(functwn overloading)o]el= g o 2, 2+ AHRI = 7171
o5 ofe] ) Feojgd ?13 Ofﬂ?/ VA2 G A= dres o7 HT H5o] A2 Yefof g
ofaf T A] A7} CHEALE, A7 ZEFE Az @o] Heok 3

oF~ Hlolzlo] F 2 o2 PHA] 9l8. nfi7fjdis~ BE2o] Zhy vlelzro] Xl g uf ct2 i o 27F HRAIGF,

1.6.2. grofl o3t TEF F=x4 o3t &

c®} e+l A= gholl 23t SZ(call by value)7} 7] 0] 2|k, L 1E 9} reference® ZF2o] 23 5% (call by
reference) & 1Y 4= Y-S

el A THAE GS BASA A sHoF SR copy cost7h AT

St
1
o]
S

1.6.3. referenceE A3 5 &
S0 mli7f ¥4~ referenceS AHESHH

st

= ofglle 1 A4

30,

A~
s

nN'
é
1o,
ret
fo
i
filo

;L

rel

int func(int &a, int &b)
{

17



a = 20;
b = 10;

return a + b;

1.6.4. reference® HF3}t

reforence EIGES WKL AS g Wo] ofe AEJF MR, 3, 4 W WSS ADete] o
gtz A% A48T 5 98
1 Ao 7L |9 it oWz SolA ATk ol 1 A
int& operator[] (int idx)
{
return array[idx];
}
=F EZQENMAE 0] A GH4F reference= HHehsl= 22 on|7t Q. &4 T= A #E7}
kAl 7] e,
1.7. vector
1.7.1. vector
Definition 28 vector= 202 A& 7156 v g 9.
G FohE AR A8 ek g A NN 2] HE] g A2 $7E Bk
WA ARG
<vector> 2lo]He]g] & A-&9F.
oafio} go] Agistel AT 4 9L 27)E AF T
std::vector<data_type> name;
std::vector<data_type> name(size);
vectorQ] 4ol gis] {2, £+, AAIeHE 2L [], insert(), erase(), push_back() 522 &} [|=

W Gz} & oA AHS-E 7 s

class TestClass

{
private:
int a;
int b;
}

{{1,0}, {-1,0}, {0,1}, {0,-13}};
{TestClass(1,0), TestClass(-1,0),
TestClass(0,1), TestClass(0,-1)};

std: :vector<TestClass> namel
std: :vector<TestClass> name2

A Ao HE 2 Z7|5fol= A X 7Fsehd], class®] HJE 2 vectorE AF§-e off ofgfjof Zro] 235
o]

|2 ade] Yok AL Hote] A9 19] BRES 714,
=
=

vectore= AHA|E o 2}F 0 2 v

18



1.7.2. ﬂ]]_,____, ’I—ﬂ-x}

vector Z4A o] ARG 4= Ql= Wl AE+= ofefjet 23

Q2] (position)-L iterator2 2| ASF. (59 listo| A A gt)

insert(position, item) : 5% €] itemS F7}. Z FHEE Q| RAES HAHOESIRE ool HLn
of BREE 7.

erase(position) : 574 ]2 ¢] item& 2. W1 7+ 497] )5l 8AES A StEE 2] 7 no
BPEE A}

size() : 840 )55 Hhg

empty() : vector7} H]o] Q1= AL trueZ, 2} Q= AL falseS Hhsh
push_ back(item) : vecotr—l L9 itemS F7

1.7.3. TtA¥ vector

"HZglof <vector<double»} o] 222 AT 4= L. ve
olBg, g4 FERIE tdste] ojxtd MEE AT 4 =

2.1. OOP

2.1.1. OOP

col A= AApAF =g 2% (PP, Procedural Programmmg)a ot AxxF T2
@9lola, HolH = & wefsty] wzol HlolHE f718 o= sty ojfgo] e

AT B2 oA IS o o] e S Aol AAA|G L2 127 (OOP, Object Ori-
ented Programmmg)o‘ Az gAo A = 7t 712 ST, AA R FA ool A= ZA (object) 7}
7|2 2IeL. AAS Aol] JBAEO R T2 10| L.

object= to]E HE] state?} 2P HEQl behavior® W, c(PP)oA= stateE FZAZ, behavior
£ R g2 FESEe] LA oF 2. c++(0O0P)o| A= state?} behaviorE classgh= g o2 4 A
P,

o] Z}A|5] A SHH, class o] WH B4 (member variable) 2 states, class W] HH g4 (member func-
tion, H[AE)Z behaviorE 1A

)

27} 7]

Procedural Programming Object-Oriented Programming

I Main Proeram

|

Function B

2.2. class

2.2.1. class

19



Definition 29 state(t]o] )2 behavior(84-)}5 SHLFZ Rol4] Holohe A&} 4o A2,
stated] sfjgtol= BE2S & HH B<(member variable), behaviorE HH &<(member function, M|
AE)2k7 gk

class= class 7| EE AFg5Fe] o]}

class Y2 o] Hln ol = w8 HZ2F(member access specifier) & X]7gel. W YZRFZ = private, public,
protected} Q& private:> 2R A] Hto] EIFslEE, public:2 2R RFA] Fto] 7l5sHE
2, protected= RS} 24 classel A= Fi20] ZHsS]EF SR AL o] BAFSoIE R x| JoHe
A.

ZHE 02 classe ofFfel go] golgk

class Name // name® 2 class Z9|

{

private: // member access specifier
varl; // member variable

public: // member access specifier
methodl; // member function

3

ofefs} go] Fef29 Wl LF friend 71 IR 5 classS X G5HH S5 class7h B class ] BE
wulo] H2Y 5 YEE I 5 AL

class B
{
friend class A; // AO|M &Y classQ| RE EHO &HZ 7ts

}
W) g/ AN el M/ BT Fee 44
Qyh#] 0.2 Pu W4 private, W] P public 2 AHT. W47} LB O)wA A FAY S
A7) v 2ol W o5 Foff WH Haof FIote s shi= A. private 2 2] W W= o class
o] Miw g5 SoA HEF
W gL W S 248 O A PSR W ok B, W W47} class ol 4 WelHoz
AAH AAH 259
o] B7Psth W} gl Waslel obd Amd o=} A

class 2] wpAgtoll= FEA NN AH 5 2/ Hok g

W o] dRer pERE B %
s T4 A (AAF) TS AT, Ses o)io] Wi F4(FAR)E AASHE 4. ofuf oj]
AP WAL gl 22 & BolA] ofH classe] WS XS el ok &

obgfl= 1 A Y.

class SimpleClass{
private:
int numil;
int num2;
public:

20



void print();

T3
void SimpleClass::print()
{
cout << numl << " " << num2 << endl;
}
2.2.3. object

class= state@} behaviorg stUE F2 A o)1, o] ArP-S AFEste] At M7t object . class
= AAEe|L, AAEE THE AA7} objectd] A. 1A ObJect— 1nstance(O 2H i A E st
mbtance—E— wC L AL A sletr e gt

object® AFHE 2 WH| @47t BPW FEA WAE QPG 23 2 024 g AAR 1
W5l 755 BATE, A objects] W] W4k Aol ] gk = A1RE] xvo*%.
o
s

object®] Wl W=/t 0] YL Lx A9t
A Zolg o] -><S }gs}oq xq:LoL ESEIR-N

=
object®] FAE ZIE
el BRYTS & S 98,

2.2.4. A=}
Definition 30 object’} Y EH S of HIEE HH gF~F WY (Constructor)2f1l F.

9 AEYE A T class HUAS FYT HUAE H83j0] FOI oluf 42 oyl
5o o2 YRS of 2] J] AHg-ore] S0l2& IREe] Jipel SRl oE FPE UE T Us
(function overloading)

AR class W5 419 Alo] AYHDE, ofefg} Zo] {7} FAlo SIS HLoE.

B ol newE AJ-EalA AAE Y = ()& ZF%

7ol 2P = QIAJul, B2 A5 A fle ()5
A5 2 910 2R 5T 74#"’3?7} ol g2 Q9loto] Aupd Q7 . uf ARl H=o] ()9

G gxpol A B} ).

Car caril; // Car()O| ASHE!.
Car car2(20); // Car(int size)/} AlGHE=!.

A} a7 BB A Ao S o) sk T EE A4S G gho] defauliZh o2 A8

O] A H ] GIAFE S YEoFE QIR O ] Sol7k, LA defaultﬁOI
AFEE.

A S W ShpolB® A OolE FE5te] class 2o 2T 4 A
q Py

S defaults RG] BT S5, Hoo] AT S 9
o

oot AR 2R
= 3 Folt default= Aol AL GAFH 0 2 E2514]
Q H

O
, AR Aol B5Fol default

rﬂ

class Car
{
private:
int size;
public:
Car() // Car carl(); LE= Car carl; SQl AP AldY
{

this->size = 0;

21



}

Car(int size) // Car car2(20); ¢ Z% A
{
this->size = size;
+
};
2.2.5. 2AHA}

Definition 31 objectZ} AIA|E of A== HH gF+F £ HXF(Destructor)2F1l gf

treh k2 g5 Zgolx] 9l class AJHRIel Aot AVHX} 7T GHof] ~& & ARgole] Yojg

=

class Car

{
public:
~Car ()
{
delete[] this->name;
}
}s;
2.2.6. ¥¥ W4 273}
712202 gu WA classo] 24 Ao 2718} b AR B2 5 YA, o] PHOoFL FHOE 2]
sfsbAl 2a AAAo] AAHE ALgete] FAOR 278K 4 9l obefe} ol '27]skE WA (1A
Za 243
= (o3 =0

class SimpleClass

{
private:
int numil;
int num2;
public:
SimpleClass(int nl, int n2);
};

SimpleClass::SimpleClass(int nl, int n2) : numl(nl)

, num2(n2)
{

}

2.2.7. this Z QI

Definition 32 this X QIE]= this EQIE[7} ARG EE objectE 712 7]= L QIE Q.

F2 e weet i Mg TR 915) ALSF o S, this>muml = numl 3} Zo] W W}
W o] ool AL AL AL, this7h 7pel7E WAvE e 09 S o S+ 9E

22




2.3. A&

o] HLEo] sl A XAl A HEA UokS. A WA Fol U go] & QOB R FFo] thA] Zofry
7H/‘~jo}x}.

2.3.1. AF&

Definition 33 2% class2FE] Wb W /oF~F 7JX] 2 Al-§oF= A& A< (inheritance) o] 2F11 &F.

ofefjef gro] Bz e classE AFA]o& ek class®] AJHRF @ EZF] public 7] =2l g7
ZFATSF
7 O =~

class SportCar : public Car

{

}

A4 AAE BYD 42 157
F2 7Fse 22 /24 classe] v

ZFA] classQ] HH] B~ BI=71 ot ZIA] o a]of] A E] 17,
2 i A 58 - e

classol 2211, 11 W82 A4 classo]| Af&sto] ARRSHH

O

ZHA] classEoA] FEEH HES Zoji H
H/EM-] o lifﬂ TS o]g.

dES tolold e s yepd ti= P veko] A4 class -> FE class9].
2.3.2. 84
Definition 34 3}L}9] object”} of 2] 7jo] FEE 712 -+

o]
AA
ct+olAE T4 oatol=gl g F4a e TR 4 AS.

o
32 polyt Wk, morphism& WoFE EG %, thAL dassyh A% BE T B 1A 4
0] o o 9]1:1]6‘1
M= -

H

5
n
%

Zlo] ot A (Polymorphism) ¢

2.3.3. g o H|gol =

Definition 35 AF<HRS B clgss o] WH] gl~E2 ZFA] classoA] A Qlsl= AHE of~ o Hlglo]E
(function overriding)2F1l .

ofels} 2] A4 class] WM B 9IF} ©EF] override F|FES AHEIo] it W TPE
ol Eote g QYT 5 oS, oluf o] WH| gae] s XHXL,"* PR HH] glpo] Ao}
= o] 5o} o,

o = =

void speedup() override

{

3

3¢, overrides g4 AFoIul Y. GG Ho] B

He k& classo A £ gek 4
_LL]—OE ]3777]. H?’/(Ho]-

5
5ok g ojolet s

P&
2]
=

St @ 29 (function overloading) ©] -2 ol
GOl Aol e 6 afElo| e HnE Aot 5
2.3.4. 71 @2

Definition 36 A2 X]GH eF+& 1Udfoly S&HE g5 7 g (virtual function)2lil ¥
TIF Sl 2 2] Z E] g4 T o] T A]TF overrideSF 5~ ¢

O]
Ml

23



oFeeh Zo] B7 class] WH] 24-0] A2 Y ol virtuale F5He] G W] P2 T Bz
21de 7 A5
virtual void speedup()
{
}
U 945 cosss) Pelal 4T B2 virtuak B4 AYND G LYo ) w5 el
At gologr 2ol Hupd o]z gk
virtual @ 2 2| Z % gt override2 A A E S44-2 YA o5 o] S&H
2.3.5. B class ZQIEHZ A4 class 7}8]7]7]
o]® class] B H classE A5t i classZ objectE THEH, | class?} FH class 2 5Fof off gt Hj =
27} . o|uff B class EIE 2 3T objectE 712] 7| B X classof] tigh W o] e 4= 2. o,
28 B2 A4 classe] Wolo] A28 1 9.
ol B X class®] HAE = virtual2 X3 WA HisfA=, g A4 classof| A override$t $+4=7}
=4
AR o) o]7 0% AgSH=AE o Foluol SAY, o} 2 o]# 0% Hu class EIE|E 2] class
of A o+ U2
= otg|Q} Zro] ZHA] o] 715G CarZl B R class, SportCar”} A}4] class¥.

