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Part 1
=

1. AE

1.1. A=
1.1.1. ARg 12

Definition 1 ##5 EAE(HEgo], JHHol~ AAg £HEH] 5)2 CIAelshe 7o/l
= HFE F£Z(Computer Architecture)2lil gf.

=, Q%A BEE 95 AFHES § agHoR At A,

ZystEel Qe 17 A4S B AF A =
ABEFOlE WY A A4S & Bast 98, 1870 FHE T2 helok 3

. ~a{l0NS So

\\ca ftwéf&
1.1.3. st&5 Y€ 7l
2 S 2ZEF 0|9} stEgo] Alo]o] HES ofH Aoz g820o2 AT AJAE S5
T3 AZEQo]/StE o] AL REFA AMEE]= ol E o] 2 JIE o] AE B HARRIT A
17, Fo1% Ftol ERRAEHE o GA #ix] S AR, w25 oA ARESE AA] Tl gt S5
SH
or.



5 Applicati 7
Apblication Softw. p Data structures & algorithms
ication Software rograms
PP g . Programming languages (e.g., C) Software
Operating Systems Device drivers Compilers, linkers, libraries
@ Architecture Instructions, Registers Operating system
5 o q y L\ Interface between
3 Microarcitecture  Datapath, Controlers I = T e
w Logic Adders, Memories Microarchitecture i
= o1 . o ipti
 Digital Circuits AND gates, NOT gates HardwarclCeuionlianeyazes
— o Digital logi
Analog Circuits Amplifiers CIRe Hardware
. i . Transistors
Devices Transistors, Diodes - -
Processing, Fabrication
Physics Electrons ChemistyPhysics
A 3L E:I
ATl
1.2.1. AFHY F7

8= PC(Personal Computer), 41 AFE, ANPHH, M= AFE 502 U 4 948
PCL i AZEGIOIE TFe] o) QUAOR AGT AU, W8/ WSl 20| 2
28%0] 918

SR /40t AL 91 StoldE AR, B A%S 7T YA AN AR A%
Aol YA 2.

M AFEE AH, dolHAE2A AMEE ARHEHR, B2 ey A4S 7L A I 427 =
v = AFE e A2 71, 7HAIE Sl 2o7te ARHE, A4 45 /084 AtE TEAA.

1.2.2. E - o|ut o}7]€l A

Definition 2 £ -o]g}F o}7]EIZ] (Von Neumann Architecture)= 0] HHFE] F£Z0]HA] o A
Feio] S5l Felg 2 oblE A3,

& el SLIAL o] 72 71 Fol v ejo) A ag

Processing Storage
i Instruction Unit

2
w
Ju
o
lo,
i
)
)
4
B

45 2= AFEHEL 7[EF o2 CPU(Central Processing Unit), Memory, [/OEZ%
. I3t CPUX controly} datapath® FA] .

, Memeory, Z18]11 1/0 % #7742]¢] HDD2} SSDoj| djjsf] 283t
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1.2.4. olo]| I 2 X 2 4| A

Definition 3 0Jo]Z 2 I Z A A] (Microprocessor)= 22 BFLE A ] 02 arEolx] T2 A4 FLH o2
HE T2 0] ks $Fopr] Lk =elF] [ S]2E 7f?</J— A5

nH|E Z A2l ek gjo] o] B]E= 2t Hlof X]a]gh 4= Ql= tJo]¥] 9] ZH’EI Ei/XI/‘EfJ 2715 ©]
olel. cpu 4H]E, SH]E, 16H]E, S2H|E, 64H|E w02 BHEo] g 2. 521] E/64H]E 2 FA A=



S2H]E /64H]E ZZAAZL Q7o) A 4 U= A

afo] A2 X2 A| A= cpu, gpu, npu 5= ETsH= JHE Y. cpus AFE Q] w9l A& mfo] TR I 2 A|A o]
1, gpu= 12 Ao £t nfo]A 2 X2 A A, npus= gpuell A 1 A2 755 A Q]5kL ai 7]
EstH npo]l A2 X2 A A Q. IR, gpuet npus B5F cpuRFE THEOH S

7t mpo| A2 m 2 | AEE ARESHE ol 2 WHAlo] thE.
o E Eo], Intel x86, ARM, MIPS S0] 9.

1.2.5. cisc®} risc

Definition 4 1. cisc

cisc(complex instruction set computer) BHZE o] F=7F Bkl EZfol 2F¢]-S 7I2]= of7]Hl =] Q).
L ZX}ojo
- H

o] BF. Fe 9 WHYolz YL +4T + o]

N
I~
2
(&)
Oll

=
TE Zoj7} FA Yol Wz FAahs 2
Hupelel 2Hf L 522
2. risc
risc(reduced instruction set computer)= HE o] F=7] A 11 v] W & drool Y-S 71X = o} 7] HIA] 9.
risce= register 74 HFH o] 52 714, —f HFol 5L 1 E F7]5 7[R, v H 2] FLofl= load/store
GGl oS G T ET flagB AG I ZAT TETF 9LE
risce= 2 7 Ao v B FFolE FGoF 5piz Z19] ulel o A7ko] @2 AY 4 U]
A3, Yo 1Y 2, e A7, 31 B2 L= gololA|o] el Qo] e]ol7] HEe] elHE]E
oAl A AFEE.

ARM, RISC-V, MIPS, IBM PowerPC EojA] AL-&3F.

stEfolE dado|lEstH 52 T2l HALEY] &, ciscet risc®] Aeof= I T3Ho] FH
PR, 7]%63.
AA R = cisce} risce] EAE & 2ot THE cpuso] AT

1.3. T2 A A2 &A
1.3.1. Fojo] {2

Definition 5 18 £ 2/ 7J&uje} VAo Sof7be el WG EdxAE S 47} 26)7F 5 2

ojgf= Zlo] Fo]o] Bl Z](Moore’s Law)2 2 &2]+= Fo]o] H ‘ﬁ%’.

Fe TxoA 7P 99T W £ skt
o ERALES 0)8F el P 98 EAALEE BobAY B ol AT 4 sl
M2 o] So b1, Aol o7l thut ofof uhe} dredo] Als|.
e

o] o] 2000t ZM7HAE 115 2 Soleeih, weli AT A2 anafo] gobyo] uket wdo] 43
A= 5] Aol Bastol AAE 1 EAZ0] o A




CPU Transistor Counts 1971-2008 & Moore’s Law

2,000,000,000 —
1,000,000,000 —|

100,000,000 —{

g Curve shows Moore's Law’

o 10,000,000 transistor count doubling

o every two years

2

2 1000000 s
S .

100,000 —

10,000 —
L@ 080

2,300 sor g 200

\ I [

I |
1971 1980 1990 2000 2008

Date of introduction

1.3.2. §aA3}

Definition 6 @5}(Parallelism) & 4 ZEAA2] S| o] 20|38, WLl= Fof A
HSH(ILP, Instruction Level Parallelism), HJo]E] g o] WESH(DLP, Data Level Parallelism), 2F
gH o] HHSI(TLP, Task Level Parallelism)2 & 5 Q1<

ILP+= mdgo] saellM el West DLP= sfitel gojel] ofef 7ief dleleS doiA Hefshe e,

TLPE 2d|S8 Selt 5 of g 292 SAl] Saots Wasts 2

=75 DLP¢} TLP= gpul] T3& 7H59M A 5. gpue W2 o] HolHE WA A2 4= 9lojof 517

0
o

=
Bl

)

HEsto] gk 82 FollA AAI5] thE o,

1.3.3. HElFo]2 9] AJt

EdA A 57t Solus] SemiAg el mego] wolof what o] Aa)A 19| $H (typical
power) 2 single-Thread®] A% %717} e A4S npFobA 9. Fojeh A =g ofe] ) Agohs
welFo]ze) AEe old AW AN 5L,

WAl ml R S = S7H=T], AAAIRE 8- Ul thE.

48 Years of Microprocessor Trend Data

ot

T T T
7L .
10 # %% Transistors
s 4.4 * | (thousands)
. e
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2.1. A5

2.1.1. A%

AFE A 45
MY 2 4 9]
A Q.

rlo

Z=AA 45 HDD/SSD 35, M2 271, 29, A9 215, 714, 77
722 *éL B}7E 7182 A tiAl 2 S0 2 s

=

Answers a month

Application program Operations per second

Compiler
(Millions) of instructions per second: MIPS
(Millions) of (F.P.) operations per second: MFLOPS/s

Operating System

Data path / control | Cycles per instruction: CPI

Functional units

Clock frequency: MHz
Logic / transistors

2.1.2. cpu A%

Definition 7 cpu] 445-& 3 A7) o422 LJEFY,
/

Performance = 1

Az¥o] Zol 5 o] FobAlt 7.

=
% cpu Ato] 9] A5 2}po]= Performancel / Performance22 AAto]| 715a.

2.2. clock

2.2.1. clock
Definition 8 cpudJAl&= clock© 2 A|7FHS =7 gk
cpulflof] Qe 5 HA(clock pulse)E 7]F 22 clock cycle time(88 F7])3F clock rate(E8 <&,
Fe 22, clock frequency) G AL, olE o) A2 SFHE A,
2 gArL % "R} (crystal oscillator) 52] #2201 ZEof o]s] WA= Aot 7HH-S ZF
L And BAE B o] Hrol 8498 TgoR LEE ofgfs} 2, 15} Seprhe A2

positive edge, LHE?W]-—,% X A& negative edgeE]'_Z o},

clock cycle time2 clock £1S7F 0941 12 Zchrl olX] o2 Hel= o dal= /(] 7’%7 (positive /neg-
ative edgeol| Al positive/negative edge AFo]2] AIZF Z7FA.) TF9]2 = ns(Lfr 2 ) 52 A9

clock rate= clock cycle time2] & E 1Z ¢ clock o7} B W vIAEXE UEY. o2&
Hz(3]|22), MHz, Ghz, cycles/sec == AFggk

FHONAE clockO.2 o @ ZHeie] A A7He ZAHT.
A

=
clock Alo= opgd= gro Ry £ Aow, AA=z 24 O] HolHE 7IAE ¢= AAT 7IE

Ae gt o Yotz a1 29 4.
A, 77k, v}, AR, the, nlo] 32 5 2est)A

717, 5 Bejofo] A o] Be] AAL W4 Aopoleka sHy. 109] 25
7t 12(812 1).9(717h G).6(sA7h M) 3(R=, k), -8(2 2, m) -6(obol T2, ) -9(che, ) AL A2



Positive edge Negative edge

] }17/

> Time

Clock cycle time

2.2.2. A} 24 A7t

Definition 9 mfo]Z 2 244 Yl g E 0] 3] 2= 51L}9] clock {129 :,1]5]] & 712 ==, o=
T2 o] JE BE S2F o 4+ e U cocko] Lo} JYH o2 S of]
I2HA Y 3l2 &£ A7EF o 2 712F W FA 25 Critical Pathef1 gF.
oluj] Critical Pathol 4] d el A|7HS Z ot 2] ¥ A]7FH Longest Propagation Delay, Critical Path Delay)
2l gk
afo] &= 22 A A €] clock cycle time®] A2 Tz /\ﬂ/ﬂ«] 2o} Aol 9. ZEA|A A= clocke]
45| gho] glolH & &Aoo, 2+ AA]Eo 7] 1o A += 5713 clock
ATE I glolor B A4 82 Aol Tl dlol g £ E S0t che] ], AdH o 7%
W A7A] F4Alo] 2 9 Rre clocko] Lo} 5=
storage element A}0]9] 3|27} A1 EHE4= Critical Path Delay’} &
olgf o] 1= ofA] setup timed} hold timeL 13} 0 A5 Afo]e] Wglsl= A7 2]u]dt. setup time2 12
7}= AJ7h, hold time2 022 71= A7
O 2 intel®] cpus storage element(H X AH, 7HA)E 3|2 F7F Ao Critical Path Delayg &Y.
Chit o]l vlgo] Bro] Bolzt

2
L

(‘_I'_I w
—_—) 2 > 8
o " s [
L S
AN Ploe |
— 2 . 1 2
Clock ? ?
sl ole ,
Eetup hold! Longest propagation delay Eetup hold|

2.2.3. APA =

Definition 10 clock(cpu®] 4% A7H02 Tz 189 4 AHe 25T + 912 =, dU 472
ofgjo] Alo g Lok 4~ 9l & ':' 2 Clock__cycle__ tzme(—,—7]) 1l Clock_rate(Rl&5)E AFEeF =%

olo

Execution_time = Clock_cycles_for_program * Clock_cycle_time

](eX single cycle vs. multi cycle) 43§ A7+

SHARE o}7|E1%], 2 A Afuttt clocko] THE: 4= 917
&35 1

L
] A48 A1) 18 oA CPIE Sastel T

2.2.4. CPIZ 43 1Y)



Definition 11 instruction G clock cycles CPI(Cycles per Instruction)g}il ?;37'. . Ald AJ7E

ofgfo] Aoz ek £ Q5. FE CPIS Y21 IPC(Instructions per Cycle) & A5 X Q2.