// ->2 SportCar/} A&EE2 car HH AL Jhs.

// virtual €0 OisfM= SportCar
Car* car2 = new SportCar;

ofe= 11 AAY

class Car {

protected: Car
string name;
int speed;
public:
Car(){
this->name = "JustCar";

this->speed = 0;
}

void print(){
cout << name <<
cout << speed << endl;

"o,

}

virtual void speedup(){
this->speed += 5;
}

b

Output

JustCar 5
SportCar 20

OflAl overridedt HAETI SEE.

class SportCar : public Car {
public:
SportCar() {
this->name =

this->speed =

"SportCar";
0;

void speedup() override{
this->speed += 20;

} Overriding a function in a

parent class in a child class

b

void func(Carx car){
car->speedup();

car->print(); Functions of a given
instance are invoked

int main() {

Instances of child classes
can be assigned to parent
class type variables.

24

Car* carl =
Carx car2 =
func(carl);
func(car2);

new Car;
new SportCar;

delete caril;
delete car2;

return 0;

16



2.4. AAA} eHl2 Y

2.4.1. QXA eH2g

Definition 37 YRIXIE g2 g Qv 2 Hj5fo] A2 2] HRIXFZ AFgSl= A
& (Operator Overloading)©]2f1l gF.

W g2 ofgoF ZHo] operator Z]YELF XX} QH 2 TS
of &l a5t AR R o]E RFYJ-S S~diE].

e

Point operator+(Point& p)
{

}

a5t classO] object a, bol] ol a + b7} a.operator+(b) =] 2 Z-Eg}

= -

= A enE

AR gl oY classo] 4]

ofgj= 1 A AY. o] AL P3 = P2 + Pl1o] upx| P3 = P2.operator+(P1) A3 253t

class Point{

private:
double x;
double y;
public:
Point (double x, double y)
{
this->x = x;
this->y = y;
}
Point operator+(Point& p) // G4HA} @H=G
{
Point point(x + p.x, y + p.y);
return point;
}
void show()
{
cout << x << " " << y << endl;
}

4.2. [|9] QAR QE2T

[ [] W59 gto] mizisie2 A, ol ||
1]-303% reference® | A 3foF .

int& operator[] (int idx)
{
if(idx < 0 || idx >= n)
{
cout << "out of range" << endl;
exit(1);
}

return array[idx];

25
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2.5. 9Z3

2.5.1. g =3

Definition 38 L2 & o}a} classe AT o~ YL & sl= gr_—ggo =/E=4
gHof go] Sal= o 777077 template 7] YTE Al-gsf 2|3k
ALggl o] T 9]0 £5of x5 e zl2 g o] Eoj.

template <typename T>
class Point{

(Template)o]2Fal &} of
jo F=2 TYTknqﬂatq)E

o MY

};

NG classE A8 ulis B4 T 970 Solg 1aFL ofafel Zo] X GaoF 2

Point<int> p1(3, 4);

2.5.2. AR} FAF

U—ﬂlﬂ ?3‘1—/\-4 ﬁ 1?«52]- :IL?._J.E“% L]—'I:I—Oi 7—\11'*51:‘?:} Q% % E]'Oﬂ template <typename T>E ;q_x_] O]'j_7 :[Léj—]?_o,]
class 4/#7} @ 2o <T>& 2t4afof .

obgfl= 11 A

template <typename T>
class SimpleTemplate{
public:

T func();

};

template <typename T>
T SimpleTemplate<T>::func()

{
+
2.6. o 2] A=
2.6.1. 9|9] Ad
L2 7 A Fol WASHE Aol tidt 2] A2, try, catch, throw 7| U= 58 AH3
At Ao BAgehs BHA 0 RE 9] Aol AFetA 3.
ool A& A= otA] koW mg o] o|7]2] £t FrEAY o) fstA Asd o &
2.6.2. AFeH
try 502 o5 AN M9E AAsH, catch S50 2 o 9] 2] A] 23 2HY-& 24 F throw=
o]

= =
o7t A S-S A2l HlolHE AFE &+ 3l
¥ L
—

©
o, throw= HW o] o] 2tz 3} 71 717k Akz @2 7HA] = catch

26



_4 UOI‘

ﬂo

tch 29| F&7} A

o
5| %

5 ca
Ay,
&

£ A

l

(¢]

5
A

3
A
o}

éé J)‘Qﬂ dﬂlﬂw

A
try

func();
}
catch(typel exceptionl)
{
// handling
}
catch(type2 exception2)
{
// handling
}

void func()

{
if (an error)
{
throw exceptioni;
X
X

2.6.3. exception class A}-8-5}7]

A e A5 FIet classE 7 2I5FS] objectE throwsh= W= AR

o]uff throw Exception() 5
ex)2 Wow gro] BAbg.

ofei 1 el A4,

class MyArray{
private:
int *array;
int n;
public:
MyArray(int n){
this->n = n;
array = new int[n];

}
~MyArray() {
delete[] array;

int Soperator[](int idx) {
if (idx < @ || 1idx >= n)
throw Exception();
return array[idx];

ool thiow 88 S dlol el 24
O

P ol Tl by B

SheLA Aol @7 ol 2, sl g4o] Lhex) She

the o2 Aoj7} Yolrl mz 7o) AAFH o2

571

it

06 72 AAHE AA5t] AR] 1, catch(Exceptiond ex) 502 ¥-2-. catch(Exception

class Exception{

public:
void report(){
cout << "exception report" << endl;
}
b
int main(){
MyArray array(10);
try{
array[100];
} catch (Exception& ex) {
ex.report();
return 0;
/ 31
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Part 111

Al g X

1. AH

1.1. AH

1.1.1. 29

Definition 39 A& (Stack)2 LIFO(Last In First Out)& 2= HdFZ 27X Y.

2819 1 915 top, OFHE bottomo] ek BF. 71 H.0 2 topel Ak ko] S HT bottomS AFEE]
A oS-

G G0zl push(9)9 pop(FE)o] 91

LIFOZ Blo[62 chglof & o 282 143t 78 AR oA sre] BACIA 54 A= 722 A4
SopAITHE otolt]oE | el Ao ojele. BAIZ Beol Eolulof g,

F2 G4 29I, expression B, vIZ37], BE A4 S AT
[e]

empty push push push pop
stack

1.1.2. 28] ADT

1. Data
LIFOE wE+= tlolH gt

2. Main Operations
push(x) : x5 topel AY.
pop() : tope] QAE A|Ast 1 3 ¥k

3. Auxiliary Operations

peek() : top] 24 €. (AAx)

empty() : stack®] H|o]Ql O trueE 2|E St H|O{QUA] ¢FOH falseEs 2H.
full() : stacko] & 2}l 0™ trues | ®5taL, Z 2} U] O™ falseS 2]H.
size() : 249 /& FH=.

N,
ro
s
ol
a1
Flo
4
iy
gl
n
i
3
ks
e
>,
.
I
vl
l_n
i
A
1%
:?L_‘(
HL
K
{12
=2
Hu
4
et
ol
ol
rr
o,
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1.2.1. vz 14
top®] QIEAE Lehlhs top W40}, 281S AT AT 9o m THo] 71
Fdo| 7tesiots AFo] 9l Auk, vjd Ao
o]} linked listE A}-—Q—o]-OC] 94 HA TS
class2 o] &2} %}'—?3 FolA AostA © 7HEE AAE Aot I kel dglo]E7t o] 91, Hlo]
2 2257] 918 P48 A8 2. AR FoheH AF) A Ao A2 AT 4 9o

A =

MALHo]q.gg}y

1.2.2. class diagram

Definition 40 class?] & O]X'loi] class diagram©|2l= diagram-S 2-gste] 1 FejE gFoler
OIg, AE:EQ}EOI—}ﬁ 07-.

class o] =, HH] Bl Fo, W] gl JAES 2k o] BH] Fof &0]= - private, ++= public,
#L protectedE =g} 2 th} X}go{l{ 2 A] G},

ol = Hjd 2 ATl stackS class2 THE7] 95l 23S class diagram 9.

ArrayStack
- top : int
datal[] : int
ArrayStack()
push(int item)
pop() : int
peek() : int
empty() : bool
full() : bool
size() : int
display()

+ + + + + 4+ + +

ol EE EFSH AL A LS AT 5 U8
olo 717

=
o= W2 infix, prefix, postfixZ} Q1. 22t QA7 740 (243), SFof
H |
=

Adite & ; oll(+23), Fel
(23+) 2= AL =3} YA AL infixE AFRSHARE, prefix®} postﬁXT_— FAE917F olm] REE o] 317
HZol AFE7F datstrlole o Bl ZEA ot BAE AR AR At 4e B7rE & S

1. infixE postfixz2 H3}

2. postfix =418 H7},

231 oA E tht e eSS AL
L. md4katolH Adof Hg

2. AAkatoH AElo| A T ALALE 7EA oF A4S °F &, T AE A Y5 ATA 0 2 upx]ute] stack

| 2 ol 2 Y.

HolA= o2 22 41852 AE. o714 S22 e W22 E8& 9uqt

1. DAz oA &,

2. AAztol A Flof o4 AIRoto]

e ﬁ%m AR FFet, o8

a

—_

1.3.1. stack STL
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Definition 41 <stack> 2fo]H2|2]E AF&¢).
ofefie} 2ol 412l

std::stack<data__type> name;

stack STLOJA] A& 7F5oF g4 T = ofgol ZF2.

push(item) : ztem—a— push@l. item2 4191 X]of] ] et FE & o2 HAFE.
pop() : pop p0p°F Zu* vhelolx] okt ApAgE g

top() : topell Sli= gbS 419 Al g ARG o2 vrelg).

size() : 49] 7]7’ 5 Hl'_el-ol

empty() : stacko] H]o] QO™ true, X} QO falseE boolF O 2 vlslg).

pop()2 & pop= S Fha AAISH R StE=, gha AH8StEH top() 22 &RI%H F pop() =2 AAs]oF
5t

2. 7
2.1. 7

2.1.1.

Definition 42 F(Queue)2 FIFO(First In First Out)& 2= AF2 g2 FLZ2 Y.

7o W oFS front, W FE reargtil g 7|22 02 fJo]E] £19S rearoflA], FE& frontoA] &
O E dilo 25 enqueue($F )2 dequeue(FE)7T -2
FIFOZ Hlole & thFof & uff AR-S ARt =, Aol BHA| A 2jot= A=l AH8-3t.
F2 flolg miZl, A HAE 52 AT off A&
dequeue enqueue

front rear

2.1.2. F ADT

1. Data
FIFOE 2+ dlolg g

2. Main Operations
enqueue(x) : x5 rearo]] 4F.
dequeue() : front 9] ZH-2 AA|5EAL HH3E

3. Auxiliary Operations

peek() : fronte] @4 FE. (AAx)

empty() : 77} H|o]9LO T trueS =S}, wojglA] gt
full() : F7F 2 210 0 H trued ¥, & 2} QA GO
size() : 849 /& 2=.

9 falseS 2 H.
O™ falseS Z|H.
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2.2. 74
2.2.1. Wj9E 79

frontQ] Sl AS el E= front 42} rear?] Q1E)AE UEMYE rear 4SS ARG o] front 4=
AR HlolE 7} = YA Et gt 7J So g Aotk sh=dl, £33/ HOE {AsHA Y. o|FA AR&SH
ql 37t dummya}j’— ot front@} rear7} H5F AA| HlolE YA E 7He7| =5 ATt S, frontof A
7t HolEl S} rearel 4] #7ket HOlELE Apolell Bl B2 k7t 48714 5o i} Buapa.
W0 W A2 TR frontol A o] e[S FE3F o] F Lol HlolE S-S £ FA, font Zhel 7
QIS S} A 2ok sl T 94 B 1. 194 Ciroular Quened] HHE 7R,

19 54 Aol QS 1A o2 modular AAS S B A2 W,

o
empty() 2} full()2 frontQ} empty g+ vl sl AT 4 Q1S

HE S AN

[¢]

reai 3 4
2 . 5
1 6
0 7
front

2.2.2. class diagram
G- AFESE circular queue?] LA 93t class diagram2 ofgjjo} 2.