Execution_time = #_of_Instructions * CPI * Clock_cycle_time

JlN
o

instructionaFc}o] clock cycleS 76} 1 Hat#l=5 CPIZ AFg¢l. instructionaFc}9] clock cycle(ZFZ}
o] CPI)-& 12&js}lH A cycle 5~+= oFgfjie} g0 B2 Wit CPIE 78 &+ U5 Ho+ CPIE FFgslH
A A7k 7hes] ek = QS

Average_CPI = ((CPI_1 * #_of _In_1) + ... + (CPI_n * #_of_In_n))
/ #_of_Instructions
Execution_time = ((CPI_1 * # _of _In_1) + ... + (CPI_n * #_of In _n))

* Clock_cycle_time

ol s}Lte] T2 A|A oA HH o] R t}E cycle £~E 7HA| 1L 912 4= Q7] wjFof|, CPI 1= instruction
Sof Wgog AAaof .

A= G2 1PAY] 9] TE 9J5) CPIS A8T & 918 BE CPIVL QAL Aska AE2A 715akA:
Instruction®] 7§, CPI, clock cycle timeS 04*1 Ase MR 85)8 4 5. "Atolv+ o
tradeoffZ 2 1123l A] instruction, cycle 4~ 52 A

ex. g ] 3of AFEH instruction®] H|-Eo] ofgfe} Z-& wf, o CPI(1'F CPIZ E7]|)9} Ay A|7H2
oFefo 28

CPI=043*1+021*%2+0.12*2+0.24 *2 = 1.57

Execution_time = #_of Instructions * 1.57 * Clock_ cycle_ time

Instruction Class Frequency CPI;
ALU operations 43% 1
Loads 21% 2
Stores 12% 2
Branches 24% 2

2.2.5. A3E A5 /A
clock®] A, ofgjel Zo] AFE= &= nE & A= MAdHel
olof organization2 T ZA|A LA-E, technology+= SFEH o] A2l 7|&
FTE PASFAY & AU g E AFRSHH instruction 4=

CPIS} Clock ratel= SHESo] el ZRo] 4 72 A4S & 4 9)
o= SHAIZ} £ (ex. OpenAlQ] X 7ie A2}



Instruction
CPI Clock rate
count
Program \%
Compiler \%
ISA % v

Organization % \%
Technology \%

2.3. MIPS
clocke] A|7He 7|20 2 A% WIHTHA, MIPSE instruction 2 2]2ke 7|20 2 %S B3l

2.3.1. MIPS

Definition 12 MIPS(Million Instructions per Second)= ZG instruction *2]ZF0 2 A5 LIEF
= X HEQ]. MIPSE ofgfjof Zro] SLgF.

MIPS = Instruction_count / (Execution_time * 1076)

oju] A|ZFL clock o 2 T 4= gle.

MIPSE 2t} AA| A7 instruction 7|47} ofUg}l 10602 e 44l o & Eo] MIPS7F 3500]H 350
million(¥TH) 7]2] instructione 2|3t A. T3] dglo|g|7} Wit ko2 FojzxH 1002 YHE I
=

clockS &4, MIPS+=

S55 WE A
MIPSE instruction set-2 1125}%] ¢ro

2] grol AetetA] o3& 4 918, CISC} RISCE Azshal gl

i)

2.3.2. MFLOPS

Definition 13 MFLOPS(Million Floating-point Operations per Second)= 25 F-&

E4d oA /FA /A =) ZglgFo 2 =S LERflE X[ FE .

B>

7 A

= H
TE s

ALUE 412 @412, loadis Ho] 812 744 2 @AM, stroc A7 A4S, branchis £7] A4S o],
ot} ALUL W &] 24 AHgste] w2 g, load, storel Wme]of F5t7] W&ol =g, branchi 7
2] o] L.

2wt

2.4.1. #ixu}3

Definition 14 452 A]gJs}o] ~x]5]loF L
ojL} AT E 0]&5) HIAEGSHY, oja] 7}z A&

AlEEo]HE Pl AFg-E+= o] instruction Hgro|v T EE I 22ty

"l z]oF3 (Benchmark)efxl gF. £ instruction gl
= THol] g2 YEY= A

]--

ol




2.4.2. Wixutz9] @A

MAS A} AR © AR2A ASskel ofefe] R A5L BEoF T

Relevant: 120 A28 (e, RHFL, Aol A AAR 498 He AA2ES A8ojof g
Understandable: 232 7] o] 4= Q) ojof &

Good Metric(s): gotR 7] A 7|8 of ¢ A EAELS BHE A4
Scalable: A| A8 Ei o] Za]A|o]do] GaEldE A8t 2= 9lojo
Coverage: Bl A|AHIO A £ Q3 Z1-& OversimplifysA] groto
Acceptance: TojAtSF ALg7 RE FET 4 GlojoF o

2.5. 5 F 0 OH

2.5.1. Amdahl’s Law

i
ot

L

ot mok

Definition 15 JPAI7F] GHE 1. Jupt FYEYEA] 2. F4FH Rio] Ao Avjf JF2
A=A o FFHHE WAL Amdahl's Law(FD] H3)2kn g o] WgE 4L o}

pa ey

New_time = 0ld_time * ((1 - Fraction) + (Fraction / Enhanced_degree))

Amdahl's lawi= S0jo] 927} g0} 714 F23 H % ok},

=, ol® o] FE e, sig F2o] HAA A sts HlE&TE HFsFE= A € =01, 10%]
S E = date] Aol 2u] FAE I OH MAE HA AP A2 New_time = Old time * (0.9 * (0.1

A —
J-9] A7
1.1. 3B AR
1.1.1. AR A%
AR ARE o2 Aol vES Amg o2 74T, oA 2242 YRS R@SH =T, A2 1 B}
aj40] 71z0] H 7.
1.1.2. Hho|E @] 7Y

Vel vholE B9l F47) Rojs)s] HRe] vlol= B9l AuE Bolshe 2o
A, 16042 72 B@st, 10305 AL Hsth 2 A 978z s 188
0, OX Sog RS

1Hfo|EL AHHE 2 o} Zo] B35
Binary : 00000000 ~ 11111111

Octal : 000 ~ 888

Decimal : 0 ~ 255

Hexadecimal : 00 ~ FF

16058 72 46T,

Belgt o]71%, 8
o, A Ob,

™

11



1.2. unsigned
1.2.1. unsigned

unsigned A= ©e5] o) W42 vlato] &gt

o -

1.3. signed

1.3.1. ESH|E9] A}-&

signed A= X6 H|E (sign bit) & AFRS| 55 BV F2 A HIEPE Y9&Z HE)7F 16 HER
AHeE. e 2 HEZH0, e B HEst 19, unsigned9}o] GAHIS 2]717] 14 4710, S5t

191 A.

B35 HE (A9 HE)E= MSB(most significant bit)2til1x ¢ 74 5 Q3 H|E. %]5}19] H|Ex= LSB(least
significant bit)2t11 k= .

O+ unsignede} o] F/5HA Wt S5k $5-97] B, 19] B, 29) BA 5 o] ofe] A4,
22 Aol o Re) ARENME 29 B2 41§

1.3.2. ¥5-37] &4

Definition 16 XU %] HEZ B2 F7]6l1, UYn] HER 8 HI|ol= gL Ho-97] &
(Sign-magnitude Representation)o]2f1l gF.

S EFsl= o] 00...03} 10...0 = 7}x]o] B2 B3,

REAGH AANAL o] WL AT Aol AgotA e

=
ex. 32 0011, -32 1011

1.3.3. 19] B4

Definition 17 H[ES #2 HYNOT dih)gl2 o] Y2} S47] t]-$H =% £7]oHe BH2 19]
H HH(0ne’s Complement Representation)o]2l1 F.

g" FEHs= drdo] 00...02F 11...1 = 7fx]ojB 2 EolA g}

Aol 19] Hao A& R ET 244

4714 B4t FHlo] BESHE AL Wik

ex. 32 0011, -3-2 1100.

1.3.4. 298] B4

Definition 18 HIEZ 7 FHF(NOT dth)il 15 HE o v S+7F gi&H e H7]oh=
-8 29] Ha= HE(Two’s Complement Representation)o]2F1l gF.

0°] 00...02.2 A EEHH.
Gl 20] Hapo Al RO HEZ) ZAI9E

H| & A ¢l

491 E@ WS 7HA7] 2ol 00] §UsH HAY.
Aol

5E
2o AR AL 29 B4 A4S

12



1.3.5. Sign Extension

sign Ho]E1 S T 2 E7ko] AAeI, 55 HlES} HALE o] 1% 271, o] S elw 20] W47} A=
254

ex. 0010-2 0000 0010, 1010 1111 1010.

1.4. 40| G4t

Celo] 7|¥to 2 At

1.4.1. H|E 44

& |, ~, ANB BE A AR dlolHd tigh HIE di= & 4 A=

1.4.2. =8 ¢&t
&&, ||, 12 =7 A4t& & 4 =

o]t carly terminatione] 280, Tgo] Tt o ol TEHe 514 oS

0t AHe 4 B dlole olRr 71 4 W ALE S SHE 21 HolElo] 914 9.
FA Qb SHESlolH 02 Hro] Ash] WlRel, 20] AFAFE B Uik A AZEQMOR
AL 5 9

SR gL Egk A Aabrt overflow®

AA R QA 54 Olﬂéﬁlﬂ °l‘?‘4ﬂ%tﬂ, I A2 103
3 = dg 5 gle 2719 et A e e

A% 92 e B A
%kii% overflow¥.

S HER ST dojid 4 918 ol signedF unsignedufol utet QW B2eH Anprt h2A S, gl
AR omERor FA0A o 474 Jol.

13



N4g st A0 2 1AL (Fixed-point) I} H-5 47 (Floating-point)©] ).

Definition 19 7345 (Fized-point) BH4]

o

HFRO} 7RO HE 5 v)] SfEg F EFTF. ofuf FFRE niiA
HGET, £ £5F0 ZRE] il HE

H Halel og 2} HE A

450} £52H H]E Apo]o] binary point(27] £527)7F S0k ol binary pointis HJE EFo]
LA gron djg $Ix]o] EAHTTH oFhulo] ZAg.

A5o] B Aol HEASH] F2 sol AW, THLPYE FF A9,

o & 59, 6.75%= 011011022 FEHE. binary pointE E7]|5H 0110.110.

2.2.2. signed @4

Definition 20 7 YATHO] signed EPH 0 2= RS H[EE AFE5lE= Z(sign-magnitude) 7F 29] H
T2 ZHok= Aol Uk

P EHES} 20] B oo WAl FU.

rl

W= A
H&a73

2.3.1. 54 5H

Definition 21 BE-E5A45F (Floating-point) BF2A]2 443 QR]E 713F 2 X 8l49] 2} HfZ @ EXE

o2 3135k ij:- 5% gralol.

S QRE T 2 Ao HlE QEF 02 XJopr] Yo £ 7o AAES HeF ¥

2 H4E Ued. = +M x B Z2 FHH. oJufo] ML mantissa(7F), BE base(E), e

caponeni ()2 . of) i o] JUES), A 0] Hele} felo] 9.

RELY BE B G HE po] 02} BYUE YUER e - U3,

1. 82d]E 77]9] BE 42 Fo] HHAS thF A T (single precision)2fal ¢F. BFY W= [HEO] HG
ol
=

H|E, 8H|E 2] exponent, 23H] E 9] mentzssa—— ZEZ] 21, biasE= 107142 12707. coflA19] floato] T
= g2 g

i a’é

&

2. 6JH|E F7]o] HE 22 gl dRAS Hi % E(double precision)2f1l gf. HjF U E = (HEQS] H
3 H]E, 11H]E9] exponent, 52727]_5__4 mentzss E 7Ix]11, bias= 103152 10239]. coflA]12] doubleo]

oyl HRA1 S AFQSF
HEprzdo] ghAl o of g 7}x] 71 QI]ut, of 7] Aj= IEEE 754 By E BEr2 g5 AL g
13
= o], 273 = 2.73 x 10?52 & Vel AY
S H|E 1H|E, exponent 8H|E, fraction THEE —‘5 google] bfloat160] st 222, thofst =2
A B dhAo] 2R o] 4% IEEE 754 B A L9} exponentl] A 7|7F Zoug AU = vhzat
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o Ao HE £2 5U% W9l £2 BT 5 UL

=2 1=
sign exponent (8 bits) fraction (23 bits)
31 30 23 22 bit index 0
exponent
sign (11 bits) fraction (52 bits)
63 o bit index 0

2.3.2. IEEE 754 9 AWUL HEA2H @ 44

HF

F &

)

Definition 22 [EEE 75/ S HE HELLZ ]

=
H]E 9] exponentgl, 235 E 9] mentzssa{,(—g— Z]ZFSFZ

IEEE 754 Sbg gy HE 20 olgfo] HEA] o &2

1. A4E o]R4o02 FI]
2K vFLFH HFo]H o HA4E o2 HIIeK, 29 AGAES
binary pointE 71 =2 X}El4-0] HEZ 9 EZE 0 2 o] EX]Z] o] HG =

- 71—

o] =2 LJEFY] exponentof], mantissa®l Y] HIERE] 7l+~BHE o] H.o.

Z Eof, 228(1110 0100)5 1.11001 x 272 LFEFYII, sign bito] 0, exponentof 111, mantissaof
111001000...0-& E-2.