CircularQueue

front : int
rear : int
data[] : int

CircularQueue()
enqueue(int item)
dequeue() : int
peek() : int
empty() : bool
full() : bool
size() : int
display()

+ o+t o+ B

2.2.3. 9A] : ]2 7]

o 27k 22 WA (H2 1, T2 0)2 FolA W, s vzt i E 4= QRS wishs 24l DFS =
BFS& s do] 7F&3t

Zh iAo ik AR = A JJr ol #37F 5ol W= Sl A4 5 913
Fete] B3] sl 4-%) nmil 7t 5|3 YRR, O(nm)ol=til & 4= Sl=
1. DFS(Depth First Search)

D HhE A7) o] EStaL, vhAe 2714 02 HEotes WA, Stack ARE-

S b L T% Hrrsto] ohe olF 7he FEE Lol AFeal, AEolA uE st WA ST A=
ds WA olF 7he a7 o TSl Ae B A" ¥E

mb
El
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ulThE 2g whd wzhx] o) 5, wrke g vhiw Age 2R ofFstel the Yo ot
2o ol gt B/ AFPO DR thes] Aol A 25510t st upxut 2P AR o] Bt
Al
7.

Last
branch

2. BFS(Breadth First Search)
15T RE ARo] ojal 717t 7 7 W 7R 94, Queue AR

HBE sl wA s 92 o5

AL o o4 Foll ol oA grot

2.3. STL

2.3.1. Queue STL

Definition 43 <queue> 2}o|He]2]E AFE¢l.
ofefs} 2o 4191

std::queue<<data__type> mame;

queue STLOJA A1§ 715t vl EL of2)s) 2:2.
push(item) : itemS enqueuet. item:2 91 AJoj] X]ZoF 22 g o2 HAFE.
pop() : dequevet. popSt ZH-2 VFslS]R] gkl AFAal &F.

front() : peekg}. oml g [ Ao A7g et A7 T 02 Wl
size() : Q49] Jj+E 2l

empty() : stacko] H]o] QIO true, X QYO H falseE boold 02 HF
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pop() 0.2 dequenes 5HA e AASH/e SHEE, e ALl front() 0.2 SHIG T pop() 0 A
Alsok &

3. Deque
3.1. Deque

3.1.1. Deque

Definition 44 Deques front, rear BFO)A] 47} FFo] 75oF F¢.

fronto A1 Q] £}, F&, AAE addFront, getFront, deleteFront2f1l 8F. rearof 419 4F¢], &, AHAIE
addRear, getRear, deletetRear2f1l &F.

=7 A4t ALgate] dequed A8 FAY AHET 4 9g. oW AL HE AR TR} 54D 0 AT
A4to] Ztmxo o) &5 ot g A eAx2E FAIskE W Adet A4tk ARgofjoF ¢

3.1.2. ADT

1. Data

front3} rear W) A9 WS 583k Hlole W
2. Main Operations

addFront(x) : x& fronto]] 4F<.

deleteFront() : front/] %,}2._ ”Zﬂ;} =l
addRear(x) : xE rearo] 4<].

deletetRear() : rear®] Zh-& 5 N‘Zﬂ ot wkgk

3. Auxiliary Operations

getFront() : front®] @4 €. (4HAx)

getRear() : rear®] Q@4 2H®. (AAx)

empty() : dequeZ} H]o]QL O trueE 2|&Istal, HO]IA] ¢t o falseS 2]F.
full() : dequeZ} & 2} 0 W trues 2|¥5tY, & 2} JA] Lo W falseS 2 H.

size() : 249 /5 2€.
3.2. 13

3.2.1. yjdz2 14

A2 2AY B9 FAAAY circularsh] BE 5 98 FE FAY 1) AT classS JETT QAR S

=7}5ko] 1A= Ao] Halgh

3.2.2. class diagram

v S A]- Sk circular deque®] @2 $]3F class diagram-2 o2 @F Z-2-. circular queue?] classg 4f<Hbo}
deque AAAT LA Ao 2|2 AFRSHH Mg
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CircularQueue
front : int CircularDeque

#

# rear : int

# datal] : int + CircularDeque()

+ CircularQueue() + addFront(int item)
+ enqueue(int item) «— + deleteFront() : int
+ dequeue() : int + addRear(int item)
+ peek() : int + deleteRear() : int
+ empty() : bool + getFront() : int

+ full() : bool + getRear() : int

+ size() : int + display()

+ display()

3.3. STL

3.3.1. Deque STL

Definition 45 <deque> 2fo]H=]2] & Al-§9F.
ofefjel go] Holglk.

std::deque<data__type> name;

deque STLAA AM§ 753 H 4Bk ofas} 2.

Afo]Z #e mj4aEE sz'ze(), maz_size(), resize(), empty(), shrink_to_fit()
Q4 Ha JJ—E-'7 4 =5 : operator|], at(), front(), back()
L[5 /‘7’07/ 45 : assign(), push__back(), push__front(), pop_back(), pop_ front(), insert()

assign()2 MR- ZrO =2 deq 2 S
e 45 9l B U E m Ao (o a1, 31018 6 1 G
7

= et 4
insert()= 7kl ZE& 4FUS. (ex. insert(4, 3)o|H 4 $x]of 3-& 4Flst.
A

2485 FES1 G2 AASIH BB, g Agsted S4B

—

_‘:
L

4. Linked list
4.1. Linked list

4.1.1. Linked list

Definition 46 HJoJE] 2 258 = (node) 2 F1l A2 HAsF] FAH FRFZE Linked list(HZ2
g|AE)apal g,

Linked listol&= singly linked list(SLL) doubly linked list(DLL), circular linked list(CLL), circular
doubly linked list(CDLL) 5 t}Fet 2271 QS

I = data field2F pointer field2 4 E o] Q2. pointer= C}-2 =5 7127,

co A= FZALE malloc() 522 Linked listE FHYXT, c++9JAE= ofgle} Zo] class2f news
/(]-_Q_ol- 2 0] O

o =2 T RT

Student* test_ptr = new Student(202, "james");
cout << test_ptr->ID; // 202

Qulydog ot L& T ‘H -,4 L& 7} 7]+ head/front ZRIE| 8} tail /rear ZRJIE]E AFESHLL, L EE
74714 e ZAH = nullptrils @2
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Linked list+= &7t dlo|HE 417 =l
A W2 F % F7t2 AMgSfoF ofal, Al&GeA RO = o
A ZHEZ T 9 %‘?ﬂ oA B FATGS Alart F g A

A Aol AR e vk 24t Bt

4.1.2. A7|1& % class

0

Definition 47 X7[&FE XA} =Aot FH| 2 PI]AE classE A& & 912, Linked listo]=
e B0 F4F HGE + ojof SR ofalo} Zo] AIIHE classE AEE

class LinkedNode

{

int data;
LinkedNode* next_ptr;

4.2. Linked list& A9l L&
4.2.1. Stack

Hid= A wi= WS shuol topoll tigh QTP AE A AFUTHH, Linked list2 @S o= ZIEZ top
= 7HA.

stacko] BJo]glE 99} ¥lo]9LA] 9 F-92 Lol push, pop 5-& FHE 4 UL

4.2.2. Queue

g2 d S uj= Circularstchal 7} 51 rear®t frontS 714 WS AFESITHH, Linked list2 £ A Sk
= reare} frontS 712]Z ZQlE T 7S AFRS o] front->rear HISFO 2 LA S oF enqueu?} dequeue
o] o] heat.

Queue7} Blojgls -9} Ho] 91| 9Fe AR 1}l enqueue, dequene & FAL 4+ 918

5. List
5.1. List

5.1.1. List
Definition 48 List= 9919 91314 4¢3} &o] 7H53t G4 2729,

glol8 H PIAE 022 Al&lel= oY~ o2 #7Jek

5.1.2. List ADT

1. Data

Qlole] g1z|e A2 ATt FZo] Wagh 24 gl dole Yt
2. Main Operations

insert (i, item): iHA] 2|9 item 4.

remove(i): itHA] =[] Hlo]E| A}A].

get(i): iA] 91%] 9] jo]¥ wHigh

replace(i, item): iHA] 92| 2] glo|HE item O 2 TH].
find(item): item& Zto 2 71A]&= A wiah

3. Auxiliary Operations
empty() : ListZ} H]0]Q] © & trues 2]€slal, H[o]QIRA] O™ falseE Z|HE.
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full() : List7} 2 X}QJ O™ trues 2|®slal, & 2} Q1A O™ falseE 2 H.

5.2.1. g2 4d : Array List
?—04 0] 7}1:]'01-1]‘3]- 51-1 og _1__7} [e} /\}‘—Q—O]-Z] @_
MLS(MAX7L18T7S1ZE)% A olsto] vl T7]2 A3}, length W22 AF-2510] LJo] 7153t

insert(), remove()& Z7Fol AH/AAT e QAES & 2P S oIFoF . Listo] BT v FRE
B SRS Ao R A A S 28
find()= BEHOE 7P RO A4S WHT. AsH 247} gl A9l del AAHAE she £

5.2.2. singly linked list2 &

AR e AET 4 QAT Y AGOR AG F7} B7lo] W,

A 9l singly linked list 2 & ©] 7153t head ptr T4l head nodeE TH59¢] link Y ETF AR SH= 202
AT £E Q1S head nodex= QAL -18 AHZg L= Shuto] dgh AA4ka hnked listo] ofgt AALrS
27} e ng AT S .

d

linked list 9] AF2 search®} task® 1 2FHo] FLEH. search2 £3]5to] g el A 0] X2 o]Fo}aL,
task 2 A /AHA S 5= A.

5.2.3. circular linked list2 3@

rear nodeE 7}2]7]+= rear ptr& AR5}, rear node= front nodeE 712 7] 7|

N
front, rearo] 4 9] 4191 /A1A7} Watzl. B2 o|d TASE rearc] A 2] AR 13| L.

5.2.4. doubly linked list2 7@

FAE thE &, o] L E BEeL A o] 2 o]F-S w2 A
SH
3.

ool

Foohet ZQ1H 332 F7k= ARgsfoF

f

circular doubly linked list2 % & o] 7}5gt front2] o] k= EE rear, rear®] th-2 L EE front2 AJZ+st
Z1. o] AL circular linked list:x] & rear ptr SPS AFE5}9] rear nodes 718 71.
5.2.5. array list vs linked list

fronto]| A AL /AHA o= A2 linked list7} array list 2ot W2 31 rearo]| A A /AHA| o= Z2 arrary list
7} linked listH.ch WS,

get(), replace()9F & ZAolgtdA array list7} G-2] 5t

tlol el & A& A A /AA SOk Hli= 79 linked list7} 1213t ToFgt ZRIERHE o] F3He F7F2 AF-g-aljof
S}

ol gejo] 42T EE AFET AAAL, HolEle] E4o] wet ofm Qato] ALEE| T, 7t A4S A7/
RS A7) AR,

5.3. STL

5.3.1. List STL

Definition 49 <list> 2lo]Hz]g] & AF-&gF.
ofgel Zro] Mgk
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std::list<data_type> list_name;

;.

ok

search= iterator=

task H2EE : clear, insert, erase, push_back, pop_back, push_ front, pop_ front,
emplace, emplace back, emplace_front

list 2to]Haja]E 7|22 02 DLL(doubly linked list)2 o] ¢l SLL(singly linked list)& A-g-5}2]d
std::forward_listS A}g-3fjof &t

5.3.2. Iterator

Definition 50 STLOJA] iterator?, AFEZAXE w3Jofo] E% Q2|9 @ £F ZolFE=(search) A<

zrot. iterator= o L EE 7}'3]77L ZRIE2] FAFSHA] 75 Ofﬂ, A2 EQIE[ XY AFgo] 7158

ofefjef Zro] {¢I5kal RSl begin() Ml ER listo] A& FaF AGofF]oF o
std::list<data_type> list_name;

list<data_type>::iterator iterator_name = list_name.begin();
list_name.insert(iterator_name, value);

F2} QR erz g o] o], offg} o] iterator FHE EYHe] £ LEE Fped 5 9IS
ojul W T DIAE ALGAoF B (T T2 DA enzgEe] A ghe.) * IR El

oMz =] lo]A, iterator7} Z1E71E G M AFET UL

list<data_type>::iterator it;
for(it = list_name.begin(); it != list_name.end(); ++it)
{

cout << *it << ? 7

3

Listo]| A= search®} task”} EE]&]o] QJE=1|, search:= iteratorsS AFE-5}3l task= STLO| HAEES A}
45t 224 list STLoA] push/pop front/backe 1t ARgo| 7p55FARE S7F -0l A 9] 4] /AHA|=
iteratorS ARE5jof &t

iterator= Qld| A7 Hb= ZOlE A Y 7155 2 Q4 E insertd 1 iteratorZ} 7]-ﬂ 7= 9o &
A7F o7 AR @ A 4] o] F iteratore= A2 F7HE Q@47 obd & ZHE7E @45 ZHA.

erase= Q4 A T HIZ 2 929 L& FAE HFES = it = mylist.erase(it); 2} Zo] AFg-o] 71539k
o|x1 EZ
6.1. ET]

6.1.1. E¥

Definition 51 E&|(Tree)= F2-2}4] BA O] L EE2 o]Zo]x A2 FXE UEf)E B
27z,

E 2= rootof A] o] H L EZFR] O] 27} spLfofof 9f. =, ZF L E= of o] R EukS TEx{of §F. F =27}
of&] 7fo|mH ZefIafal of.