2. mantissa2] 9] HJE Y

binary pointg 7} =2 ]— _77 HLZ ©EX& 02 o]EA]7]|H 2, mantissad] HZEE FAF9 HE
L gaF 19]. o]uf o] 1:& leading 10]2F1 &F. 12 ZFA6}R] k1l 10] g EAfel= Ao 2 FFsfo]
1B EE ol 5= Q5. &, 248 ol BEUFS mantissad] 2] XWO‘ 07 '%W/ leading 15 A 2] ©]
HES fractiono]2f1l g} o] fractionS Y& (=L F4 H}Ok)—,’:lﬁ7 s

q& 5], 111001000...0-& Y+ 4l 110010000...0-F E-5-

3. Biased Exponent A-§

mpE 57 Zrekel H]ﬂﬂf HREE Qe biasale Y-S AFEE biase ¥ G} S5 GHE BF 5]

st of£-E] ZFQl. exponent FFO] biasE T oF gFS exponent= XM‘7Of£137’] O]§ biased exponentdlil

5} SH|EE 9Jo} bias= 0111 1111¢]. exponento] H|EZF n7fo]H, n-17]9] 12 ]3] H]ELQ} ZJA4o]

HE (9] Z¢HZE nil) 02 bias7] ZAFEH. GHSHAE biased exponenti Z]2FE AL glago] zFo
oW biasTHE-S ] FoF oF.

oJ& Eo], exponentZF 11191 Z-2 0111 11118 ©fgF ZFQl 1000 01107} biased exponentZ exponent
2ol §-2.

Yool IBEE 75 PYUE $Eed ED P42 ofdo] 4L AA 48 Ed.

] DZYALLH HRR] o 2 X2 o]l 2 HHSF

72 E%Ef Fo HEZ g5

3 bias exponentE E-2.

4. fractionS E-2.

My
-y
rel
>

)

By Uz g7 (M= B3 HE
12] 7]gEo] F7H Ab§-E.

&g} base= 25 AFE9F.

j

N Tlo

]

U wg

>

¥

A
=

H (shift) 2 LFEI

Eo], 29] 752

4y EH
S
E ofll

EI

7+ 719 o] A 5ol wet o Reasie 53 Aoz A4 sk oS,
B m7]L JEEE 754 9 YL HE #@ B PSS 7|Eo R AAEUS

2.3.3. 25443 rounding

Definition 23 75 5% gl o2 ZAA]7]= A& roundingo|2f1l 3f.

o
gyurol By 2 HE {2 FHsH= o] BIFsslr] nf2of, =x7L 12 2 overflow



7h A7 R 22 underflowz} Qo oo mtet w702 2 roundingo] TYH.
H/BE, 09 772 £o2 EH/HE, 71 ke w2 SE /A E ofs i S0 A9

= o B
ST HNA o] JULEE YEIE AL 7R Y. =, fractiond] Sf'dol= HIE 2 LER
= 5o disfA] roundingo] E L3t A.

4 =

o & 590, 1.100101-2 fractional bitE 37|} AXZ roundingetthal 5HH, 23 Alof= 1.101, W A=
1.100, 0] 7H7}-e 20 2= 1.100, 7}& 77he 2= 1.1012 rounding .

2.3.4. AF3tE 401 v g A 4

Definition 24 (biased) exponentZ} 000...0, 111...10] ofd Yurxo] ZHeo] BEiH oL &

772 o] (normalized) Sl e 7HA] EE EH F42 FapelE 5 (normalized value)S EF =
HFR] O]

(biased) exponentZF 000...0, 111...19] Z-%
5 EHES Sf5elo] 92,

ezponentZF 000...09] F-29]= fraction®] 000...021], 000...00] opdX]of wla} cf2 7] FGE. expo-
nent7h 111...19] 39 Bag Fpol gt FEHOZ AGEEH, ol Hol T2 H2lg-

1. exponentZ} 000...00] 11, fractiono] 000...09] 72
0.002 F3. ol) 75 HlEe] nfeh +05} -00] 2 73

2. exponentZF 000...00]11, fraction©] 000...00] o} F-&
ezponent2} mantissaE E5517] 43¢
> 2 ZE gho 2 A zFS EFY O exponent 1 biased exponent - biasZF OFL 2} 1 - biasZ Al
ek =, Z7EFE exponent gholl +13F gbS X-&8F EF mantissao] YeFE WA HE & leading
1 di¢l 002 Akl =, 28 mantissad] -19F S 288

o

FY lser A g A2 ol HEH, ZF exponento] tfol mantissa(fraction)S @y Y SHA
A 2|31 ZFofx]=r]of] BFll, exponent ghS 29] AEAFO2 H-GE[O 2 T gro] HF g2 6IA AR
Zrobg]. 24 ol EEHo] Tlset 5SS Aol HH 09 7Y R-TE gho] g Aopx U2
TS IS + g7 F. o] afa} mantissa2] AYEFE F #A) H[EE 02 2 oF1] X-§ 5= exponent
W= 1 327 go 2 03] 7}712 2} H-520] IHES A EA] o 5= Q5. o] F A underflow(gradual
underflow)2}17 &F.

rlr

o]l ol AFgro 2 H] 1 S1E 4=(Subnormalized value)

A49) 36& wlael 29 0% underfiowo] it ola7} 414, a5} Number 2 ppt W nhAoRS
Tolah THIE 2719 BEA5H RAL AFET ol A7} 9.
T712] mantissaS 1+ aq, -+, 1 + a,°]2k1 3}, bias exp”F 091 F£7FS] mantissa
i W 7 27004 LA AS ARG % 98 graducal underflows 5P T
7B 0] (a1 — an) x 107005 2A, HE5H] e
(@n41 —ay) x 1071%70] E]o] ¥ F-2.

00000 XXX = (0/8 ~ 7/8)*2

00001 XXX = (8/8 ~ 15/8)*2 00011 XXX = (8/8 ~ 15/8)*2*

A A S A 0 s o o o 0 o o o 5 & Sun S Lo S S s S o { < o g g 2 g 2 g \0 )
.0t 0.04 0.06 0.08 0.10 0.12

o,

< bias expZ} 091 7+ 7Aoo

(Without denormalization)

LB B & B & S S Chmn Shan Shmn Shmn Semn SE o & < < < 2 g \ g ’g
0.

0.00 M~ 002 0.04

0 0000 XXX = (8/8 ~ 15/8)*27

2.3.5. B4 A9 A 23
Definition 25 ofg|o} Zro] exponentZ} 111...19] F2E EoF ZQof gjol Fol o2 AL-gHE.

oo : BG HEZF 0, exponent’}F 111...1, fractiono] 000...0.
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—o0 : % H|EZ} 1, exponent”F 111...1, fraction©] 000...0.
NaN : B5 HEZ} 0 FE= 1, exponent”} 111...1, fractiono] 0o] o Zk.

NaN(Not a Number)& g5 52 Jojg 5 glas UEY. (ex. sqrt(-1), log(-5))

2.3.6. BE A5 HA
R asA el AE ool 1 e AR S,

1. (biased) exponent®} fractionS =3

2. fraction®]| leading 1-S 37}5}o] mantissa® E-Agt.

3. exponentZ} § 2h2 Z9] mantissaE A|ZES}S] T A49] exponentE s

4. mantissa”7| 2] QA2 55k

5. I @5ttt A}Zol A exponent?} mantissaS Z 3 S} binary pointE &F0 2 W7,

6. exponent /fraction®] H|E7} BZ£& 3¢ AIE rounding$-

7. exponent?} fraction2S F-54A57 formatof 4.

B & AAOF StER Zr A9 A 5 Ao Feisd A4S A E=E ARSI E ot A
A4ke] =F-& 1ol Z cycleo] Q3L

2.3.7. 352549 B4

H5a53 542 oo #& AA 7334,

1. & exponentES ¢| gt

2. &= mantissas &3

3. W Q35 AZlo| A exponent?} mantissaS F A3} binary pointE of o 2 7.

4. exponent /fraction®] H|E7} &£ A9 AIE roundingdth.

5. exponent?} fractionS F-5 447 formato] 44 sk

ST B W AR A7 BAES AR, FAIAE B4 Qo] 57

I = T =

2.3.8. ol 9] BFA4T
col A& float 02 HHIUE BH-S, doubleZ HiA UL
double, float-& intZ ¥W2F A] o 17

=
o= fraction P& (0&2 2 roundingsl= Z) AL Ax| 1, ¥teh
HIE ]

wgho] 9ol izl o4 2% rounding & 5B

4de0] QAke mA O] A whe] 1 AT} HakshA] ghe. B3], AT Al 2 A%7e] WA Aktshs
Aol 2.

A, cof M 0] AR Y 7] 326 E osif, 648]E osto] whet gerd. ThE ARPELS 27]7F BT,

long¥} ZRIE] 273 9] 7|7} 32H| Eof| A= 4Hlo] Eo] 11 64H| Eof| A= 8HlO]EQ].

Part 111

ISA

1. ISA

1.1. cpug} ojAlEa] o
1.1.1. ojAEz] o]

17



Definition 26 o & ejo]= fjAlz shpe] 23] SHLES] 7|AI0]S) thSEE Low level 2101,
High_level T2 133} 7] AJo] Alo]Q] Abstraction layer2 4] 7|54t

Z1Ao1E cpu F52017] w2, o & o E cpu FHA Y.

1.1.2. cpu9 %

Definition 27 cpu(Central Processing Unit)2 ofgfie} Zro] FA 471X YR AE IR Y=

1. PC(Program Counter) : @] A 52 HFolo] FAEF ZFa]7]= e|R2H. (A]o])

2. e AE oY X AFH.

3, ALU (Arithmetic/Logic Unit) : {la/w=28] 94 $35l= 5] 2.

4. Control logic : cpu &2FS Aolol= BE. fetch(FZF o] 7FXS), decode(F 7 o] 5J4]), execute(F
gol 4%) 52 U

Qli

PRI TR cpuEL o] FEE BE. cpuis FHoIS £AH 0 R sk, YA Thkst 7y
= o ,L].,Q_’c'ﬂ
== o -

cpud] 252 ot 74 9] w9l
1. PC7} 718]7]= H o] & fetch
2. decode

3. execute

4. update PC

dlole] o]59] PHAL ofdf HH WMBORE 2 % 9
1. memory -> register

2. execute

3. register -> memory

o

1.2. ISA

1.2.1. ISA

Definition 28 ISA(F 3 o] 72X A, Instruction Set Architecture)= CPUZ} o] B 7] ZFgsl=X]of
et 1749

g o] (instruction set), ZX2E, AFRY, F4 XY B4, HRo|E 20 ¥, Q7Y 4] & Eole)

isax= A E{of(os, compiler F)¢} SE=go] Apo]o] 443}, QIEHolArA 7]5e AZEoJA=
SESOIE ofUA ZHUAE AL, SFEAINE LEolo] 2ol FES T AS
EE RN

cpudtt} Z+2}9] isa®t T1of w2 T of(instruction set) S AHE-
isals W eole} 7 7ol ogt AR, ejolo] wet M A A7) A7} EAsor 57| To] A2
et ulo] ZekEjo] 913, W0} wR el S 2T o}] WlEel A2, w28 F4 A7 WA, vholE
ey, 77 FA ol et g0l 2= o] A=

AXEG 1Y) 2P A S WEFAA TLH FEol S F@SHE isaz} o4,

L

Software
Developers Compilers

Operating system

x86-64 ISA x86-64 ISA

Microarchitecture Hardware
Developers

Black box

Black box

18



1.2.2. nH|E ISA

Definition 29 nHE isa2l2l & uff nH|E= H o] spLtE H o= o] Hast HE ¢l

128H]E isafkr 2= shA|gh A= AL AL

op
_\ﬂ
52,
mlo

1.2.3. A 2H
Definition 30 ofo]Z2 X ZA A7} A= 713 2l w2 v R a]g #X]AE (register file)2}1l
nHE ZZA|A]Q] -2 z} g2 AE= nH| EQ] 75 7}.
BRI ~E 2] Z} v Eof gjef o]ofr| g aji co] B Hu} Zo] 0HA~63H A F o2 HHTF
e 2 o] It A AR HT2 1 AT #Fo]7t 1008] FE .
HE719F2 I ZE 5 HEgo] Y (Z2AL), W9 g dALHE 7} 4Aba /=

%

(]

0] el vrol = ©hY] F4E AT, ZES Hole] S AR BT W4 S et Aso] EAE.
Aol U2 E gL HATo] TP T T B dAAHE BEHOE Lok T

2 TN E 7I2H R 648 E Z2A| A tisf thFal, T w2t A A A7 649 ER A2

1.2.4. isa T/AQ Y3
isa®] A4 TA]lol @ 717 Yo

|
1. Simplicity favors regularity (G<=gro| #2149 /29
ol i AlelE FRAL koA Sl He Mg o2 S S W

2. Smaller is faster(ZF-&4-% whs)

A7)7} Zopd s S ety B 7| A4 et v H el 7}, w2 e Bof FfA] W &7}, F)A] o 22 Kot
A AE 7} g, X AE O AE AA T B FX|T, A4 sty Z7EAof Sk HIE £t SolU cpurt
A2sljof shi= HlolE o] Yk AXH=E £ErF L.

3. Good design demands good compromises(Z-2 UA}Ql-2 EE-S Q%)
A AAS Yol A5 EHTE 744g o|E 50, Instruction formato]| A L7+ o|AFSHA Z =
A Umg Ao A IS g AL,

=

]

ﬂ.iO

A
T

4. Make the common case fast (Amdahl’s Law)

2. RISC-V

2.1. RISC-V

2.1.1. RISC-V

Definition 31 RISC-VE UC Berkeleyoll 4] 7)2kst 581%] risc o}Z]E] X2, RISC-V o}Z]E] %] 9] isq
= S /A AA BRE ol AP o 9 isa.

d&lofo] Zo]of afaf RVI2I(RISC-V integer), RVG4I, RVI28IZ 7|2 integer(7g+-E) isa”} 371 &
gl RVS2E o] #IX~El 9] 7i+5 167]2 &9 RV3219] YHcE [-g v E Zxg)

RV32I= ofefje} Zro] of 2] &5 Al&-3k

M : integer Multiply/Divide #||-&.