6.1.2. Eg] @3 89

1 712 gol
L= (node) : EB]E FA5I= 7] {4
7FA h._l:g]_ LEs 0:17-10]._
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A B E g (subtree) : F L E9} 11 pEEZ o)X 619 E.
1 E0] A} (degree) : 0] 2H4] L E T

Lt 9] Zlo](depth) : rootof| A S = E7R] S| 7HA 74

Lo gd(level) : EF O] AlF ¥13. depth+13F 3f.

L E 9] ol (height) : = EoA 71 Z1-2 leaf7k2] ZHA 2] 7H4

E&]9] o] : root L 9] o], 1alo] WO|HL o5 =2 ¥l Ealo] kol 12 a}
2. 24 o] T 78

o 1 = (terminal/leaf/external node) : ZFA]0] gl =

H|THE I & (non-terminal /non-leaf/internal /branch node) : Z}4]o] Q1= - =

3. 914 712 7152
ZE.11 (grandparent), F-I (parent), 3 A (sibling), Z+A](child), 43 (grandchild) 52| 34 Z4).

6.1.3. E¥|9] £&

1. Generic tree (non-binary tree)

1 ZF 27 O]9 AfeRtE ] A L EE U & Qe Ed.

dolEulol~ Sol A ALEShE ARTEE, B S0l oAl g,

2. o]z Ed](binary tree)

7} =0} 2o 27] AEERIE b 4 e £l

G leEo] = 2] LEL e A7 EAlo}o] A%(left), 225 (right) 0.2 TR,

ol Elofl= 23} o] Ed], ¢ o]%] Ed], degenerate EZ] 5] 9}

3. 23} o] E&|(full binary tree)

. E2]9) 7} alo]l =} $hs] B 4} gz Eal. ofn] 7 e o] Wi o ofel, AZolH 2%

o2 ofl.

2] ARAE W] LEES AL

4. &4 o)A Eg](complete binary tree)

cefdo] 1 off, i 1 LR = k=7t 2 ARQLAL, uhA et Al o A= kBT oA R EZO R A
o

=z AAA e Ed.

5. degenerate tree

eE7b ol 912 W) Folh w1el Eal. %, U3} @ele] o7 2,
Q& o 2ul H7H= AL left skewed tree, L 220 20k &7 22 right skewed tree, 7o HF5Fo]
HH)= AL pathological treezt1l .

list2 & $E Q. &, EfE listE Zast= Y.

o
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® (B (B)
© (S ©
® © )

Pathological Tree Left Skewed Tree Right Skewed Tree

6.1.4. o]7 Eg 2] A
AA = o7 Ele] 4AL Pgs] chfsiA|nt, giEA 02 25 ARG HE AST Ha

L. =29 757} n7fj ol 7+ 9] Z= n- 170 Y.

root Aleleti AR K} by EAetne g

2. o]l EZ 9 —‘Lol 7bhed o) leE9] A h4 1~ 20 — 17 al.
degenerate treed wj 7j=7} X

3. 0|71 E¢Jo] =E7} n7f 9L
242 Helsha Fag ol

o) ol 1 — 1~ [logy(n +1) — 119
o Aol BR 2EL .

Hir' e kﬁ

6.1.5. o] E&g ADT

o4 Edl 1 AAR AgBA RitE BhE ArTxo] 7R Agos At
1. Data

o1 E¥E FAT 4 g dlold 4
2. Operations

empty(): ©]%1 E&|7}F v =4 A2

getRoot(): o] E2]o] 2EL T2 uts},
getCount(): ]3] E2]9] & |55 e,
getHeight(): 0171 E2]9] o] wHel.
getLeafCount(): ©o]% E&] 9] leaf &= 9] 74~ HI3}

ZF-S insert, removest= 712 o]z B4 Eg|o A T}E.

]

A-0]11, complete binary tree®l TIH 7H—,—7]- ol n 2 gAsh

3]
6.2.1. 23]
Definition 52 F2-72X fofJ4] Hlo]E]& 57 A2 %*—Eo;f% AL 3] (traversal)2F27 g}
Y Z QN AFaFRoA = 2] wAI7F FeFopR] g, {2 AmFR oA 18R] §F7] mlio]

o2 717 Ao $37} TP
oj7l B0 3] Yo 29 $Aol ue} Wl F9/FH <39} A <37} Ae.

6.2.2. A%1/391/%9 23

(pre-order) /=] (in-order) /2] (post-order) s3] 2 L& 4 2.
o] & pseudo-code 2 LFEF|H ofafo} Z-S.
1. 28] 3]

39

Definition 58 E2- 47402 £33 4 Yt o]u] 29I A 7] 52| 4 A1 apet 9]




def preorder(node)
if !(node == NULL)
# A2 2o
preorder (node->left)

preorder (node->right)
2 F9] 29

def inorder (node)
if !(node == NULL)
inorder (node->left)
PN
inorder (node->right)

def postorder(node)
if !(node == NULL)
postorder (node->left)

postorder (node->right)
# 2 23

ZF %2 function call stacke]] et & X% 2.

6.2.3. gl +39]

Definition 54 2] (level) —rK1
ol BFSE &9l #'d =2l +

o] E pseudo-codeZ LFEFUJH ofgfjo} ZHS-

def levelorder()
queue q
q.enqueue(root)
while !q.empty()
cur = q.dequeue()

if cur != NULL :
# A S

%2]’5‘ — A& 28 (level-order) s2]2f1l 3F. FEE Ao =

r& t
ot
>

S
mo

d

q.enqueue (cur->left)
q.enqueue(cur->right)

=& NULLoOJH ofef] o] ¥2] gtk 5] e €4 & s

6.3. +¢

o171 Ele] 7 . o7 B2l F A 0B FAHE Fast, @ SolAL dR TAT

6.3.1. Hld= &

L3R

7 wEo] MBS o3, s MEo] sjgoh eluse] w o] dolelE A olff T WS
S1o0 o] OMAZ AL Eo}A L LA AT WBE w47} ohe sl3lo] whet Holah. ol 5o

SHAef gho] EAISHA] kot AxE At gh2 6ol #4et

.
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i LEol BHo L Mol |§/2]0]1, left AFA] = WS 2 right A4 RE HSE 2i + 19, o]
ol-g3l 7HeHs] 1AL 4 9l

Hjd = L@ 5H= A& binary heap 5l A] SHA| A&

2. 4y

EYE 41 ItdstA S 5 AR vl A7) o) e EQE vhE e gle TS Ef9] Eol

L7
=z % je) EAEE AL 27} lefo/right A4 R EE 717 RS st AT 5 A

2. ey

=g (o]ne] 2 olA) AE glol 718 4 9T, Bad whg See) A8SEE W e Ao og

o 2] ul7 Qg ke FohA el Eele Abgel olat Hme] gt EAs, S g Al ARl gt

6.3.3. class diagram

linked listE& AFRSH EE]9] 12 ¢35t class diagram-2 ofgf|9} g wAE7} WX HE gjE2 o] settere}
getterd].

nodeo] izt class®] E 2= Hlo|H & A7 ch= F-23 F A4l o tigt ZIH7F Q1AL wlAE=2= A447L,
getter /setter, leaf it EQ1Z] &5 Hlelol= HlAE Fo| Q5.

o]l Egjo] thet class®] WER+= FE R EE 717 ZAEH7L QLA Wl AT 2= A2} getter/setter,
o]l Egj7t 31010”‘1]‘:‘ H}S’Jro}— HAE, &3]& o] &3 HAE 5o U2

BinaryNode BinaryTree

- data : int - root : BinaryNodex
- left : BinaryNodex
right : BinaryNodex

+ BinaryTree()

; — + setRoot(BinaryNodex n)
BinaryNode(int item) + getRoot(): BinaryNode* n
setData(int item) + empty(): bool
setLeft(BinaryNode* n)

setRight(BinaryNode* n) + ~BinaryTree() e
getData() + getCount(): int ﬁ 2
getlLeft(): BinaryNodex + getHeight(): int LpA 2204
getRight(): BinaryNodex + getleafCount(): int LA
isleaf(): bool

+ + + + + + + +

)

99

4. &35 o §sh= Ware 73

6. 53
o]zl EZ]of tigt classo| A EB]E =2l5to] gt& Wretol= MlaEs2s 287 L E 48 ok Al
E2)0] £0] & FoHE M4 L, leaf £ E=0] /42 Fol WAL 5ol 98-

1. &3z}

T 285 AHgole] 7 xES 54 AT 4 U AR TEo] FrE o 1415 slot stmz
9 =22 A|sfof &

2. LE A5 Fole HaE

AR L2 2850 left/right 214 =] - WHERET 1S tlote] wtgohs W02 AL 4 9IS
FASAE A9/ F9/FH 23 F of® PAL AgatelE 4 gle-

2 olgl AES A7 HIFE count WS AL85}0] L E7} insert/delete’d Wit} 45 P2oh= Ao
2449

3. E2]9] ol & Folk vlat

left/right Z}4] =0 o] Z 2 o] 12 vgt go] sld LE9] ¥olel. RE to e 5T AL
Y5t B9 FolE 72 & 3l nullo] tieh o]= -1 sto A5t Hag

left/right Zte] 5 Q57| Wleo] 9| ¢35 AHgsliok



4. leaf L E O] |48 Lot mlAE
T 58 T HAE AT leal kT O ASE A 5 9.
FASH = H91/59/FH 3] F o' TAZ AREStH et A gla.

6.3.5. API vs worker

class 7@ Al9E userof|7] Hojx| public HlaEe}), AA| 2GS S+t private HAEE Z2|514
golst7| e ¢t oluff AAHE API, ¥A44-E workerztal 2.

ofg|e} Zol mAE omEgor LHsHH Hagl

public:
void preorder (){
cout << "preorder: ";
preorder (this->root) ;
cout << endl;
}
private:
void preorder (BinaryNode* node){
if (node != nullptr)

{
cout << node->getData() << " ";
preorder (node->getLeft()) ;
preorder (node->getRight ()) ;

}

7. BST
7.1. BST

7.1.1. g4

I

Definition 55 227X y]ojJA] gst= FJH

gl 9 AE2E(H D 5o B F
HolElE <35 O(n) K ek o w-2A] EHfo]

o

agFor = AL G (search)o]2t1l 3
oko] -2 0(n) 9] AIZFHEFEE 71K, BSTE AFgofo]
7Fs &

F&

7.1.2. key %} value

Definition 56 FR3F 3¢ E2]oA] Lt Ei= key2f valueE 7}, key= E7]e]o] o) AFEE=
Al zFo] 11, value= keyol -8+ T E Y.