A : atomic instructions A&

F : single-precision floating point(THg W= —’,‘— ) A&
D : double-precision floating point (878 ”E7E ELTF]) AL
G : general purpose. IMAFD7} Z]-85.
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Q : quad-precision floating point A&
C : compressed instructions. & o]o] Zlo]& 16H|EZ &¢] HZ. o]= 32HE HEHo]ol $ol%.

M extensiono]+= mul(FAl) A4 5o 243

RV32I0]|= 47712 W o]Eo] ZAsl=1], x86-2 15037], armS 5008 =91 A& Azteld 4770 3A}s]
Ao 7. arm2 risco] A|H RISC-V o] H|5HH risco]] @ 71712

compressed instruction 53 A|-Z5l= C extensiony}o] T3-S 95l RV321E= F4AE 2 byte @92 align-
ment 3t

A risc 7|9 isa® JHIH EollA 25 AFG-H.

B oA E RV32IE tHE.

2.1.2. RISC-V 9] #AAH
RV32I= otgje} o] 32719] HAAEET peE 71H4.

# Name Usage # Name Usage
X0 zero Hard-wired zero x16 a6 Function arguments
x1 ra Return address x17 a7

X2 sp Stack pointer x18 s2 Saved registers

x3 gp Global pointer x19 s3 (Callee-save registers)
x4 tp Thread pointer Xx20 s4

x5 te Temporaries x21 s5

X6 t1 (Caller-save registers) x22 s6

X7 t2 x23 s7

X8 s@/fp | Saved register / Frame pointer x24 s8

X9 sl Saved register x25 s9
x10 ao Function arguments / X26 sl0
x11 al Return values x27 s11
x12 a2 Function arguments x28 t3 Temporaries
x13 a3 Xx29 t4 (Caller-save registers)
x14 ad X30 t5
x15 a5 x31 t6

pc Program counter

Z = j i
0~s112 BEE B50] ALgoHE A7 2EY
(061 94 AAZE R, XA ALG 5-E AT FT FUOR AT

al~a7-2 9] 21z}t

)
R
[>
™
jul4
re
D)
K
gl
rlr
o,

x . o] 97] olAolwl 7k wmaof
: "ol . a07} alol= BHRLS Agshid), el 2 A8} 271
ol 7} B2 E]7} 326] £ A7]0]7] Whgo] 6481 E 27]0] Hlo|El S Ik uf a0} al BEE AFEFof

AA2H 9 ghE ol

AAE Aol A2 H



3.1. 4413} o]
3.1.1. Q4k9] Y3 dlolg 72

RV3219] g4t 32H|ER HHAE I, ZF H|[EE2| 1£7F
Felt FHE BRY & e

UE

1o
i
wl
filo
N
N
o
o
B=)
)
-
=
)
N
N
B}
rr
g
1o

Mo

1. immediate value(%<4>
A5 AR S = S 128 ER A B ARG BB immediate valueE Af

AEE Agslo] ALgelA ol .

immediate= signed %].

ofo
QL
I
o2
4>
il
i=)
Hu
)
R}

2. register
P ES S s
7 9|7 A E L geo] 53 Alo] QA W4(automatic variable) & AFEE|7] & G

3. memory address
H A A 9] 77 immediate ZH-S TS gro 2 wjmalof] Hsh

4. pc address

. pco]l immediate 3t ZHo & T dite] AR/ E] 58 o

1. Immediate addressing

Ol

Iimmediatel rs1 |func13| rd I op |

2. Register addressing

\funct7l rs2 I rs1 Ifunctal rd I op I Registers

Register

3. Base addressing

|immediate| rs1 |fun013| rd | op | Memory

| Reg\ister—K?— Byte | Halfword Word Doubleword

4. PC-relative addressing

| imm |r52 | rs1 |funct3|imm| op | Memory

| P\J)— Word

3.1.2. glo|f B3 &

HE= 031} 12 Zho 2 71A] 1, o] H| E59] A& O & byte(8bits), half-word(16bits), word(32bits), double
word (64bits)E .

32H|E 27]9] dlo]g& Y&, 64H|E T7]2] g0 &= double wordZtal
7|2 6 2 integer(int)+= word] 7| (440 E)E 714.

3.1.3. H}olE ¢

Definition 32 Ho|E Qorjgoj H] difjolaf 2]E ¢ic]eFo] et g Jrf2 H] difjore =2
A 2] glo] E(H=2 F4), E]% IT] oS W& 2FEl2] glo] o ‘:017}1': Zié’ 2k
gj2 B o] olZ|EI X7} 2] & ¢llcjor HFAS w211, RISC-VOJAE 7| EX o2 & dir]oF HFA]S
2| ¢lek.
N2 2 Ho]E 9HYE BaE A2 H Apole] Ho]E] o] Ao A HAT + U
Sun, PowerPC Mac, HE A oA+ 8 ¢llterE, intel x86, ARM(Andorid, ios), RISC-Vo| A= &
alt]ere wh=.
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3.1.4. alignment

Definition 33 mjH 2]of] 23 E]= HJo]E[7F word 5& 7] 02 HHE L E 5l= HE alignmentEf 17
07—

alignmentE of= 1< m|R2lE t] £H[oIR[T Y52 SHJA= o 77707’”- unaligned-E A}-&5FH
o Hlo]ElE X e]sh= tloj Al7to] © 2] Zde]1l, atomicity(HAFY)7F F=of nlHSE H1E0]

SF A& o
LY 5 UL

'~

RISC-Vi= alignmentE FAolX]= A &2 LA =2 Qo 27| =5 Ag}

alignment FAISH ol7 Ao At WHEA] A0 ShA]gt, £7]9) ob7 |4 S A FAI=E alignment
= Jpaate] ] EWsiths o2 AFebRS. @A RISC 5ol A%2 18] o2 A% AdHe.
RISC-V alignment ZA517 = @AW, alignmenttd 7 g5 s AA\5o] 931 unalignede] 2]
ol A 050 E&-g F7h&E Wrolof 3.

ofd g zhee] gt Aol of2] A= 2AHS W Be dato]l AR SL4G IA #3HoF sh=dl, °l&
Al o } atol ol =z 2 Be Be dits

atomics}A|] Ato] 4=~8i&]of gtctal §F alignment”} BF
| &E&71 =

| 2
atomics}A| 4=385}7] § o] B 15 0] EAsE 219

3.2. fb&/=d At
3.2.1. A& A4

Definition 34 4F<&(arithmetic) $I4F0 2= olgjof Z+e A Eo] Ql 2.

add : G4
sub : HIAY

slt : set less than.(<) X"O]’Ii 1, AAo]H 0L 9.
sltu : H| W o= o] ARIRIES unsigned 2 Fg3] sitE ¢LFel.

RV32I0] ME gl< oJARS ofafo} ZFo] 3700 mARIRFE 714, Ho] &= m el lxf2 alilste] m oF
o] ALERFol O 9ol= A. HE A ol A u W oF 5] JLERFE rd(register destination), D7’X]
o] HAREREE rs(register source) 2 l17]0]-7]5 07-,

o] A RERFO] immediate value(¥5)7F EA6= H4AFS immediate operands2fil gF. immediategbS F
=2 rs2zla]of] ZFASF immediate opperands<= addi2f subie} Zro] FHoj i7} B2 ?j/ﬂ'a AL-gsF 2k 2
sltu2] immediate opemndsl—,:— sltiuee A4 sk wl o =4 B2

add rd, rsl, rs2 // rd = rsl + rs2
addi rd, rsil, imml2 // rd = rsl + immi12
slt rd, rl, r2 // rl < 1222 rd0f| 1 == 0 CHY

3.2.2. upper immediate operation

Definition 35 upper immediate operation& 12H]|EHCF ] 2 HO 9] immediateE AFE&SF7] 99l
Ll HRFo 2 7] E immediateof] SiGol= 128]E O] AF9] Q12]of] 208 E immediateS F7F2 ]G 9F.

oRFO 2 X ZGSE 20H] E immediate= S| X]AE] Q] 12H A~ 31H#] H[Eof] Eo]7[11, 7] & immediate =
He s T Y P20 047~ 11H7 H Ex= 002 A 9. Fot 64H]E 2R AF Z]F 328 A~63
Wy H|EL sign extensiondlo] 31H#) HE glo 2 22

upper immediate operationO-Z ofgo} Z+& Z-Eo] Q<.

lui : load upper immediate.
auipc : add upper immediate to pc.

ofafo} Zo] A%

lui rd, imm20
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auipc rd, imm20

upper immediate opperandi= 12H#] H|EEE 208 ES 97| ‘IH% o, ofgfe} Zo] AAZE= addi 5
SHA AFEGE 7)1 &9 Ao A immediateg}o] 128 EE Jo]7FH o7t 9-E-8 upper immediate opperand
=2 AYF= A

lui x19, 0x003DO
addi x19, x19, 0x500 // ZAAUHOSZ 0x003D05000] x19 HA|AEQ| S0{Zt.

lui x19, 0x003Do | 0000 0000 0000 0000 | 0000 0000 0000 0000 | 0000 0000 0011 1101 0000 ‘ 0000 0000 0000 ‘

addi x19,x19,8x500 | 0000 0000 0000 0000 | 0000 0000 0000 0000 | 0000 0000 0011 1101 0000 | 0101 0000 0000 |

3.2.3. =] A4

Definition 36 1=2](logical) 9A¢L0Z1 ofeje} 22 A50] glg. 27 v]E w9 dliholn, FU
%JEHE 243

: shift left logical. Bl -FIF 0 <.
sra : shift right arithmetic. ¥ FI7F2 SBE 2.
: shift right logical. ¥l 7R 08 2.
and cand bit H4F
or : or bit HAF
zor : zor bit Y4k

RV32I19] =] A{ke ofefje} Zro] 87)9] m ARIRIE 71, Fo] 7 m]ARRFE ditslo] W
Aofl TheJok 7.
=] ¥R immediate operandsZ} EA e AR Hof igF 2o]H H

sll rd, rsi, rs2 // rd
slli rd, rsl, immi2 // rd

KO,
E
e
2

rsl + rs2
rsl + imm12

RISC-Volie %4/ tFe ] ¢libo] upz ZA5hx] ghob AIIE /5484 gt 502 o]F +93.

and, or, xor A S A 2, and B0 2 nfazelo] 54 MES F&/4Ys}
ozt dold Afolo] BYRAE BTt Hlel AH§E 5 9l x

= -
AEEEREY

S
re o
R
o
b rir
4
i)
o
a
N
offl
e,
&
R

312 o)A »i=, unsinged A4S
arithmetic right shift GAHS 4=

NIE G105 FA% ok A, x0o 15 FOH 4% olels} o AL SR

@
o
0_4.4

s11i x6, x5, 1 // &3t7| 2

add x6, x6, x5 // Hefe| £ Hsto|

slli x5, x6, 4 // 2517| 16
3.2.4. XY vs v|g
czH] 7lEo =2, I A4 Ao vigo] ZRAE Rt Hestx|qt AA| 8= = 2FF2 sjdo] o wot
Hlg-829.
Hjd o] A 94 F7|uE9] FHAANZE)S of 11, g9 A& 40 sid awE ds 2+ 849
A Bhof ZIE = Tl AR FAR o] &gt
A Alo] -01 F4E A HotH v AFEalle ZAE|Q}t FATH ALto] 3. AW E A|AH 5-&
& = old 3= Qe Zie F&o] A = 7 &



Wl el 2% Ao] B4 A A o BEHQ) ALE AU F2 AL
3.3. Hlo]e] o] A
load®} store= AF&Ho| A9 =g

3.3.1. load ¥4+

l

Definition 87 9229 Ho]8/E dAAHZ ol5ohe AlonE ofdfst 2o AEo] g
&Y FH= 2Pk

Id : load double word.(64H]E)

lw : load word. (32H]E)

Ih : load half word. (16H]E)

Ib : load byte.(8H]E)

ldu, lwu, lThu, bu2l Zro] ¢RF Fof] uE &0 H unsignedo] et ¢4ro] <~ =. 32H]E 2]~ E o] gt

& 7FAE o glo]El7F signed Q1] unsigned Q12| of] wref Yo 7k sign extensionsS T AR E
X—?o]-_ A.

load Y94FQ] O HRFRFE destination register, base register(address), 12]17 immediate(F) offset7}
ZAeF. base registerLE] offsetTFF0] 9]0 A HRF BFFO] (word -5) H[O]E]E destination register
27X+ A

1w dst, off(base)

1d rd, immi12(rsi)

g, 24, §2 W2 T2 1 e QA Aol mRofA A 2= loadsiof ¢

0l
ma

3.3.2. store ¥4k

Definition 38 #[%]AE/ 9] HJo]ElE m|RZ] 2 o]&sl= ¢IfFo 2= ofze] Z+
Lolol g2 4o}

Mo
)
U
9,
%0,
Ojo
r,
o

sd : load double word.(6/H]|E)
: load word. (32H]E)

sh load half word. (16H]|E)

sb : load byte.(8H|E)

store YRFQ] T 9 RFRFE destination register, base Tegzster(address) 18] 17 immediate(F) offset7F
EAgF. destination registerQ] HJOJE]E base registerFE] offsetTF52] Qzx]of] ] 2F5l= Al

sw dst, off(base)
sd rd, imm12(rsi)

store= Fo171 A 2H ghe w2 T2 &A 27| W2l unsigned Atto] EASHA] ¢b=

o -

2] Az

3.4.1. Z7AE 44t

Definition 39 Z710] 20w HrJoHe 2R elgho 2 oo} 22 A5o] olg. HH b(branch)

AR
= x]zfo;]._a E o5} OJEHE ZFATGT,

beq : branch if equal.(==)
bne : branch if not equal.(!=)
blt : branch if less than.(<)

24




bgt : branch if greater than.(>)
ble : branch if less than or equal.(<=)
bge : branch if greater than or equal.(>=)

AR Ao o AL £ AL HAAE Hwste] HolE W HY labelz |8 o]t labe
2 |58 S e, S Aol We] A Fh2 W, labelo= 125]E immediateS 93 2
A=), o] 7g- immediate TFFo] pcofl TlofF.
bequ, bneu, bltu, bgeu} Zro] Ll Fof] wE &M I HMAEE unsigned 2 FHg oA HLkgl.

beq rsl, rs2, immi2 // Z0|H pc += SignExt(imm12 << 1)

bltu rsil, rs2, immil2

uE =Y ¢, signed2 Huf unsignedz Hupel] w2t 43 2 7t HAY 571 57] 2ol folsiof

Definition 40 27 2r]sl= ¢gFo 2L olgop -2 AEo] Y. HE jljump)E A2} o]
e ZR2AIA] oF Ao F2 AR

jal : jump and link. X]7Zel immediate ZFro2 E7].
jalr : jump and link register. 57 X AE]9Q] F4A2HEE immediatedg ol x|2 Er]. o]
BI]& computed jumpeFil F.

5) label(pc + imm20)2 E7|¢}. jalr& rdof] & o]% 43l
&) rslC 2R E immi28hE ol&et A2 7]k

jal rd, imm20
jalr rd, imm12(rs1)

B 53 AolE jal2, WEF AlC jalrE AFE jlZE ol (ra)o] THE W]
Al £4(label 5)2 E718 jalr2E Ox(hard-wired zero)of] FAE 2oL (10
PAIE.) ol(ra) 258 05 ol 92 g 5, obelsl 2ol FHk

jal ra, func // func 2F
jalr x0, 0(ra) // gt

Wi} jolr& g AFESHE F S2MER Wold 9IS AT 5 QOr R, jale] 20MER HHo| £
et FEE #Ho] Zhsgl ofefef Zro] iz 2| X|AE] o 20H]E upper immediateE F11, 1 g5
jalrz2 X|GeF 128 E immediateS Tl &) g Y22 o] E5l= A.

lui x19, OxABCDE  // OxABCDE000O| A{Ztl
jalr Ox, OxEFG // OxABCDEFGZ £7|%

3.4.3. B7] F4 A4 44

B7Jste] ol 52 §1719] 4 ARl 3712 S 4] olg. ol £715te] el A el vho] £
% Folql.

L 2715 $1700] dj FoE el

Z 2H}O|E R alignment”} H.

RISC-V 9] extension % c(compressed)of| A= W& o7} 16H|E ZAo|2 Q1F Y E] 7] wjFo]
H}o|E Y2 alignmentdl= A.

2. 271% B8 F4 A7 A

branch A]oj|&= pco]l 12H]E immediateTHE-S ¢ st FAE AFESH
if /for /while 5-¢] branch- 2o A= A2 E7|&

fol
ri
o,
filo
£
%
[\
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3. 227 B2 24 A 34
jump AJe]= peoll 20H] E immediateRH-E-& B3t FAE ARG

jump= H| A ¢ W 93] = o]'F5}t7| wiwo] 208 ERFE-E ARE-Sh=T], o]Hf 2] 20H] E+= upper immediate
of| A 2] 208 EQl A _g_ old. 20| EX 1w AR F7]Q1 A.

o W A2 BI|foF St= 2o upper immediates A Al Z 32H|E immediateE ARG o|nf] luiz
12~31H| ES 2|48} jalrs 0~11H|ES 23] K75t

3.5. Pseudo-instructions
3.5.1. Pseudo-instructions

Definition 41 A2 Z@xo] 9l oIie ofL]z]ul, o]dEzjolE B AFgro] HolZ o)A
RV32I9]] ZojE]o] Ql= XSS Pseudo-instructions2fil gF.

AR&AFI A= Pseudo-instruction @ 2 Ho||gh, AR 2= tf-g5 = e Aite® F+do] H.

Pseudo-instructions2= ot e} L A E0] )L

1li rd, imm addi rd, x0, imm Load immediate

auipc rd, D[31:12]+D[11] _ _
la rd, symbol addi rd, rd, D[11:0] Load absolute address where D = symbol - pc
mv rd, rs addi rd, rs, 0 Copy register
not rd, rs xori rd, rs, -1 One’s complement
neg rd, rs sub rd, x0, rs Two’s complement

bgt{u} rs, rt, offset

blt{u} rt, rs, offset

Branch if > (u: unsigned)

ble{u} rs, rt, offset

bge{u} rt, rs, offset

Branch if > (u: unsigned)

b{eq|ne}z rs, offset

b{eq|ne} rs, x0, offset

Branchif {= |#}

b{ge|lt}z rs, offset

b{ge|1t} rs, x0, offset

Branchif {2 | <}

b{le|gt}z rs, offset

b{ge|1t} x0, rs, offset

Branchif{< | >}

j offset jal x@0, offset Unconditional jump
call offset jal ra, offset Call subroutine (near)
ret jalr x0@, 0(ra) Return from subroutine
nop addi x@, x0, 0 No operation

4. Instruction format

4.1. Immediate®] &7} -4

4.1.1. Immediate?] H%

format type'd 2 immeidate”} A A 5= FE|7F thE. o]0 immediate: signed Hlo|H =2, A7 Alo] H-&
FE7HE sign extension®. Z1 2, imm7} 128 EXTE AR H, cpue F 7o Hgo]2 7. 52 unsigned
of thsfA= 022 extensionH.

1.1, S, U type
lmmedlate%koi% A/ B AR, o5 olo A immediate g IR 7} w2 ] o
A,

i
el

sore/lode 2 2 2fe] YT YISl o Y29 Aol o= alignmner & AFE Wi}
Eg]

=2
. 2 byte=® alignmentX]o] Q)&= 4% W o] Sl
2. SB, UJ type
1mmedlate77"_ Z4edro] ARE-E|31(2 byte alignment), 1o whet OHA] H|E= §HAF 10|22 A2ksto] A%
oF. oluff A& 'L format typeo] whaf Aol gt
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4.1.2. Tmmediate9] Z-g&

instruction®] ##Z%H immediategt- AFE Al A AH | HAE =Y (AAITH AL o ZopE A}, o]uf
A7 et WAl ol mhet gro] ARg.

1.1, S, U type

ZA = immediateZl2 signed extensiondt Zho] I 2 AFR-H.

Ltyped] jalr 574 F42 £7]517] dlizoll F & ool 243 H imm129} | 2] A8 9] g2 T gk Z19] 0 A H]
008 W 5 W e 0, ) 58] KB RIS 3o ol 1) S ) A e A

#2 gk Gk 44D 5 ] BB
A& 0], ¥ oo immo 2 ZAE o] Q1 9™ pe=(R[rs1] + SignExt(imm)) & (~1)1} Zo] Hrg .

2. SB, UJ type
ZA = immediateZt-& 19HE 9& 0 2 shiftshal, -2 H]EX signed extension$t 3ho] AFEH. =, oAl &)
gejojof] 2H/gH Fho] I vrYg == A.

AL

& =01, BP0l imme = 2/ F o]

it

H PC = PC + SignExt(imm[12:1] « 1)&} Zro] 5t

4.2. Instruction format

4.2.1. Instruction format

Definition 42 RV32[ HE FZo]59] F7]E= 32H]E (4HFO]E)o] 1 format -5 (type)oj ofef L}=
o YHE IR 12 S

RV32I90= R, I, S, SB, U, UJZ & 67]]9] format typeo] A} cpus= FHFH ]9 funct?, funct3,
opcodeZ O]H typel] o] E AR} ?_IX]E ooFsk funct32F funct?E additonal opcode$.

immediate} ZAHA Y= 5 7} yped] 74 fATo] EEG IS AL AL OHE typeSf 7]
QIRIE BF7] LloiA1Y. o] F ol SFEQo] A Q] wireE 7HHFs] "1?5%’ o QZS

4.2.2. R-type

Definition 43 R-type(Register)2 = 702 source register2l 5L} destination registerZ} FEAol=
HRHE9] format type 9.

{he AL, =] ALk tigl format type ¥

olelot Z-& formatg 714,

31 0
R-type funct7 rs2 rsl funct3 rd opcode
7 bits 5 bits 5 bits 3 bits 5 bits 7 bits
additional 2"d source 1t source additional destination operation
opcode register # register # opcode register # code
add R add rd, rsl, rs2 0000000 000 0110011
sub R sub rd, rsi, rs2 0100000 000 0110011
sll R sll rd, rsi, rs2 0000000 001 0110011
slt R slt rd, rsl, rs2 0000000 010 0110011
sltu R sltu rd, rsi, rs2 0000000 011 0110011
xor R xor rd, rsl, rs2 0000000 100 0110011
srl R srl  rd, rsl, rs2 0000000 101 0110011
sra R sra rd, rsl, rs2 0100000 101 0110011
or R or rd, rsl, rs2 0000000 110 0110011
and R and rd, rsl, rs2 0000000 111 0110011
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4.2.3. I-type

Definition 44 I-type(Immediate)2 SIL}2] source register2F oFLFQ] destination register, 12H]E im-
mediateZ} EAoF= HLFEC] format typed.

o] AL offset 02 12H]E immediateS A§OH= {H AR, 2] A&k, load ALY, jalro] tjgt
format typed].

ojuf shift ALk(slli, srli, srai)o]] A= funct7o] 000000 shamtalil Ha] Yt ouf shamts=
shift amountE Bk ol imm[11:0]5k2] X 6HEE funct7o] E0]7}31 LA shifte F(shamt)
o] ozt AY. g Hlof shifteh 5 iz P ZZAALO] shift logico] O] HYH=d] o] F-¢
0|5 Ao 6u|EZ AJ5FS E A Y.

ofgjel Z-2 format= 7H.

31 0
I-type imm[11:0] rs1 funct3 rd opcode
12 bits 5 bits 3 bits 5 bits 7 bits
constant operand or source or additional destination operation
offset added to base register base address opcode register # code

(two’s complement, sign extended) register #

Instruction Type Example funct7 funct3 opcode
addi I addi rd, rsi, imm12 - 000 0010011
slti I slti rd, rsl, immi2 - 010 0010011
sltiu I sltiu rd, rsl, imml12 - 011 0010011
xori I xori rd, rsl, imm12 - 100 0010011
ori I ori rd, rsl, imml2 - 110 0010011
andi I andi rd, rsl, immi2 - 111 0010011
slli I slli rd, rsl, shamt 000000 | shamt 001 0010011
srli I srli rd, rsl, shamt 000000 shamt 101 0010011
srai I srai rd, rsl, shamt 010000 | shamt 101 0010011

1b I 1b rd, imm12(rsl) - 000 0000011
1h I 1lh rd, imm12(rs1) - 001 0000011
1w I 1w rd, imm12(rsl) - 010 0000011
1d I 1d rd, imm12(rs1) - 011 0000011
1bu I lbu rd, imm12(rsl) - 100 0000011
lhu I lhu  rd, imm12(rsl) - 101 0000011
lwu I lwu rd, imm12(rsl) - 110 0000011
jalr I jalr rd, imm12(rsi) - 000 119e111
4.2.4. S-type

Definition 45 S-type(Store)2 = 7H9] source register2} 12H]E immediate”} ZXfo}= ¢1FH52] for-
mat type .

offset 2 2 12H]E immediateS AF-&SF= store S4Fo] Ot format typed].

I A= rl, rd, imm12& AF&H I, SOA= rl, r2, immi12E AFggl tlE formatE72Q] rl, r2, rd
QR E oz 7] Q3] format typeS E2]SH 4.

ofefjet -2 format-S 714,

28



31 0

S-type imm[11:5] rs2 rsl funct3| imm[4:0] opcode
7 bits 5 bits 5 bits 3 bits 5 bits 7 bits

source operand base address additional operation
register # register # opcode code

imm[11:0]: offset added to base address (two’s complement, sign extended)

= Different immediate format for store instructions

* Split so that rs| and rs2 fields always in the same place

sb S sb rs2, imm12(rs1) - 000 0100011
sh S sh rs2, imml12(rs1) - 001 0100011
SW S SW rs2, imml2(rs1) - 010 0100011
sd S sd rs2, imm12(rs1) - 011 9166011

4.2.5. SB-type

Definition 46 SB-type F+= B-type(Branch)& = 7 9] source register2l 128 E immediateZ} ZXf
5l1, 12H] E immediate”} 1Y =91 ¢12FE9] format typed].