BSTo A 9] G2 keyE 7]F 02 g

7.1.3. o] &X Eg|

Definition 57 ofzf9] 728 TF=X]7]E= o]F EglgE o]zl B E & (binary search tree, BST)2F1!

oF

1. BE =t QS keyE 7[R 11, key= s AI7F EX6) H] W 7F 7154F.
9 9% ABES) BE LE9 heySe REQ] heytth S,

5. OEE HHESY BE 1 E0] hy5L REO heytich 2

i, 91%/Q2% ABERE A7H O BSTY.

key /A58 AHGE 4 9, BAE B AHE0R HwHe 5O WHOE 8T 7 UL




A2 §UHA G2 keyEL

Il

(3
)
R
fr
|m
D
1
I
2
fr
o

7.1.4. BST ADT

1. Data

BSTZ 74 4 9l dlole] ¥
2. Operatons

search(key): S keyE 7HA= =1} 1 dlo] e S dhgh.

insert(key, value): BSTE 251 &t key/valueS 7}2|= L EE 4F¢lotal, it key7t o|u] E2f3HcHA
ZXS value= 7§41,

remove(key): BSTE X5 T keyE 71A]&= =

7}1* = O] FP == A4bo] searcho] B2 searchi= 7}%@ g 3gH o st Aol E

7.1.5. self-balancing BST

Definition 58 o}gf|o] XS nlEsl= Eg]E #4 gl
1. |95 HHEZ] o] - 9 2% AHEZ] o]/ < 1
2. HEEEV} AAHoz 73 Fel Eag.

ol ZIXuF BSTE= 249 ¢ 0(1), Hutd F-2 O(logn), F o] 72 O(n) 2], self-balancing
BSTf BSTE 7f41s}o] ZoFo] -2 O(logn)o] == ol= EZ]¢.
self-balancing BST= =Eof Mah7] 9l wjofch o] 8 ARl balanced tree7} oft] Z-$ 1w

FEE FUAA 0|8 WEE YL+

m
1
>
=)
Q
3
o
%)
ISH
~~
=
Q
ki)
}..
%

'~

self-balancing tree2 = I EZ O &2 red-black treeZ| 1. c++2] set/map STLE YR Z O 2 red-black
tree2 FEEo] QIS

7.2. 74

7.2.1. search g4te] +d

A key(FOode L] key)9t @A =EE vlwsly 1 Aol et o ‘;_/‘_
a5kl search QRS FAT % QLS. AT key] - Eo} ZA5HA] grod At

o}#fl= search ¢AAto]| gt pseudo-coded.

def searchBST(node, key)
if node->key == key || node == NULL :
return node # B HZ/AI 2|
else if node->key > key :
return searchBST(node->left, key)
else # if node->key < key :
return searchBST(node->right, key)

7.2.2. insert ¥4re] LH

search A4HE 435}, search A4to] st 2o it key/valuel] =EF 4Fet. THeF i key]
L E7b EA5HH search® =E9] ZHS valueZ 7§A15E E&]7} v]o] Qe A9 W= A dFoF 3t

olgl= insert ¥Are] o3t pseudo-coded.
def insertBST(node, key, value)

if node->key == key :
node->value = value;

43



else if node->key > key :
if node->left == NULL :
node->left = Node(key, value, NULL, NULL);
else :
insertBST (node->left, key, value)
else # if node->key < key :
if node->right == NULL :
node->right = Node(key, value, NULL, NULL);
else :
insertBST (node->right, key, value)

7.2.3. remove Xt 1@

removeoL EEE = 2 searchz #35t= A om FASHAIT, AAH= A oA remove A4S F 3
7HA] 755 aLEsfiof <k

L. AHA|et = e 7} leafdl 7%
AHlslel s wES] RRLCoi NULL 485 o 31, g =55 2545 o|u] AHlslals wert
FEoO|W BRrt glong FAsAT g

2. AAEtE = k2Ot A5/ 225 LEFA S ShRt A o= Zh= Ae
At =0 HHER S REE AA st e =22 FR ko] £0]1L, 3F =EE A A ol
At e E7F R EO[H HRrl glong qHERC RES SER 3

3. APASIelE wE7} 9%/ Q2% qUEY BEE 440 e B9
ARjehels wES dA% FAAHsuccessor) & HOLA] AHAISTAIE = AH2jo] Wollof g FAAZE 1
91 HUE o] 4 key7} 7P 2 1 2. Q£ AHEH keyr} P AL 1 E 5 oS HejGiH g,
oA 20 TR FARY key} value AtAlstel eEo] BASHY $AA EE SANAG

o] EFol A 4 2 sl Edlold V) 0E% Qi kEoln, b A mEx Edeld 4
gizto] gl =gl 181x] ghebd BSTO] 27k 7.

remove AAMES- pseudo-codez2 LEFYH ot e} &

def removeBST(node, parentNode, key)
if node == NULL :
return
if node->key > key :
return removeBST(node->left, node, key)
else if node->key < key :
return removeBST(node->right, node, key)
else # node->key == key :
if node has right/left children :
# 2LEX MEEZQM 7t 2F =5 FHAIZ nodeS CHA
# A == AR Ol —?—74|7~f t REf AAE 7D s+ A=2E=
# removeBST()E AlAS FOf &
else if node only has right children ;
# QLEZ AEEZ|9 rootZ nodeS CHA|
else if node only has left children ;
# 2Z MEEZ|9 rootZ nodeS CHA|

=

else 0
20| NULLE Y11 nodeES AlA
removeBST (worker) i FH 84| ©]9] RE Q1 £h3 o] F AT LB WA} EE sl HHEnre

S AT SO SO S A A e A 5
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Case 1 Case 2 Case 3

7.2.4. search/insert/remove®] X|7IEF L

1. search@] A|7HEZ T

2190l A= FE A key7t A=
5jop] .9 B4 key7} 221] Gk
=g n7H ‘,{l% EH degenerate treeo|H

2. insert/remove?] A ZFEZ
insertof| A= A o]5 AbQlut 85 X2 searchet BH LTI 2. removed] A= g L EE 2F
Hole FdT BHEE 7HA A, ol F Fg iEJ w30l et BRrrt ek, SAAE ASHA] ¢
O search/insert?} SUGH HHEE 7]-?(] A, FARE AHEoteE B i FAAE ZIL removes
AAH o= 3Pt %- O]W zoto] Z-oll= sl Ed] o wo|vhEo] ditE 4afsfiof ot

AnA o7 Ed 9 =o|7F hed uf ]eto] Fe-21H O(h)o]al, oo Eglof thst Fete] 72 (degenerate
tree 5)oll= 2+ Ato] O(n)d. Z|oto] Ao thsjut AZsld APdA AR TR ()04 B KT}
sl —"7‘]L AT, Bt A ]l 7ol disiM= BSTE] 450l ¥ F+-

H]o] Qli= BSTof| F£2+9] keygto] 19| A & insertElthal 5HH, BST= 2= 3@ 3l E E'J(balanced tree
71 & wrabA, Ht 29l 74-¢ BSTY] search/insert/remove 412 O(logn)2] A7k

oo Q= A9, oluhd olFalA] FRE O(h)el. Edld

=

thF r
i’
N
o)
=
e
fin)
o
o,
o
@
S
no B

i 52 rjr

Ni

S
o
\-l'l
i
N
—_
o
2
rulj
roll

7.2.5. class diagram

0]Z E g9 search/insert/removedt F7151H B2 0|2 EF] classE A4HtoH & I 9] 7HA%HS
A3l node classol] hasTwoChildren(), hasOneChildren() 59 HAELX F7}6lH £2.

BinaryNode BinaryTree
- key : int # root : BinaryNodex
- value : int # other functions
- lgft : B}naryNode* + BinaryTree()
- right: BinaryNodex + ~BinaryTree()
BinaryNode(int key, int value) + empty(): bool
getters § setters + other functions

isLeaf(): bool
hasTwoChildren(): bool Al
hasOnwChild(): bool

+ o+ 4+ o+ o+
I

BinarySearchTree

+search(int key)
+insert(int key, int value)
+remove(int key)

8. PQ
8.1. PQ

8.1.1. PQ

Eflol BE XVJOfE 7 %%’7} < HoJHFEH &

&
Ol
-

jgﬂ
o &
o
2
BN
o
Hu U
2
=
3
s
<
N,
9
X,
|




8.1.2. PQ ADT

1. Data

$0918 714 dold

F2 key, value, priority Zt< 22 7IA == S

F>5HS 9135 key=value=priority 2 X% 5}o] priority T2 AFESH| = S

2. Main Operations
insert(item) : PQO] item& Y.
remove() : © M7t 7P & QA4S ApAShT W

3. Auxiliary Operations
find() : $429171 7V B 828 W

8.2. 3d

8.2.1. Hj@& o] &3t 74

L. priorityof] thsf HH st A sh= ¢

S U2t 50 AT} tail Fo] B HeAske] A
insert 9] 744, YAE A0 T itemo| 5014 YA & 21 YAE AQISH T o] 9] AASS &AFF
the TS FEh 2Jo10] 4% O(n)ol, ol

YL A%l 1 Hoke] AL O(n)Y.

remove®| 7%, ©=5] 7P miA 45 7P QW . FoFo] B9 6(1)4.

2. WS} o A
ook ZHe) R E ¥l FXF glo] Ytk 7Hget & Wl 3] EAT 4 e s FAY £ AN H RS
Z] o]l

=t

insert] 4% T3] 9 Foll I Aelo] AaE Yol .
remove?] 7, WL

212 Aslzlok o 2okl 4% O ()3,

8.2.2. linked list& ©o]-8g 7@

L. priority] tsf &sto] AF sk -5
A&7t 52 P47t head Fof| YE=

insert 9] ¢, BE Has An AHG $17]0f |9 1.
remove®] 7, head ZIE7} 7}2]7]= dAE 7HH QW H. 2ote] 42 (1)

2. FESH) e A
insert©] 2%, 93] W o

removed] A%, BE A4S

9.
o
R
13
r*%
i
ﬂ\LUkﬂ

N by

o2 19,

8.2.3. binary heapg o]&

o
4
rgl

F5-of 47 binary heapZ A

ofo
_O|L
2
-
O
el
-
rel
sk
>
%9,
oo

8.3. STL

8.3.1. PQ STL

Definition 60 <priority_queue> 2fo]H 2] & AF-ggl
WHH L2 heap AHSH] FREO 21,
ofefs} o] Helg & STLE AEH .0z ) $de9 7ol th2H.
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1. Z0f eM&9 R
priority_queue<int> pq;

2. 22 2Mz9l 7

priority_queue<int, std::vector<int>, std::greater<int>> pq;

PQ STLAA 41§ 7H5a 4 Ei ol oF 23,
push(item) : inserto]] Oj-&-E. item< PQo ¥-2.

pop() : removed] H-SE. popet gk HFeFoLX] ka1 AFAEk 9.
top + finde]l hSE. T SAL} =L LT hEe

9. binary heap

9.1. binary heap

9.1.1. binary heap

Definition 61 binary heap-2 heap propertyS TFER]7]= complete binary treeZ A-§-5Fe] gjo]E]E
A FohE ARTFEY.

ofefjef Zro] ojH FF2] PQE T+ ok=]°] ufe} heap property”} A1, binary heap2] F77F
L.

1. 35 2 0] 75 THIE F2

Hip 1= 9] priority7} AFA] = =9] priority Bl AL ZrofoF g
o]u] 9] heapS max heapo]2F1l GF.

0 34 949 7E THTE B9

Hi 1 &9 priority7} 2] =9 priorityH cf ZFA L} Zrofok oF.

o]uf O] heapS min heap©]2F1l &F.

complete binary treeE A-G0le Z1-& insert/remove’} E 8] 9] o]alg2o] HRFFS 72| A] B 7] uj 2
of olE HA2 of7] el EoF Eg]of B A2 AR 7] miFo] siEZ FHPS mf 4

37 gl 7Y + AL,

O]
Ranl

i

i

heap2 tnl2hs 59, AAmFZoA heap2 &4 o]7 EZE AHESt= 2hm+

Z S}

—~ 1=
A3 o] wet PQE o 88402 Fsts ArF2e ThdshAR, 7 ti &4 Q1 Z1o] binary heap
Q. @3] vl /linked list 2 G- @S} insert/remove & 5FL7F ©(1), T2 Shu~ 7} A 2|t

T

binary heap© 2 FA5IH & tf O(logn) 9] E&& 7= & & S+

_,d
©)
=
O
kol
o
o

e « maximum

Max Heap Min Heap

9.2. ¢

o17]4E max heapg 7A.
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9.2.1. Hj@Z o] &3 73

binary heap2 thA|2 BlE 2 AT ZF wid 9] AddlAof thet ZH2 E|of|A g Y x]of &R 5t= Y.
ojmj LA WS Qo FE L9 QIYAE 12 st 0HA QQEl A= AMGSHA] 5. vjE 2 AT
Eclold chlE A, £8/A49] QlElAL g A0 R of 4+ 9IS,

9.2.2. insert/remove

1. insert(item)

up-heap(bubble-up, heapify-up) ¥4l 02 L5t )
heap®] 714 OS] item $715132, 1 ¥} prionity & Bl w5t} B 3% swapsht 338w
Sto] Adgh YA7HA] item o' FAIZA 4 Q1. heape A&d E2P7he= FHIO|E=E up-heapol2til

2 0]lo
T AT
olgl+= 1 pseudo-coded].

def insert(item)
size++
i = size
A[i] = item

while i != 1 && node[i] > node[parent(i)]
swap(i, parent(i))
= parent (i)

2. remove()

down-heap(bubble-down, heapify-down) ¥4l 0 &2 AT 4= Q12

Mo A9 FEO 2 WESHES AT, o1F LE ko] 8 AP uhak kS (9 lovel] 71
EX };E)_E._ Wxﬂo}i, FE 2]} H]JJ-O o 7 & AL 912 2+ g (min heapo]H 7H 22
AL 9128 wEalo] A AA7IA ShAT L ES o} 5AIZ & 9hg. FERE of) W 2 Wil
Hejo] 22 down-heapo]ztal G

o}l = 1 pseudo-coded].

lm

def remove()
A[1] = Alsizel
largest = 0
i=1

while true :
largest = i
left = getLeft(i)
right = getRight (i)

if largest < left && left < size :
largest = left
if largest < right && right < size :
largest = right
swap(i, largest)
= largest

if largest == i :
break;
size—-

9.2.3. decrease/increase

binary heap?] 7} <l OperationEZ2-= decrease-key, increase-key 5©| $J

g 01714 keye k= W2
FUBHL, keyls size v} AL 2L oFe] ebn 7PYR o) AAre TS

st7] 915 PQellA 2 data”}
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keyE 7HA 2 Holg

=
keyle B3] I EE 28] 98 A2, keyo] oM AR} YA 517 98- olo] that keyol
gt k=5 o gAsts A2 A7to] Wol AE|lBg | (size + 1) 37]9] #iES Sl A5t B4 key
of gt A= AASHH O(1)%to Q]2 insert/remove/decrease/increase]| 4 2] swap 5
o] 9177k AL 27L AR A9 ele s B Aol g weds) ok o
1. decrease(key, decrement) : keyo]| 3J@5t= =& 9] priority S decrementRTHE 74~
QA4 keyol Got= L EE 2o} priority S decrementTHE 7 AA]Z. priority 7} A E QB R Ff L E
o] o}}%-2 2 heap property7} 71 715 A0] 4717 . 6% ERE down-heapd so] AU HA2

ol FAA & 7 Aw

o

2. increase(key, decrement) : key©]| dl|d5l= = = 9] priorityE decrementTHE 7.