Bolgk 925 A4 12HE immediate 2 2] 5= 242 B7] ARF(branch)o] gt format typed

HElo] roflA] |7t immediateZ} B=o] B2 0l H|EE AEFst JEf 2 x3FE. 7]F0] 12H]E
immediate(0 1197 2 )ofJA] 13H]EWI-X] Sign Extensions o1, (5 H]E(MSB) dlgsl+=) 11
HA HIEE 0HA HE PJz]o] g2 FE = =gek

ofgjet T2 formatS 7H.

SB-type imm([12:10-5] rs2 rsl funct3 |imm[4-1:11] opcode
7 bits 5 bits 5 bits 3 bits 5 bits 7 bits
2"d source 15t source additional operation
register # register # opcode code

imm[12:1] << 1: offset added to PC (two’s complement, sign extended)

Instruction Type Example funct?7 funct3 opcode
beq SB beq rsl, rs2, imml2 - 000 1100011
bne SB bne rsl, rs2, immi2 - 001 1100011
blt SB blt rsl, rs2, imml2 - 100 1100011
bge SB bge rsil, rs2, immi2 - 101 1100011
bltu SB bltu rsi, rs2, immi2 - 110 1100011
bgeu SB bgeu rsi, rs2, immi2 - 111 1100011

ol & Eof 1111 1101 0010(© ]7“_]5,‘—) olgt= ZH2 immeidate® SB-type Wi ojof] A4S &=, 1111 1101 0011
o] THIE, BUIE 2 Lyt o] Sol7

4.2.6. U-type

Definition 47 U-type(Upper)S 8L destination register2} 208] E immediate”} EA5l= H{FE
9] format type$.

20H] E upper immediateS XY= lui, auipe H4FO] Ojel format type Q.

otefjet &2 format2 71,
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31
U-type imm[31:12] rd opcode
20 bits 5 bits 7 bits
operation

constant operand moved to destination register or destination
offset added to PC register # code
(two’s complement, sign extended)

= 20-bit immediate is shifted left by 12 bits

Instruction Type Example funct7 funct3 opcode
lui U lui rd, imm20 - - 0110111
auipc u auipc rd, imm2e@ - - 0010111

4.2.7. UJ-type

Definition 48 UJ-type(Unconditional Jump )2 SFLLQ] destination register2} 20H]E immediate”}
EA5EL, 208 E immediateZF I B9l ARFEQ] format typed.

Bo)eF QIR E & 20H]E immediate2 X]FSF= jalof] ot format typed]

Fglo] oAl AFRl immediate’} o] B2 0 HEE el JEHZ 2]ZE. 7]E0] 205 E
immediate(0 19‘,‘4’_77]] ZAl])ofJA] 21H]EZ}X] Sign Extensions 07' EﬂO]EfE go Ho H[E(MSB)O
Sols g5 19HA] HIE 2| (H gh)oj] YaI, o] el RS 1 the R 2ol a, 2o o]
HEEL HSH EE Sign Extension?F 0=

Eof ot HEE v oS HlES] HYoki, He HEELS
2L
ofgfj o} -2 format-2 7+l
31 0
Ul-type | imm([20:10-1:11:19-12] | rd | opcode
20 bits 5 bits 7 bits
offset added to PC destination operation
(two’s complement, sign extended) register # code

= 20-bit immediate is shifted left by | bit and added to PC

Instruction Type Example

jal uJl jal rd, imm2@ - - 1101111

o|E 5¢], 0111 1101 0000(°]#4=)2 0111 1101 0000 0000 00002 %=,

o =
ZZAE3 grER
2/9ME2 So] RISC-V| A o]@l olile]2 of 7] 245lo] Y-rE Hela
o IES goto A A0 HHRo] 3 AZISHA o WY

)

BN
)

N

i

]
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// RISC-V O{AlIE2|0f
// i-x22, j-x23, £-x19, g-x20,

d
el
N
=

bne x22, x23, L1 // H|1l.

add x19, x20, x21 // #Ql BR. £ =g+ h

beq x0, x0, EXIT // A0l AL 2RH E2I|7 &
L1: sub x19, x20, x21 // HAQ HR. £ =g-h
EXIT:

5.2. B2
5.2.1. while®
ZAS 7AAsEe] o™ Loop label2 £7]8}1, 7310 Exit label2 H7]sHE= &}

whileE-2 of2f¢] el 7.

Loop: ZO|®H ZI3H, HAZIO|H goto Exit
body
goto Loop

Exit:

obgfl= 1 A .

// ¢ ZE
while(A[i] == k)
{

i+=1;

}

// RISC-V OjAl=2|0f

// i-x32, k-x24, A[]-x25, A9| 2zt

Loop: slli x10, x32, 2 //
add x10, x10, x25 //
1w x9, 0(x10) //
bne x9, x24, Exit // X4 &
addi x32, x32, 1 /&Y.
beq x0, x0, Loop // LoopZ &£7|.

0]
B
rir
I
T
IS

m

F. i x 4. A9 @A F7J|BE F3l=.
boo7tel2 24 2F.
t
t

NN N
Y Y Y

. load.

Exit:

5.2.2. do-while®

whiles} SUFH), 22 A4S W opxee] sk g,
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do-while®=-2 o9 FefE 714

Loop: Body
2+0|™ goto Loop, HZI0|H CH=z ZIEH

5.2.3. HrE2-& g}

Akl Tt o AtelE AR el Aol7h ZASE, ofels} ol for > while->do-vhile-
Sgoto Hgksto] Aol WL ZAE FAE BE Aualelold BE A9 old AL ohnz,
oldl A% Slct o ol

RISC-VOA &= Og &4l A ile S It = AY/d SR 9, 02 FAof| A= whileZZ& do-whileiz 0 2 T glof
WA B o] A% o Aol Hollws Auald 4k 9.

ofefjet o] Hgho] .

rlr
§_

// forz
for(init; test; update)
body;

// while®
init;
while(test)
{
body;
update;
}

// do-whilei#®
init;
if (!test) goto Exit;
do
{
body;
update;
}while(test)
Exit:

// goto

init;

if(!test) goto Exit;
Loop:

body;

update;

if (test) goto Loop;
Exit:

6. T A A

6.1. T2 XA

6.1.1. T2 XA
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]_-

ok

Definition 49 E AHE Y AFgEE delo] Az A= B8-S T2 A]Z] (procedure)2F 1l

=]

o
g‘ I o2 A]Z_]E %;O_:]'EE/VX‘]E C’aller _.O_E%]'—IO_:]'E /(] _]E Calleeﬂ]-_/ loj]- E’o“]- E]—E ‘U'E/{]X‘]_J
B EFL EGolE T2 A XE non-leaf Z2AA], 1

Ollm
A
§2,
rlo
=]
Hll
i
2,
M
Sk
s.,
E
u
R
ﬁ
hl
ok
1..

QU] W Fpo} LR AL AT, FAR AR AT 5 U3

6.1.2. RISC-V stack
Definition 50 RISC-VoJJAlE 2K %] 72&HS 23] Ui]EE] I A] LIFOS tF2E stackS AF-E-8F
stuck AT Y. 2 FAE ZOR FoL £3, o Fhe B2 T4z 058 HYT: ol

ZFEF HPZE @ 4 (stackQ] top) o] T4 x2(sp)ol] =12
RISC-Vol= push, pop ko] EASFR] QF7] w2 o]l store, load 2 AEoJA] ZHS Wl 7.

2, ¢/c++, pascal, java 52 stack 7|HF pl(programming language) . A8 7|8 pl5-2 o] 9

7HA.

L el 2 AAE ol W AST 4 S
22 AAE QaRsstsd ARGl s,

i

Jlm

2. Z} 2w 2of gt AEE Ash] % 3tE daw o
3. Ly dog Aeg Sl

6.1.3. stack frame

Definition 51 ZZX]Z]of geF FHE= stacke] frame] FEJZ X E]=0, o]F stack frameo]2}1
28

stack frameo= Caller-saved ZJRAES(HFeE F£4, QIR}, B (XgHs), AIHS 5 )o] =]
2],

frame®] Z}ZF HPZFRE (WS F40 )= 22(sp) 2 71e]7] 12, optionalstH] 7FE HPEZ: framef] AJZF 45
28(fp, frame pointer)oj] AZFst7] = g,

framel] A (eg)of Tt T E=F setup code, framel] AFA(HF)o] teF F =& finish code2F1l gF.

stack frameo]] HlOJE & A5l FloF Z2AA 9 ALH 2EolME g2 A8 5 s

High address

FP - FP—

SP - SP -

FP —~ Saved argument
registers (if any)

Saved return address

Saved saved
registers (if any)

Local arrays and

SP —~ structures (if any)
Low address
6.1.4. A% AL
Q12 AES 91t 2 2| 28 87) #o)7] mj&o], o] B} 17} gho] HLER W AEL stacke] 02
e olm do g Y= A2 Adle £AE et Ad
A& 501, arg0~argd7Z}2] 107§9] JAAE APt 1L SFH, argd~arg?-> al~a7ol| @1, stacko]= arg9,
argS &0 2 J2 o|%of A o args, argd &2 2 Lo 7 517] Y.
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6.2.

6.2.1.

LEANA 9] 74

zZ2AA el 74

Definition 52 oj¥Ea] ~ZoA Tz k]2 23S

1. Passing control : AJo]2Q] o]&. g+ o &7} BF3l.
2. Passing data : GJOJE] %
3. Memory management :

<

Cail

me] el L2 AR LY
oo mtzt leaf ZRAIX] & A T E =
. Z 2 A2 0] oIz} argument)= x10~x17(a0~a7)o] 212}
. J—L_5—":/(]X77_,,7 —,«OH O]O Aoﬂo’- 117%57_4 71__/}_5

. ZEAIR] o) ”"ﬁﬁ ”77—'257 ZF ek,

. Callee-saved registerg& stacko] /,;7'?:,7 JZIZF.
m2A)3]9] G .

HrelgkS a0} alof 2%

. Callee-saved register& stackoA] &
. z10(al), z11(a2)of BFeFgE 2] 4.

. z1(ra)o]] AZE Fo22 o]Es)

2/59)

]
=

e~

o
4.

&o%\;ga'tn«c@m»ﬂ

AT S5 28 ZeQlof] At o]F tE

252 8 Tagdol 4 AY.

EEREE

SlafAE ol <]

non-leaf L2 A2 0] -9 OF2 TR ANE TE3H7] ol AA1<] vek HH,

| —
E=

of tiet 7+elo] Eagl

A2 A, 01X} gLo] HEh phalgre] W

gl F2 A B

e ofefs} 22,

ol(ra)o] AFola R AAE £

QIR}, |G,
o] £25 Aol7} olow e

A
T

6.2.2. Wj2g I 3n
DEAA7F 2EEH A9 ZQlof] A<t HlolelE Qg ve] SR E 9t 1 Y2 ofefjet TS
L € R U S0,
stackoﬂ A AH ZEE storedt
3. Z+o] =31,
4. stackOﬂ/\ﬂ HAAH G 9<4(LIFO) 2 2 loadgt
ofefl= 1 A Y.
// ¢ ZE
int leaf(int g, int h, int i, int j)
{
int f;
f=(g+h -G+ j);
return f;
+
// RISC-V O{ME2|0f
// g-x10, h-x11, i-x12, j-x13
leaf:
addi sp, sp, -8 // s &
sw x18, 4(sp) // Callee-save registers stackOf &¢
sw x19, 0(sp) // Callee-save registers stackOf ¢&¢
add x18, x10, x11 // @Ab £8
add x19, x12, x13 // @i 8
sub x10, x18, x19 // G4t 8, B&HF 2|
lw x19, 0(sp) // Callee-save registerS stackO|A ZZ
lw x18, 4(sp) // Callee-save registers stackO|A ZZ
subi sp, sp, 8 // =227t Bt

jalr x0, 0(ra) /] Z2E X222 A0f 0|
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6.2.3. register saving conventions

Definition 53 £% g2 AEEL 7 5o wlel 23 F&lo] tfE. Caller-saved #JX]AEQIX],
Callec-saved 22| 26121219 Wef Callec®] S5 e <28 gF BE Be o 27h AFH.

1. Caller-saved XA E]

B2 Ao Caller?} 71 3F& AHZFsF= gJX]AE. al~a7, tO~16.

Caller7} 2] o B &2 Callee®] YAl ol glo] H g E o] WIS

2. Callee-saved B 2] AE]

: CalleeZ} 1 g2 HESJoF 5l= g X]AFE. sO0~s11.

Caller7} ghk& w2 XZFo 73] gfe B2 Callee’} oY gts HEZooF g o 2|x] g o] digh
o] Bgo] o FEH Callee 2 3 Zof] stackel] 1 gh& o=, o]% Hhek Hoj g =
B ofjoF of.

=, s7F &2 (saved) s0~s119] gta WASHA B= ¢ stackol] A7} 24Y o] Fof] E-dsfjof

L

Part IV

processor

1. datapath

1.1. single-cycle processor

1.1.1. execution I3
ol Aol g2 o HlEstshd ool 25

1. Instruction fetch : W2 2] of| 4] processor=2 B Ho]& 7142

2. Instruction decode : & o]E t]jFY5to] T Qo 28 2| A gt

3. Operand decode : T AXt2}(operand) o] S5t 4H-& tl7 G5t 7142
4. Execute : g olof| sigst= 22 3t

5. Result store : A3 A%<t

6. Instruction next : th2 02 L4 H o] & &5t

1.1.2. single-cycle processor

Definition 54 single-cycle processori= 2} @& o]o] Ao 5}L}1O] clock cycleS A-§-5F= processor
o. =, 2 gYolso] Aoz A2H.