QA keyo] SGot= L EE ZHo} priorityS decrement@hE Z7}A1Z]. priority7} Z71E|QleB 2 S L
£9] 902 heap property’} 712 H5 A0l A71A H. AT LERE upheapd ste] A4 A2
ol FAA E & U=

9.2.4. A|IZHEA L

insert /remove?] 739 levelS SR @274 W7ty o
7F4]. binary heap?] -2 complete binary tree®] 22 = t} O(logn)2] A5 714

=
decrease/increase®] 73-¢- 'r EE 211 priority S F7H/HAA 7= A4 A Albo]| ool EuA| L, o] &
down-heap /up-heap-& oh= T ol A 2[ote] 49 O(logn) o] BEFEE 7124 E.

9.2.5. class diagram

BinaryNode BinaryTree

- data : int - root : BinaryNodex
- left : BinaryNodex
- right : BinaryNodex

BinaryTree()
setRoot(BinaryNode* n)

+ BinaryNode(int item) getRoot(): BinaryNode* n
+ setData(int item) empty(): bool
+ setlLeft(BinaryNodex n)
+ setRight(BinaryNodex n) + ~BinaryTree() 2012
+ getData() + getCount(): int I;_HD:
+ getlLeft(): BinaryNodex + getHeight(): int LA1:;1
+ getRight(): BinaryNodex + getleafCount(): int t 7
+ 1sleaf(): bool
9.2.6. 9| A] : heap sort
binary heap2 A%t -2 heap sortz2tal ¢ ZF Y4 90] 7k 7|&o 2 AAJITHH ZH2 priority 2 AJZst

2~ 0]©

n7f 9] YAE binary heapo]| AE Y3l thA] 7AHTHH, ZF insert /removeZ} ©(logn) o] A|ZFEZ LS 71X
B2 heap sort= O(nlogn)d EFEE 7IXA =

10. disjoint set
10.1. disjoint set

10.1.1. disjoint set

Definition 62 A/=Z4 Fo}(disjoint set)> A2 Y27F XX b= Jeg=S Helof= 272 Y.
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S8) Defmold e AAT LESS] UTE Ui 29 Sold F2 AHa.
disjoint set-2 non-binary tree2 ZHds| LT & Q12
10.1.2. disjoint set ADT

1. Data
M2 Y7t ZAA = dHolE HtE.

2. Main Operations

make-set(u) : v 7} 11 Y= Q2 HT AA.
find-set(u) : w} & o]— ?g@- dhs},

union(u, v) : w7} &5 A} vrF & A oA

10.2. &
10.2.1. 8] ¥-& ©]2%F non-binary tree
disjoint set-2 H|¥-2 ©]-83} non-binary tree® A 4 912,

A =7 B L =5 718]7]| & Sli= parent pointer tree% AFgS ZF
A%, SE =T o] AN TR B pointe] B AHE A7 o)
L E7F b7l B R B s oA OJ“*]& kof| sfjgst= 5’57J°ﬂ 73t

=
7t Q52 shite) Egjo] A4 T, 2t AL RE LEg 288 B4 a0t W] S selst,
T e QoA AR e SO s WselT AT Hae] FE L 98 % 98
The root
represents

its set!

’ r Node’s key
@ Index 1 2 10

3
value [2 (3|3
e @ T— Parent

w(s
Dl
Hlo
I RN

p[u]: parent of node u
{1,2,3,4,5,6,7} {8,9, 10}

10.2.2. make/find /union
make/find /union ofefjof o] AT 7 k== 2pqlo] 71E]7]s B =S JHE AYSIER k=
o] 747} wlel 29 BIHERLEE O(n) 2.

1. make-set(u)
make-set(1) < ug FE L E& St= HgS AAT =, Alu=ug A
(1w 2.

2. find-set(u)

3 find-set(u)-2 ut &sh= A
AR o] 2 Ak L W

g A ol h,otn P2

wEE WMHEE T A ud] 7 BIstT, o g ¢l

3. union()
union(u, v)2 F YA sFste FE =5 21(ZZ find-set() ) ¢t FE L=V E Z2E L EE
7He 71 A &

ZF Ae] £OlE hu, o2t R& ) O(hy + hy)THE 2 H.

i

10.2.3. 7|4
Ko}

malke-sct ()& A5 A17re] A find-set() /union()9] A9 AT Fol W] ANEHAEES 7147
Z)oto] A9 SF E2)7} degenerate treeql A-9-R1E], o] - FH O(n)Ro] AalA| H
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o5 At H Eele] olF FofoF shztl, of 1ol Union by ranksk Path compressiong A48
98
) rankis E2] $0]9] AR, o7k ©4s] Edle] ol2 Yz H

1. Union by rank

make-set()2 FE L & SPE THE T, find-set ()2 HS 19 st 2 E 9] o]+ &4 union() 9]
Al oA A 9- union()A]]] Eﬂ—i rankof| et o 22 ERE ¢ & Egjo] QA5 LS Sh= Zlo] Union
by rank¥J.

o) 919 2 T2 W o WS AL8 A 217H] 0| rankE A, rankls A LTS RER oht
AMBEZ9 Fold]. Eo|7t Eolxe Zoltt rankE 52 FH . A2]0] §le LB+ rank7} 00]B2
make-set() Alo] rank= 022 2] A3 oF .

union() A]¢] 017} uhe_na vank's W}5EA] SAT, ol7h 2O rankis WstelA B,
oefet ol TRY 4

ok
ro
oli
=
N

0

ﬂ.l°

def Union(u,v)

root_u = find-set(u)

root_v = find-set(v)

if root_u.rank > root_v.rank :
A[root_v] = root_u

else if root_u.rank < root_v.rank :
A[root_u] = root_v

else : # root_u.rank == root_v.rank
A[root_v] = root_u
root_u.rank++ # £ E2|9| &=0|7} 4282 ul| RII5tH ul| rank?t 1 27t&t

= -

Rank changes

same
height=1

r height=2

2. Path compression
find-set() Ao g YrHH RE Az
Ed]o] 2E LEo] A5 Eag o] & UL Ao

1 227 s, ol 7%7'4711 He FEES Y

path compresblon( A=)
5t

ot 7 7 E. path compression7}A]
AF-g-5tod l“‘o] Eﬂ d 5 9}%. path compression2 -8 o]-tq find- set()% 5(1)45 wjutct S Ao
A Erje] =ol& JJEHT?_EE gE 4 9e.

path compressiono] 2-8% 74

ohelst o] ARASE FHE 4 A (AAH0 74 ool s 4 gloms dEEEN

-{o
ol
ofl
a.
<
e
=4
wn
4
o
R
oo
O
,d
>
Z:
o
o)
Ol
ol
oz
ot

def find-set(u)
if Afu] !'=u :
A[u] = find-set(u)
return Al[u]

(o] 55 50 8H13] o]t o7k
acste, Was| weba.
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1. union by ranke] 25t A% 7jA
o] gol2 A%S skl 4 9]

ZE9 Zo|E k, dF AFo] 1AL P49 H4E nolzty s}

<
2 A4 Jigol T FE Eo]9] ARh2 logy(n) € O(logn)¥. E] ] %o]
757‘45]_‘:_'_‘%, find- set()i]- union()-& O(logn)2] A%
% < nele ket o] ZuT &
$02 oA k= mal
k‘:mO]_ﬂ% o] A7t 2RQl = e dhES me.

A~ o)
o= l:'-—%l T QA=

st k < logy(n)olB
H]-E]' disjoint set2] AJ50]

=

el
=
A% 920 A7k Rl B2 HUT b = mQ) A9
|1B=%, k=m+ 1Y o 9449 77t 249
], olupe] Yol A4t 2o BR k= m 1

2. path compression®] 2]3t A5 7| A
uAo] 927k ZAHFHE 79, find-set() 7 union() €] A7E BRHEL O(mlog" (n)) . log” (n)& 4% F-E5ha
7} 9Ake O(1)akZo] A Ao HEd 4 9le.

og” (n)3 nol logZ A% Aske} 15k Aol AE ke . Z, vl ool Bl AL 54

Yo BHSnE A g

[—

olN

11. I8 =
11.1. Id=

11.1.1. I =
Definition 63 /]9 &= 4} A}o]o] €2 pHAE EHHe A%,

Ief oA o] ZF tigs Y (vertex), T AFo]o] HIES 7 (edge)o]2tal B I E(G=(V.E))=
I He(V)7 2 FHeHE) o] ez JoH. o= ofeel go] Atk

A%, g Aole] T, 21/ AM A2d Sofl 45 A8,

FAQ A 2= 24 ZA(FE17])7t = AR 7|AY EAch=s F2E 292 F221 6
Lo, o2 At 7 gdo] AAH B4l 47} A%old EA.
Vet E= V=AB,C,D, E=(A,B),(A,C),(C,D) 522 Yed 4 9l
11.1.2. graph?] &%
Definition 64 1. BFgF 72X (directed graph) : Z7Hoj] HFgFo] Exjlslo] &g HigFo 2l o]&o] 7}
L5} ja]]u AL (u— u) 2 EI]S
2. BHFeF T8 I (undirected graph) : ZHA O] BlaFo] EX5IR] b= T X 7RSS (u,u) E= (u 4> u)
=z I ]o’—
3. 7F&R] Z1e E (weighted graph) : T ZFE |7} EAolE 1 E. O £AFE Aol A&
H7I2L
4. BIZFSA] 21 2 (unweighted graph) : ZHA o) 75| 7F EASER] o= L.
Yok} TRt B Hp2F EASFE R F 7R ] 2|25 e 7 S
11.1.3. graph & g9
1. 91 A4 (adjacent vertex/node)
oW ol v} o S A Q2 JA5.
A7 A9 97 AREC) UTL AT Tehme] A9 N2 Byle U Telme] A g BAe
i o NA2 ®7)0l1, Solok Heos dA4d

1,]-7]-: ko 2 AL om g 3
o1 A& in-neighborsgtal 5}



ANE E°1, N Ni= {B,C,D}o} go] 24

2. @@94 }=(vertex/node degree)

ol el AAH o] B0 4. 2, 9 A A

= i dgtel 94 ASS derd. o] ASE B2 Br18k, A A5 [Nal, [NAl, [Na|2
271

=RE) 53 IO N E uyak mo] Ao N =S|V E|ol
Toolaﬂ———J Z| A|—2| | ) oj—a}»——q O'—I_E| k|—Z| | | ‘

3. 75‘1?._(pa )

Az o]
O = T =

T 2 (simple path)= 9] HhEo] EASHA] ¢f= B2E Wet T Ato]Z(simple cycle)> A&

YT B Aol SASkL, o] 2 A9Ie | vho] ZAfokA] gh= A S-S B FASHIE non-simple

pathQ} non—sunple cycle B:_ St

E2E cyclex 7HAA] g

AL 501, BH vi,v2,- -+, 0, B AR AR = 2= {v1, 02, -, v, } 2 BE7|51L, o] o] Aoj=n—1Y.
4. A4 1 X (connected graph)
:LEHJ_L_,] neE 14240] o]—L]— ]/l

CTE

FASHAE v A T X (non-connected graph) &= AT

5. &4 1= = (complete graph)

 BE G7o] A2 AZE 0] Yk P Ta).

o] w121 o ofifel 33l

N Fell 2715 He 28 o=E 4D 5 IS

3
[
—
L
lo,
)
o
i)
re
it
i,
9
39
o
(o
fu
N,
)
)
2o
lo
N
3
rr
3
i
o,
B

11.1.4. graph ADT

1. Data
3o AP 240 WPoR B

L) HH—

2. Main Operations

insert-node(u) : keyZt& uz 7 |E= =8

insert-cdge(n,vw) : uS} v Abolol] FHE] wE 7FA1 e 7HAl AR,
neighbors(u) : uel A A4 w3k
remove-node(u) : keyZt-S uz 7=
remove-edge(u,v) : u@t vAto] o] 7kA

11.2. 3@
R 7 gl ofat g AHS Agstel T 5 9. o2 BY Ex listo] AFT 5 9S.

11.2.1. Q14 L
WSl e} AT 1 B B3] JALE ABS, v uole w4 v A 2

e RS At FAY. ofo) mef 22 T7]9] o)ahel v Ei= vectord AHESFIL, Afu][v]el] uoflA]
vE 7= 7Aoo tist 7\45_ Py
T 2 zebd [u][v]e} [v][u] el FYe Hol tie AR E Zﬂ%}'é]—j_’ ek Jamaly o Hrako]

ot @EE A4St w72 2t true/falses L}E}LH% 1] o|EUHS AA et EH (7RIS 0 B
12 5}7]& °L), 7]'TX] g zetd TSRS AetE . FAsHAE ZV}OHOF St= gkol o9 7=t
F2AT 2L A8

A Y= /\}”9“0}% AR EiE—J Nr7h oA AL, 71 AR7F HskA] o= A4 Y. insert-node() <}
remove- node()‘_ T+&o] 7tz
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11.2.2. A1 FYAE
7} i et W7l (bucket)S 7HA == Sl &= W ol AHELS FAE JeE AA bucket o] HHe
Z2 ol vector®2 W=, ST HHCﬂ/VectorQ] LA7 Y AEE 719 71A +3 ¢
R TemebE  es o] buckes BRo] A2} (A tfa ARE A
ot Am= z{x}om T ofd] ;<47<44 Agto] g3 = 7] bucket AgHS uf
| 5= U= 7HEA Zl?ﬂ££—4 % keyel 7FEAE @A AFD 4 9
H UAES AGSHE AL R wTet bl Al Zobsls
de

(% Fdol 7tttz .

By
=13
o
A
3

on ¥
4o o
oo,

=

(e}

=

5]

<

¢

@

A

R
2

1o

=]

[¢)]

g

S)

<

¢

no

Adjacecy list Adjacecy list
for storing out-neighbors for storing in-neighbors
11.2.3. A%
ofgfie} o] dAFer Jfro] FR(TY, 7HeA)E Aols) FiL TR0l mE AYS heE ot
HQ Ao 0] A o]lo
Ho o2 T2 T XRe
/7 89
enum GraphType
{
UNDIRECTED,
DIRECTED,

UNDIRECTED WEIGHTED,
DIRECTED WEIGHTED
};

/] AE
AdjMatGraph (GraphType : : UNDIRECTED_WEIGHTED, 4)

if (type == DIRECTED) { ... }

11.2.4. Q14 P vs. Q1F FAE

Q17 WL AR P AEE 2 Agtel] s ofefe] AEHEES 7H

A3 APL 7410) 271/ AA} st doles} APz BAH] vheo] Lok BA0) 8o,
ZHAdo] EA5HA ofe Riel thalA E WRel g Agat] tRel] EHEAET ES

QY BAEE /AR Fob7 Peetn AAR EAsH 7ol telAT WRel S ALg st 2l
Hel ofst wlze] 257 2243

S TR ASE Q7 B A=) B Agaol B Holn g, T} denseB4E Q14 WYL, sparse
I A PAES AgH Zo] At
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Space/Operations Adjacency matrix Adjacency List
storage 0(n?) O(n+m)
insert_node Not supported 0(1)
insert_edge 0(1) (1)
remove_edge 0(1) Not supported
remove_node Not supported Not supported
(iterating) neighbors 0(n) O(Nyl)

11.3. 2&=

11.3.1. DF'S vs. BFS

e o] BHA oF 718 Zo)|= DFS9} BFS7F 213 AFRE. queueo| Al SAHE A
o) WEG HHE thl WA =R s o] AT o] AW Aol
1. DFS(depth-first search) — A7 E= A ALE

ept
DFSE A]-8%F =
def DFS(u) : # Z2S0|= A& LEE
visited[i] = true
# 211 4o

%3] 9] pseudo-code:= o9} &

(5]

S

=4
=]

for i in w7t 7t2|7|= HHEQ| key :

if visited[i] == false :

DFS (i)

2, BFS(breath-first search) — $F A& BFSE& A]

def BFS(u) : # X20|= A& LEES
Queue q
visited[u]l = true
q.push(u)

# 29 23

while !q.empty()

(]

S

=3
=]

tmp = q.pop()
for i in tmp”Z} 7t2|7|= HHEQ| key :
if visitied[i] == false :
visitied[i] = true

q.push (i)
¢ 2l 4o

11.3.2. A 7FEAZ L BA4
1. DFS

Q1 Bl A9 DFS() W] foroflA] ngt
AAA Hi, % TEHDE A AR

Q17 B AEO] AL DFS() 5o forRolA |Na|gt
4. 7049) At moeka o, £ ndl 525
O(m+n)H.

N4=7F no|™H DFS
n AApslok 517
2AEE 0(n?)Y.

1 5_513:" 74/\} ].uiﬂh__
o=z Z|NA| +C =

F 50f A%

55

=4

s
=l DFS()=

£5F I8 £35]9] pseudo-coder= ot e} Z2-.

O(n)9l

A |NA| + COl

m + cnO 2 AA Al

tlo

rlr o



o)
5|
w»

S oA WEohA] 2 B2 (queued] A Q

¥ o
AN oA

A B9 2t looputet el forBol Al gk
i $P B2 A7) AGEREE 0(n) 4.

N

™ o,
R

12. map
12.1. map

12.1.1. map

2] 2 E 0] A% looputrhe] forRol 4] |[N4|ghE S0 ZAlstn g 7} e
o] M%7t mAEt T H, & 0l TEEBE Y [Na|+C = m+enO 8 A4 AZFEREE O(m+n)d.

4:2) A A%7F nol W 1 u12EL] loopts n¥

=0 A5 gAslor sh7] HiZ2e] O(n)] 5=

W2 |N|+C] Aitgg 713,

Definition 65 key2l 79 I-E valueE A3 5l= 27X,
5% keyoll tiek valueo] tiofl B4 /2]t /AFAIE A2

/'\ 012_

map- THFRE WAl o2 e

ct++(gee) 9] std::unordered__map STLOJ A= hash map &2 FTEE ] ¢l A T2 murmur hashE

AF8-5Fal, seperate chaining© 2 collision resolutiong &

o] A (python3) 2] dictionaryof| A= hash map 2 2 FHE]o] 911, A
addressing © 2 collision resolution2- .

12.1.2. map =3 Lo

mape] A4sHe dlolEe] thall A ofdfe] gol5e AHaT.
N (feld) : WS

HFE(record) : TE ZHEo A
ErA 7| (search key) : 2} H|ZE 0| o] LEET 4= Y= o= GUSH 7t

g|o]E(table) : H|FZ=2] gt

oltf] keyE 7FA|+= |ZEE keyed record, key-value pairgtal $t.

St4=2 siphashS AF&35}11, open

field ’j record
EmployID Name Age Department Salary
(search key)
001 Alex 26 Store 5000
002 Golith 32 Marketing 5200
003 Rabin 31 Security 5100
table

12.1.3. map ADT

1. Data

§UA% keyS AL dBESE 74 Holy 1T

2. Main Operations

search(key) : keyo] T &= L 7 A= drgh
insert(record) : S HFZEE ma Oﬂ A
remove(key) : keyol] S| A H g 2ol A4,
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12.2. 1@

12.2.1. FF=A] gL v

Hd 9] 7} 9140 key-value pairg #7%.

searchi= WG 0] 7k Y45 K 3lofof st g 2410 49 0(1), /B2 4<% 0(n)4.
insert= HjF ] W Fof YAE F7tshH HB= 6(1)4.

removels BAIste] A G 5 o F&e] ol PaEE A

4
HS
lo
Hl
ofl
2

(¢}
o
ol
ol

d
Hu
j<
3
juiss

12.2.2. 3A9 6|

v o] 7} 440 key-value pairE A4 sh=tl, keyoll wet FHE e 2 A3t o] 3¢ &4 Alof o]x
(o] 8) &M (binary search)& & &= 312

search= 2|49 49 O(1), /B2 4% O(logn)Y. A47F n/fd wfo] AEHEE T(n)oletal
Hl T(n) = T(3) + Colm2 =T 4= 913

insertAlof] AE Are)7} Sx]Eojof sng At 9= 27| 5] =S 2
92]Ql AL o2 YAEL 0|5 QU AT 122 YriH HE dAES
75 O(logn), Ht/BH2] A< 0(n)d.

remove= B 9] 2] 7} ulzjato] At AHA| & tjAto] ZA5HA] )
T34 gehd F% 9A5S A AL . A4 3 Ologn), Ao/ R B$ O(n)

9157
rr
ol
o
)
il
S
P>
i
o
el
offl
o
iz}
oo fo
N
EQ,
R}
rEI

12.2.3. BST
BSTE o]&3] key-value pairg A3 4 3.

1. ¢yt BST

searchi= 21419] 79 ©(1), Hote] %9 O(n), B4 2% O(logn)3)
insert /remove= A9 AL 0(1), Hete] AL O(n), oA 3 O(logn)Yd

2. self-balancing BST
search+= 2|49 ¢ ©(1), 2|of/Bt2] 7

°
insert/removes= | 419] 3¢ (1), ot/ B2 3¢ O(logn) 4.
12.2.4. hash map

%&% hash map< °]-83] 7+ & =

13. hash map
13.1. hash map

13.1.1. hash

Definition 66 4] (hash):= hash function AH§-3}o] ol Ho]E}& 145 27]9] 4% g1 2

S1=] o =
Hotol= A5 9al

13.1.2. hash map

Definition 67 3JA] W (hash map)2 hash& AF§5Fe] 2 & map . hash map2 hash tableZ} hash
functionS AF§5}o] Hjo]E & TFa]g).

1. 3| ] E|o]E (hash table)

: hash functionof ool A== hashigls Q182 SFo] flo]EE 2|7g5= table.
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Zrofl gjst - F7FS bucketo]2f 1l sF=1], bucketof = o & 7J9] sloto] o] ZF sloto] HJo]E]E
0] o

=, 2} dlo] Bl 1 hash gkoll s]/5Sk= bucketo]] 2= =1, hash go] H2|& -7 allg bucket Lo 4]
sloto]] 2.

2. hash function
: key 9B} hash 72 SIS B

hash mapS AFESFH collisont overflow| BIAHeF 4~ ¢l

)
it |

mo

1. & (collision)
: bucket 7==2] SHA|Z A2 C}E keyol] sl SU3F hash ZFo] BFakE 413,

slot:& of 8] 7] AFgcfo] sfjZdo] 7}55F.

2. QHEZ-2(overflow)
S B3 buckete] tfall st ofo] $E3 tJo]E 5 o AP Bk 4.
.

keyE Hlashe 4l tableg AFEa] WEA HTY 5 AEE T 2

bucket- o] 7j4qHE ZH|ato] 7 bucketo] dlo]E]7} sh Sol7txE ot Mol O(1)5HE
o] A7|x|gt Y& gre Fzto] Qg th4l bucketo] /H4E Fo|1 HAF hash functiong A&}
collision/overflow A 2] st=5 FAsh=], FAsAE o] 3¢ HAHo] O(1)Hot= =33,

42 hash function®] A 2] collision/overflow o] A 2] .

s/ &%

Fa

| N [
h(ke};)azhmdex v (OO0
Function 2 I:l I:I I:I |:| I:l I:I B A/'[:':gj)’l
% -~ (O]

v—1 | ]

Hash Table

key —

1 =
13.2. hash function®] F&
t}eFst hash functionS©o] QAT o] 7| AL 71 Wit AQ A5 ArHE.

13.2.1. hash function®] ZZA

hash function& otgflo] @ AL HIE35HE= A o] o]AFA <.

1. 75 bucket (212122) gt W] hash HhS vHerh
2. HI8l%]= hash ZHS©| hash tableo| A 124 B L 5oF &

Z. collisionS F|As}sjof .

3. A)to] Wrefof 4.
4] b} S wofof e AL A7 gtell £aE 4+ lofof gt

13.2.2. division function

Definition 68 |J¢F ¢F==(division function)= ofgfje} Zro] key2l t35] & (M)2] modular
oIRFO & hash ZFS BFEIE. oful Moj] u}a} bucket ZH5=7F ol (= bucket Z7=of ulet M-S Fg}).

h(key) = key % M
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Al g o A ghg U2 4 glonE wEXEh ME FR HYHd collisiono] H WY 7
U2
oJH,

13.2.3. mid-squares function

Definition 69 mid-squares functionE key& Aol P& 2 S7F F(bits) & 7FA2F MZFS] mod-
ular 2RSS gk

division function2 key2] HA] =4l MECE 2 2
Srg gt

9 gk hashgt =5 Bgox] 2o, key
8 AFIol F7 £AE AN BE 3 BEY 7 9

H
i
A
T

4567
4567
31969
27402
22835
18268
4567

13.2.4. folding function

Definition 70 4 &(folding function)= keyE oJ&] /e B E(fold) 52 R4 ZF BEOE
RS =gk folding functionofl= shift folding®} boundary folding 5] =

1. o] E(shift folding)
7} fold<] grE-& A% Clel ghe ek,

2. A &9 (boundary folding)
2} foldo] EHOHH alternatives}A] 4=

T= 2
folding function ES keyo] HE HES 8257 QJoF 21 9.