1. single-cycle processor2] 4

29/2% 59| 78] ez

2. single-cycle processor2] T-F

single-cycle processorof A= He o] 7} 2 gingle-cycleof] 5~ E] 11, 7of] we}f clock cycle time©] 7}
gl ol (critical path)] 3 ZGE. o] B 9 A7k SN Weo] B L2} 57 G-
R-type, load/store, beq F & ojgro] Exfetcl il 7} SFH, load”} critical path7} H.

Gejo] W GO BAE AT A G RAE gl oA TE HHekE olHA] e
=, memory8} functional unito] -g-&o] GolH.

FAA T multi-cycle(pipeline) processorZ single-cycle processor®] @3-S B4 & QJS. WHAE
2| FAZ Y11, ZF AR 5h9] cycles 7HA S Sh= AL ©] A% clock cycle timeo] Zropx| 1,
=
=
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7} T g 017} read /writes positive edgeol| Rt 438 o~ UTHH 1 cycleo]] o] k7t 43 =] 7]
2, AAR = positive edge?} negative edge R F0]| A read/writesl= 5 thFSH 7| H-E AFES|| o]
cycleg @&

1.2. datapath

1.2.1. datapath
Definition 55 processor(cpu) W-Fol4] B F o5 dFsh= b AHg-H= Hlo]E o] 253} Ao {1Z&
2|5l processor(cpu) ] 74 R2F HJo]E| B2 (datapath)2Fal 3.
cpws datapaths} control® FYEC}T Y2}k 5= Q1. B2 datapathol= RAM %} Qlonz mE
FE2o| cpuo] ZeFEE AL ofY.
ol7)1ME gt Fxo] Yigt AL 918) RVs21e] Fol F AR (lw, sw, add, sub, and, or, beq) TS
T} A4 2 RV3219]) RE + datapath= o 2% 28 714,
Eg

=
52 95 A single-cycle processor2] datapathS &HQlstH.

|t

Q|

o,
fll.

1.2.2. datapath9] 7|82 L%
<o Eobd, datapathis pe, instruction memory, register file, ALU, data memory =2 4] 5.

Instruction Data
Memory

Memory

Register #

Address Address

s191s189Yy

Register #

Instruction Register #

1.3. gAY A2"9] 74
o}

=74 dzef Ae 52 Sl A

1% 5 A A 28S TAY 5 912, RV3219] datapatho] A A€ A]A=lS
TFA5t= QA (HEYE, component) 2= 29

=)
t oz, &2 9=, 28 197t 3ls.

1.3.1. % 3|2

Definition 56 £ 3%} 3] 2 (combinational element)= =2] AJo]EE2] H]<2lY (acyclic) HEHZ, out-
puto] 22 a5 QAo inputo] w2} HHEE H el

inputo] £0] L H ] ZH Zp¢fo] £R}E 02 Y7 miFo) Yl 3= 0] Bifrof mjaf o] O]
ol A]J7Fo] 4R H (after some delay).

f#Z A 0 2 Rz (arithmetic) /~=2](logical) ¥4{Fo] X8 |22 FZE. HiF £ 520 ulaf AND-gate,
Adder, Multiplexer, ALU Zo] £xJ5F.

2 IR A4 TRl OE Eu|e A Y FA9E of =1 APl EES] AHs A" AT o= S
o} @} o] AND-gate, OR-gate, Adder, Multiplexer, Arithmetic/Logic Unit 59 23} 3| 2-50] £A]s5}1,

7} F50l e 3o E713.
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= AND-gate = Adder

Y =A&B *Y=A+8B
A
A Y

= Multiplexer = Arithmetic/Logic Unit
sV SEAEB *Y = F(A, B)

g{“f}v :v

1.3.2. &3 3|2
Definition 57 £} 5|2 (sequential element )= outputo] E A eI} inputo] o8 24 == ]2 9.
JHZ S 2 registero] HIE kS X3 (write)ol= S| 22 AFS-H.

23} 82 o] g AT A FAE.

1.3.3. A 2HIA 9 &7 3=
H 2 A E | A= clock 4132} write 413 (control)of] ]gt 3|22 g|o]EE A5t

HALE A =2 2 E ARESH] 1R EE A6t 2d2 th3at 2ol £33, ¢4 clock A8 A%
vEE A AlSGoA AR F7]12 vEEH. ol & ]— 3] 2% positive edgen}th write AT E EQ15}=cC

|
:'

Jlj&

=
= 0 1 ﬂ 1
o] inputgt-& ouputZt o2 Hrdst O]tﬂ oro. ol AG7t BElHor ﬂi— 7 HoF
7,_}7—3, (delay)o] &2]gt.

ZF
— E
517] W&ol inputdto] outputFF &2 FHY == dof
A 2= write BHF o}y g} read T3St clocko] 9H
clock-2 13} 0o]2t= Arel H th= positive/negative edge”
Clk || ‘—
D — - Q Write :

Write —|
Clk —| D

1
\A
a [T 1 1

- _l
ofN nol'
ko
i

=11

o

1.4. datapath?] FA QA
1.4.1. datapath®] LA QA

datapath= ofgfje} Zo] PC, ALU, register file, data memory, instruction memory, add/mux, imm gen

Eog JZALo] 9)&. ol 1 datapathﬁ]— control-& 3t UErH A<l
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Add |

= xc=2 ©

4 — Add Sum

/
\ Branch

\ MemRead

| MemtoReg
|Control‘ ALUO

\ | MemWrite
\ | ALUSrc

\ RegWrite
1

\

Instruction [6-0]
—

Instruction [19-15] Read

Read register 1 Read

address :
Instructi 24-20
ruction [. ] Read data 1

i regi
Instruction 1 & egister 2

131-0) [T jnstruction [11-7] Write Read
Instruction register data 2

memory
Write o

data Registers

Instruction [31-0] ® ALU\.

@ control
Instruction [30,14-12] |

Read

Address data

)
Oxec2~

1.4.2. ALU

Definition 58 ALU(Arithmetic/Logic Unit)= {t& /=] RS dsl= Alo]EE2] Fekel.
control®] ALUOp {159} H&o] 2o ufaf ALU controlo] ALUSJ £1S& HLJH, = 7Fx] o] 41
Ao s 283 ko] HeElo] +P5,

1. ALUS] ¢iRF =3

load/store_J F Yr2HA o2 add ¢{H(rs1+imm12)0] =W E] 1, branch(beq)e] F-2 fHE 2 O 2 sub
Ako] T, Retypes] F% ol E1eHo] .

2. zero A&

Uik M /] Ao Fp Aol BHTF Y HAE beqo] F-7 WA CZ sub AihE 351

5 3k0] 00l H(ZE 32 2er0 AIBE 12, 00] O B(FE FS) zero UTE 007 FE

HRF AF7L o] ™ zero A8 7F ALEE=], zero 218.F branch #159] AND ¢4FS ~3f5le] £ H

858 pogl 92 9]6l o] 8. of musks chgol YT FFolo] el w22 porh
& Z1RAX], petoffsets H-E AUAE EHol= 2= Y.

_]N

load/store, beq TE3F YA 0 2 = add®@} sub JAMMS W Q 2 517] &0 ALUR A4S £33 4= Q1S

Zero
ALU o1 u
result

1.4.3. register file
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Definition 59 register filex2 register52] Fefo]1l, ofgfo] THT 22 2R E 714.

1. read/write LE
register file:> read/writes 9/t B4 ZESES 712]7] wlEof, 9F cycle HoflAl of 2] 7] gl ¢l1

22 A o] O
ET/K/ZD'

RV32I9)A] register= & 327]0] B 2 register& ]G ohe HEL S5HE F7]9] bus(wire)7F HE = o]
2. Read data 1,22] Write datar= 32H]E 7] 9] bus(wire)7F A= o] 5. F712, 0FLo)+= z0(hard
wired zero)7} AR5,

register2] ZFS Yl H Y of read register 19] 42 read data 102, read register 22] &2 read register
222 HU

write registerofi= write= e registerE, write dataof= writed gFo] Eo]=2.

2. clock/ReqWrite 1%

writeX] o= &2} 3] 25 ot clock 21521 write 215 7F T Q3F. o]uf] RegWrite {1G 7} write {13 2 A]
7158} RegWriteo] 10]H |Gt registero] tjo]E]7F 2%} (write)=E.

RegWriteo] 00]H readE ~3ol= HO 2, outputo] input(register F4~)of] o3 BHEE= Z¢F 52
A 23 RegWhiteo] 10] 8 urited +A3R= HO2, 27} 3224 23

Read

register 1 Read
- data 1
register 2

Write Registers

register Read
Write data 2
Data

T

Clock

fin i i

l

1.4.4. data memeory

Definition 60 data memory= RAMOJA Z2 73 gjo]e]& xZFslr] et HE Q] ofgfo] 7187}
&2 725 7.

register fileX} FAFSE 22E 71X FARSH &2HeE =, read Ao 29 2|2 A8 &&FSFal write
Rlofl= 2] 3|2 2 4] E2F6) tF, data memorys read2}l write2 $JoF MemRead@F Mem Write 4155
E G

o] = w2 0] (load)TFo] data memoryol A HJo]EJE ¢Jo]o B2 EH Q3 readS Salsix] Q7] A
MemRead 415 EoF EAoF= HY.
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Address

Write
data

Read
data

Data
memory

Clock

1.4.5. instruction memory

FaE]ofo} 517] L9,

Definition 61 insturction memory= RAMOJA] FHZ

RAM-E data memory@} instruction memoryzZ 261 %

Jol& A%ete] ¢l7] HE o= ARS-ohE FE Y.

T T 1o

AL, instruction= readsh= ZF¢jo] HHE5)A]

instruction memory= read? $=FsFE 2 XSI7F HQ L.
~ Address Instruction |
Instruction
memory
1.4.6. multiplexer
Definition 62 multiplezer(muz)= 2] 7§29 input {155 S} output {2 WHUE= X9
o]=9].

muzE ARt
A5 old ds
-
57,

7} A oA

22 A3} o] 2 E

ol £
= WH

Sk 2
HuW =z
=

Zagh

muzof 2" 7§ 9] input lineo] A Eo] QICpH, EXY 2o E £

J XoE HMeste] YHEYEG], control select
m}2} olE data sourceE AFESF & Y=

EH

___,

Aoz

5171 $lefl nHlE 27]9] select {157}

FASHE muxi o8] A5S West
SHA] =

Z10]

1.4.7. imm gen

7], shte] Al E ofe] lineo 2 Balg nj= ALE

Definition 63 immediate generator unit<
AFgsF 2l o] immediateS

& 0] o)l A immediateo]] o
Holsto] Zelohs 849,

Figo] Q12 Alof sign extendd}o] wAlE FHH w2 A
o= 59 Jﬂw S ok E& jalr 5NA= OHE &

gelo] 792

Foh=

222 S} Aol

¢

glo] =il Helsly, 19k shift left
IR FR]GE, o 7] Al oFRA] g

1.4.8. control
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Deﬁnition 64 control:< '17'?40?07’]/(‘] opcodeE HFo}f, st ZFQjof] ™ Q51 XS5 A4 5}e] datapath2]
Hog HYlL @49

control-= Ao] X5 9] RS EFol 1, muzdf {1 EE H1f data S-5& Fofol1l, ZF @ 49] A Z

Z]¥5lal, FHEF oo ulE Aol gt

1. opcode

Opcode— ’I’E’W—J Hlo olel & o] A, funct32} funct7O 2 gk B oA B Eo]lE
2%F om o] HEE format typeo] OfL]Ef {rez/=a] HRE load ¥RF, store HRF, branch HLF &

datapathoi]/‘i Fgo] == Felo nfE FEY.

TE7] g Zof control:2 opcode®] SJFSlE instruction[6-0] C 2 G HEFH oo st RIoE Z} @4
Agsto] datapaths o] gt

2. controlQ] Ao {H=E
single-cycleo] A control:& ofgfje} -2 XS E5S =gk
=

RegWrite : registeroj] 4] 2] wmte(])/read(()) 2.

ALUSrc : ALU9] sourceZ 502 rs2(0)/imm(1)& A]7.

ALUOp : ALUSJA =345} 2k ] 4.

MemWrite : data memoryoll419] write(1) X] 4.

MemRead : data memoryo|419] read(1) X]7.

MemtoReg : Tegzster_J Write dataZ So]Z ALUS] ¢IxF A7}H0) E= data memory(1) 715 X%
PCSrc : pcE updated pc+4(0)/pc+imm(1)E X 7. branch@} zerod] tjeF AND ¥{FO 2 lL7]o]-7]£
o7—_

branch : EAf HZH o] branch FZFo]2IX](1) X]7%.

zZF o E ol o FyoloA] AFEE A g Ao ofH ghs 7fX757"3fE e {17 gzl don't

caregfl BE. olgf don’t care= 0/10] ofit]e} X¢l. EEZ don't carel= 7] EXOZ (02 2|F5lo]
FY YL o).

<)

2

3. ALUOp
AR Ao 4] ALUOpE (47FR] HRFo] B2 ) ofgfio} Zro] 2H|E F 7] 2 LJeld] 4= Ql-S. ALU contorl
o= funct3, funct7o] HYE[EZ o]S FAx] o2 HrFo] X H.