SHH7] [12320324111220) Hash address
!
ols=g [123+[203+/241+ 112+ 20 ]=]699]

123]+[302+ 241+ [211]+] 20 |=[897]

0
Ml
on

Al

13.3. collision resolution

13.3.1. collision resolution

Definition 71 collision resolutions2 collision/overflowof] tfgr =l 2] @] =], collision resolution
o] giEZ 9] HFH © 2. separate chainingd} open addressing©] 1.

1. separate chaining
bucket 'F=2 UYH slot Oi{] B AEE ALES HIoJEE Xgol= B4 bucket HlFoJAS] B
e 3} BAE AT

ZQIE] Apg-of mpE F7} H]-§-o] BHAYs}al, 3FLte] bucketo] HIoJE]7F Fo] S0]7FH 5o Holy

(B2 overflows YHAJSIR] ¢-5-.).
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bucketo] Soj7H= tlolE7} B 75 Bt B AE il BSTE A8 oH7)

w

2. open addressing
PYH 27]9] hash tables AFg§-l= Hitl, overflow?} BHAYSIH TFE bucketo] HloJE]E X gdl=
HFA].

open addressing9ll+= linear/quadratic probing®} double hashing©] ZA[¢F.

13.3.2. linear probing

Definition 72 14 ZAM (linear probing)& bucketo] 2 X[l H vfzZ ]2 It A9 bycket-Z X
AlSHe grAlel. Hl bucketo] L} mj7lz] RAFSFLL, tableJ 2o ZGPoiH A5 QA o]Fof
AL

ofefo} Zo] pHERo] FHEB] bucketo] ¥ FZFo] Q=] ZAVEF.
(h(k)+i)%M for i in 0~M-1

linear probing-=2 collision/overflowE sJASIX]BF, cluster”} FAE 7] 1 o] F-2 40| 5l=.

1. dirty bit A&

map°] H]oJE1E Pt 5 U duelF o g HoEo oh] FIe 5+ ofof gk wheF oW
27} o2 7] bucketo] 3 f;aow o]5& ALH 9]0 AFE A} J3F. remove 52 Fof
o] 2 2} QU bucketo] ©f o]AF Z x}x] &FA] E]QrHH, Eolsk OF7E]Z ozl ,;}/q o] giof FH2o]
Eop5E o dirty bitS A§So] dirtys}] oS REL BhES uf probingS HREE FEF
AE = UL

2. clusterQ] 4]
cluster= ZF 2F bucketE0] HL£F o Bo] 9l AS 4 ’,5; linear probingo]] 9]5] &= Z]4
5l probi

9] cluster& primary clustergfil €. primary c luster7]— AelH s =3 sfof
_.7].(,].05? /1-7‘_—.()] X—]o]-ﬂ'

dirty bit ‘l l— slot dirty bit j l— slot

h(k) = k%10

remove15 2 | Vv | 5 » 51v| 5

13.3.3. quadratic probing

Definition 73 o]z} _%/(]-t”(quadmtic probing )2 bucketo] & X QTtH A Fo ohg o] &k oldlA 9]
bucket:s ZAFSH= AY. &, linear probing@} -R-AFSHH], i t 4] i* ghF o]-&o}o] ZAFsH= BF4]Q1 Al.
ofelef o] WHEEo] TG bucketol ¥l F710] YA ZAVT.

(h(k)+i"2) % M for i in 0~M-1

quadratic probing®] 2]l &= clusterE secondary clustergfxl SF=t)], o] primary cluster] &
Aoz JYER L ofxJur HEZ 0 2 A= 4~ 9.2 o]of mlef primary clusterdF-E-S ofL] x]aF
x—]:ﬁ ]]o;]./(]%ﬁ

oo =

GAsHAI L Yl o] hash o] Z-& HIo]E&-E linear probingd} & HdoF o] 72 Y5o] *old. e
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‘ hash gko] E2]= g2 HloJE5 9] &-2ol& clusterd] 2J3t 45 A7} 25 ‘

Solao & AL, (h(k) +a*) %M DB (h(k)+2°+ (x+1)°) %M7} Pt (h(k)+(x+1)) %M
2 ZA 2, o5 e 9ol A Hate Aol ohe} gl 171614 Haks 2.

13.3.4. double hashing

Definition 74 o] A% (double hashing, rehashing)2 overflow”} BAISH 7-2 gt Hjo]El& #
Zret YIRIE dX5k= ol EE 9] hash functions AFE-Sl= A9
1. step
step-2 bucketo] 5} 3} 9l F0 7|29 hashglell Kok gL ek
linear/quadratic probingoAf= Z}Z} i, i? 0] stepO] Y-
double hashingofA{= keyoj] tjoF B9 hash functionS A-&5}o] 1 =8 ZFS step 22 & hash
function©] division function®l F-& ofg|o} Zro] BFERo] 245 oju] CE modular H4FS 99l
H- o] ZFol step 1 ~ C9 7} H. (o]7] 4] FBISIAIL i * stepS stepo]efal sfjof & A 2=
o)

step = 1 + (key % C)

(h(k) + i * step) % M for i in O0~M-1

/ULZ;IQ_E slo]

—

el

J B0 ME 252, O METh o7l 32 4422 sHe Ao] 450 8.

il
Qlt

13.4. 4
13.4.1. 78 94

hash map-& ©]@ hash function& AF&SF Z21%], oJH collision resolution2 AT Z Q1 2]of = L]
ZA ofo] et o] ZRstAL YT 5 U, A5 ety

division function¥} separate chaining2 AFg-8HH & o] @529k, folding function} rehashing/dirty
bit& ALSFIChE dlo] BRHE

13.4.2. A% B4

separate chaining, open addressing®] w2t A /x| ot/H 7 9] 7 -2-of tis] Lol=.
1. 5410) 3%

collisiono] A& dojLfz] &=t A search/insert/remove 5% O(1)9ho]] 435 5.
2. Zjote] 7%

separate chaining2 AF2-3F A% 51119] bucketo] dlo|El7} AE &
mover O(n)0]1l, insert= 1§ 27|49 5PH HEZ 0(1)Y. B2
BSTe] o3t B =& 7HAA H.

open addressing2 AFESH -3 cluster?] 27|17} no| 2 w7} %[<t]. search/insert/remove 25 EAY
Fgfjof st = O(n)o] AH

3. BA B8

w/e] dlo]el2F M7 bucketo] 91 W, B2 ) 49 7k MA] bucketo] Hlo]el7F A% 127 4H9)8
el

olu] 2} bucket-2 HFHO R o = 2719] Blo]elg 7HAA] S=e, ool 0 A& (load factor)2}il .
separate chaining®]] ta|A= Zt bucketo] arle] Y47} £ASFEZ search/remove= O(a), insert= O(1)
. o] Agok BSTehd 1o g B4 EE 7H. Thef Mo] nel H|sf| F-&5] ZttH AR o(1)o]ztal &

2~ 0] 9O
T/\)\E'

o7t A&to] Fotel. o] 749 search/re-
bucketS BSTE Atgsto] LATICIH

ftlo

=
T

open addressing®]] qsjA= FEo] 7ltt= 22 T At Az
) ells &4 S150] 7RGS0l HAlel A5k 9ol

l—o

Aol Asshs B9 (A key7t Gl
24 3150] A1 9zke Llog 1,9

l—-a H

rr o
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13.4.3. separate chaining vs. open addressing

AR 5 ot AAgo] wolol B Aol Aol £
1. separate chaining2 AF-85h= 3%

HA&ol AU, tlole el Z7F A A] A7t insert/remove®] S22} 2] 2] o2 -5

2. open addressing& AF25= HL
AA&o] YA, Holg o 7H—r7} AollA AU, T G407 AR Sof sh=(E A H AHgx) -

13.5. STL

13.5.1. set STL

Definition 75 <set> 2lo]|H&]2] & AF&gF
set-2 keyThs 3P = U, map2 key/values o2 XS = QU5

set/map2 W22 02 self-balancing BST(red-black tree) 2 F&E o] Ql11, o]of ufg} 7] EZ] 0 2 fkey
of el o B Y] 4.
e rEo] Qx| g2 set/mapS AFE5IEH unordered_set/unordered _map STL-S AFgdloF ol=t,

ol fjHz o red black treeZ} oFH hash map L2 FEE O] Q& c++JA] o] murmur hashs
hash function© &2 3}l separate hashingS AF-§¢F

key= o] Brl5¢el FES 585+ set/mapS AFESFE H multiset/multimap STLS AF-§-38oF
o’-,
ofefs} o] Helsho] G

// A

map<int, int> m;

/1 A& Of|A]
m.insert({ 5, 10 });

714 A9 2} STLE-S Ag o] tiAl2 5UskAR, Wi a0 chA 7@ s glof the 452 7ha
917] Wl -olsoF &

b2

Part IV
Faez

1. recursion

1.1. recursion
1.1.1. recursion

BA7E 2] A4 o) MEAOR Holslo] YOW S BAL AR (recursive) 4L 71A1 9l
A AAHL £4L 7T G BA AR F2(recursion) & AH§ A 412 o] 7Fs

A = 1. base case®} 2. ] TER FAH 0] Q13 base case?} EAHA] = ¢ Tt Fito

S Z5 Y stack overflowZ} & 4= QL

ni; l-o]l
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1.1.2. recursion design

A gt £ A5 (Divide & Conquer)= Fsf| AFAH dizlE5e AT 4 A= wAE A4 201
(divide) Z+Z-& 32 35F=(conquer) Z. TSt ”é_QL Al ZF AHE £8SH Aggregate).

1.1.3. correctness analysis

54 J'd¥ (mathematical induction)& 3l AHZA HZo] fa¢AE FHE & 312

1.1.4. A7 ERT -Er@,
Aol gt AMER E= AHHe =

Hx
T(n) = T(n-1) + C 1'14 HopAl2 v oz (repeated substitution)‘—g— %EH
T(n-1) = T(n-2) + CE =202 st

H
2 Z 4o 7o) Wk ARG T} U Ao n = 252 7}sto] roughdl A AR E
5. o BeksA Foelw tokd 4ot s|Me ALgdllof T

old Ao At Alell& g4l sl ste dAlE roughstAl C=

o

=
i
-
st

| =
9l

N

o
-
i)
2
i)
s
+»
32,
oo

1.2. 313
1.2.1. H R Y}z 44

. 2Tn)=Tn—-1)+T(n—
(2" —1nCeg A & A5 5, T(n) € O(2") roughstA

ZH—"H&%O] dojvt= g H|E Eg|2 UEPH A& recursion treegt1! 5111, o] root7} ofd ZHE-& subprob-
lemo]ztal §F ESF ZF A Qof ti5] 7FA]7F 27| 2 ¥ o] LJ7}= treeE binary recursion©]2kal ¢

fib(3) fib(2)

@) (se2)

(eiv2)) (eio1)) (b)) (£1b(0))
s%

3
(£b(0)) (gib(1) )t Overlapping!

O,

A A= subproblem=2] AHAMS Ajekste] o ggAHoz AT o], ©]& memoization

4
%
rr

o8
x
ok

29

o

ubproblem®] A4 AVFE w2 A5t FAT subproblem®] ALE A g E
AL A SE 98 o A ABBFEE T(0)=T(u-1)+T(n-2)+..+T(0)+Cno] &

PrEN
% o

|



1.2.2. Hanoi tower

whE &7l 35 ofdle Y2 AX AAH = 2S5 Sl

base case. n©] 191 A% 1HH 27]H =.

Lon17)E A we §71.

2. 17}E B4 w2 7).

3. 115 247 dejz 57,

Sk b} 7} o] o8 o) FehEAE AR ofel 2ol F4E LAISI .

L

E
hanoi(n, peg_a, peg_b, peg_c). A7 22 TF Ao A2 v, & 2o, S| g & A4 +4
]

SRt 5k 7-olle Tn)=T(n-1)+Co| AZEFLEE 7123, 6(0)°f &3t 7 o] o] 57kx] 1125
St A9 T(n)=2T(n-1)+CO ATHEZEE 7HA&d], ol (270l &3 19 743 39 }4-g o2
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