00 : lw, sw (add 53Y)
01 : beq
10 : R-type

1.4.9. ALU control

Definition 65 ALU control:2 controld} EE]xo] ALUZ} $8e 94FS Y5l 249,

1. ALU control9] 215 A<
ALU control:& controlZ22E] ALUOp 12}, instruction®] [30, 14-12] FE O Z o]H HRRS +~afoF
212 Al Ao2 ALUY H.

A oA ALUC L= datas offj7F go] 4HIE Z7]2 2} gits g + Qs

0000 : AND
0001 : OR
0010 : add
0011 : sub

2. ALUOp, funct3, funct?
ALU control:& ALUOp2} funct?, funct39] aflgole= instruction[30, 14-12]& ¢]o] ALUOJ XIS E B
W o] [14-12)7} functsell ST FEo] 31 [30]] functrel TR FEe. F BE functi2
o]—L]—_,] HE ZlokS A1-96).
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1.5. Bo] 4 B3

1.5.1. pc update(fetch)

pezre updated T S W0l pegtel 148 SHe YHolel, T 9JH 2 B8 B o] (branch)
Q17] ket 21jo] |00 .

pct+4E 5= Adder?] i}, petimmediate(offset)S B5H= Adder?] ZH-2 muxZ AEisto] ARESH
]Uﬂ mux2| A5 2% branch 415 2} zero A5 9] AND dAto 2 b2 XS E /\}3 5=, pet+immediate(offset)
2 .85 29 branch FFolo] thef 271 G4tol 24l F-307] LY.

1.5.2. R-type Ho]o] 43

R-type op 1d, rs1, 1s2= A& 0] gloB g, sfd wALtREe] tielf AEet Aito] £AHEF J2E
/\1471-01- /\ 01 o.

1. pcgrol Esh= B4 o] & instruction memoryof| A ¢jo]-2-.

2. ejolo] 7t Bpo] AHer R4 H4H.

3. registeroﬂlﬂ read register 1,2, write registerE 25 91, read data 1,22 A41e glojHES 2839
4. rs27fo] Ao AR E B2 ALUSrc AlSE= 04,

5. 9 tlo]BE&2 ALUOA A4k 4-88stal, 71 AiHE ALU result= =g

6. MemWrite/MemRead A1 &= 5% 09 2 data memory®]| o} &2

7. MemtoReg A1 5= 002 i A4 A& HFR register= H .

8. AAT A= write data® HFobA] write registero]] d|@5l= registero]] writeg. o|u] RegWrite A1 5= 1
o]

.

9. Branch/Zero A3 = R5% ( 0|22 pcegh2 pe+4E updated.

rd, imml12(rsl)e2 FAg=o] glenz, g uditatso] s 28e Aito]

L. peglol sfigst= o] = instruction memoryof| A ¢jo]-&-.
2. g7olo] 7} fgo] HHet 9 4= AEH.
3. RegWrite7} 022, reglsteroﬂ A read register 1, write registerS ¢ 817 read data 12 A4S glo]HE

I
0. 08,
ol

ERT

4. immZ}d A4S SF2 2 ALUSre= 14,

5. o d 1E1_E ALUO|A A4t& 4=3fstal, 11 A¥HE ALU result2 &g

6. MemWrite A1 5= 0, MemRead A5 %= 12, data memoryo]| 4] read$t Zf2 read dataz H .

7. MemtoReg A1 8= 12 data memory2] Z}-2 register® HH.

8. RegWriteZ} 12, data memory 2] t-2 write data=® HFobA] write registero]] st6F= registero]] writegt.
9. Branch 4157} 0 0|22 pch-2 pet+4=2 updated.

1.5.4. store FFo]o] AR

store G13H(S-type) £ op rs2, imm12(rs1) 0.2 FAE|o] 9onz, ST WA sl At Adtol
SRR s A4 4 98,

= ‘o2 T
. pezrel g sl= B3 o] E instruction memoryof| A 9]o]-2-.
Weolo] 7 Hio| BAT g i AbH.
. RegWr1te7]— 022, registero]| A read register 1,25 24t11, read data 1,22 A4S Hlo|HE &g
CimmZr Y AARS SR 2 ALUSre= 14,
. Ho]HER ALUOA A4S 4885111, 11 A0S ALU result=® 3§
. MemWrite A1 S+= 1, MemRead A1 3= 0%, data memory 2] Addressoﬂ OHE}O]-% B B0l Write dataZl<
writegt.
7. MemtoReg A1 8= AR E]7] oF2
8. Branch 4157} 0 0|22 pch-& pe+4=2 updated.

SO W N -
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1.5.5. beq B o]o] A9

beq AAXHSB-type) op rsl, rs2, imml22 L& Qlovg Jiot mAAR}Eo s HA-gH A4lto]
LY =2 I 22 PASH 4= 9) g.

L. pegrell sigsh= ¥ ® ol £ instruction memoryoﬂ/\ﬂ 9lole.
2. Jgo]o] ZF HHo] AAES 42 HE

3. Regerte7]- 02 2, registero]| A] read reglster 1,25 Ql&w 1. read data 1,282 A
4

5

el
)
]
e
I8
o

. s23ko] AAtof] A E 22 ALUSre A3= 04.

. o HloleE& ALUCIA] sub 14t =3a)star, 71 A7} 00]H(Z 2 W) zero 4155 18, 00] ofHH
(tt2w) 007 g
6. MemWrite/MemRead A3 = HL% 007 data memoryo]| 54| &2
7. MemtoReg A1 8= AFEE| 7] ¢FS.
8. Branch 4157} 10|22 zer07]- 10]% pcdt& pec+imml2=2 updateX]il, zeroZ} 00| pcgtd pc+4=
updated.

2. pipeline

2.1. pipeline

2.1.1. pipeline

Definition 66 pipelining2 FZo]E o 2] stageZ L}=0] datapathQ] Z} LB oJA] SGEE stages
/4—017*77 T5HA e 2K, FAlo ofe] WEFo]g Xelol= AS Zek
£ £2}3F o2 A 2]5F= single-cycle processorofAl= oF Hl
X]’:’J, plpelm’mga 2]-&olH ofe] FFolE FAo HAA X‘]E]?_E T A
GAHAE pipelininge 5T 5 FY Gl F 42 472
AejgFs =9 A
pipelining& 0] A5 B olok7|7F ofet, Tol el Ale] A58 FAA7]

LSy
=5 574 stage7l B8 glojA] astA] e W olol daiA+ A Algte] &3
single-cycleo]| A & clock cycle timeo] 7}4 =& W Hojof grxz] Qlomza oo Al
ST AL FA.

Program
execution " 200 400 600 800 1000 1200 1400
Time T T T T T T T
order
(in instructions)
w x1, 100(x4) o Reg| AU | 0%0 |Reg
W X2, 200(x4) 200 ps Ins,lg:cc:‘mn Reg| ALV aﬁ’é"e‘is Rep
w X3, 400(c4 Instruction Re: ALU Data Re
w x3, 400(x4) 200 ps fetch 9 access 9

200 ps 200 ps 200 ps 200 ps 200 ps

2.1.2. stage

Definition 67 F&Z o] 2] g2 W 7}X] stage2 #70]A] 7 5 QS risc-VE 7[EZ O 2 five
stage pipelineS AFEEF

1 IF (instruction fetch) : memoryollA] instruction< fetch.
2. ID(instruction decode) : instruction decoding, register read.
3. EX(execute) : execute/calculate.
4. MEM(memory) : access memeory.
5. WB(write back) : write result back to register.
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2.1.3. pipeline A%

Definition 68 clock cycle time:2 71 =2 stageo]] SrH2]7] w70, stages2] 8 Al7Fo] # LT
2 pipelinel] Ao0] £2.

stage® 2= A|7to]| ZJo]7} Ak, oW stage’} Al SAE T YL uf T2 stageo A= njg] ZHS
B oFF AL 51A] = AlRte] AojA.

non-pipelinedd] T o] A5 AI7HE stage 42 e o] 7} staged el Agrolahnl 24el.

2.2. RISC-V pipeline

2.2.1. RISC-V 2.2 9] pipelining

Definition 69 RISC-V isa= o}g2] o] & w29 pipeliningo] X s}

o] Zoj7} s2bit2 1P Ho] U
[F [DefA] YeiloF ok ZFgleFo] X“7077 1 cycle ¢kl stageE g :
Zlo]7} o] ¢]z] Sk} ui AAJSEE Zo]of] nkE 2FojL £ alsloF Bt

2. w@olo] formato] AEHEo] QUL align o] L.

1_]'1_ o]—?-” /l-?;g]]ol— 2 07__,_/ XI-OJEJ:o] = O‘

=

E le‘foi/ EH_F ?7}5?‘&7 stage Ojd] T ALU QFC &2 o] R x]= Ao] HAo] f72]2.

2.2.2. pipelined datapath

Definition 70 pipeliningS 52 H ZF stage B2 CFE F & olof gjor 2F¢]-S ~35jjoF 5} E 2, stage
R R o] HJHE X2l registerEo] Z7F2 Q) pipelineo]] Eo]7H= F7FF] 9l register& pipeline
register2f1l g

Write Registero] sigol= 1S Registerof] HE.Z Y O 2 HFH |9 stageZ} HA]A] E|B 2, Write
Register gl-& registero]] z|°grspe WB7EX] 71471 e Lo dgrslioF k.

control signal= o] H2 EAJ5]E 2 registero]] §FA] 2] ZFofo] A& 5o oF. stage® 2 T Q SF signal
0] XZE=H], oS stageZ} EFH T o] X o1R] grolk H.

pipeline®] Z} unite] £ == clocko] 2J5t Y £SAE shE £29 Hojx HEo|B 2 AJ2kst read-
/write ooﬂ tafj A= single-cycle processorof| A& p051tlve/neglatlve edge HLFofA Z‘}%ﬂ% 45)51=
Sof chefat /1S AT
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1555 . B
| L [ UEM/WB

IF/ID

5 _> VL\‘
5 v 2 |
™ |
u b—s-[Address Read E|
x 1 Read k=
L1 Tegisier data 1/~ e |

S
8
s s
1 E rstor 2 ALU 5, I ;
Instruction S register ALU Read
—
memory e e OIS L6 vesuit [T Address Poadt~ — |M
— | register data 2 o oo 0
—| Write lix memory &
data
Write
data
Instruction
[31-0] Imm
Gen - y lemRead
Instruction "
(30, 14-12) oo
Instruction " ALUC
[11-7]

2.2.3. hazard

Definition 71 hazarde= o} cycled] =32 & o]o] AJZRS HIsol= AF310 2 structural/data/-
control hazard’F ¢S

2} hazarde]] oot ol E & Tt ZAF

p

O

pipeliningg #-8-5'H hazard7} A 4= 9o Bz oo gt 22|17} B ast

2.3. structural hazard

2.3.1. structural hazard

Definition 72 X% 5] E (structural hazard)= tFE F & o171 datapathQ] 2]~ (ex. ALU, reg-
ister) & AHg ¢ FE ek X F Q1 A wfZo] BHY5H= hazard.

structural hazardE s dol= B o2 ofafe} ZHe Zlo] IS

1. pipeline stall(freezing)
2. 2]l 22 (data/instruction &)

structural hazard& %] 5}7] Y3l L1 cacheE data cache®} instruction cachez £2]3}11, registerE data
register?} instruction register=2 E2|gF B o] Q12| e AL L ET} ZHZF EA5H= A o] ofYzHH IF,
MEM stageZ} 2= Lo & structural hazard”7} 2rA S

A& H-2+= datapath®] memory+= data/instructiono| 22| &o] Q111 register®] 73-2-of|= read/write I
£7] 22]5lo] 7] B0 B BAZ TATAL L.

& &°1, memory7t ] = o] A ¢F2 ¢ A= thE FFole] MEML IF stage”} A& -7 A=

2.3.2. stall

Definition 73 pipeline2 E% cycleTFg YA 7= AL stallotrlad gF. o]f stallel O stageo]
AzFs0 2 Bl F7o] Y] ol bubbled HUBTT T

9T bubble 2] A5 o] F Fol ] o] v,
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B hazards stall2 sfEer 5 QIR pipelines BFH o= H50] Bold. 7Fsolttd o=
S AFS-olfoF 2.

- 200 400 600 800 1000 1200 1400 1600
Time T T T

= ? o, a8
bubble) Cbubble) @@ ‘bubble )

/g;/bble Ckbu bble

f bu ble bubble/
RSO o

§] I9] A4 IFE IM, IDE Reg, EX ALU, MEM2 DM, WB Reg& L7 = 3. tho]o] 1o 4
EE 1718 Tefotel Q.EZ0] MUH AL readshs 2, A%o] MU AL wiiteshs 22 vl

|

2.4. data hazard

2.4.1. data hazard

Definition 74 5Jo]E] 5% E (data hazard)= ofH F g o]o] s3fo] o] FF o] <] o]l ARg-of g
ks B F-95 2ol gy o] Apolo] FHA| wiF o] BAYSE= hazard. RAW(Read After Write) hazard
2t E gk

data hazardS sJE35l= HlH] o 2= oo} Z+e Aol Q1S

1. pipeline stall(freezing)

2. forwarding

3. compiler scheduling
4. Out-Of-Order execution(OoO Ezxecution)

o5 Sof, thE BYo19] Hlo|e] read /write 4L 7|EFejo} sk A9} HHE Faole] ANt ANE A
sof st 4971 9le.

2.4.2. compiler scheduling

Definition 75 compiler schedulingS data hazard7} YAsH= F o] Alo]o] o] H
Ao oD A9 Bl A S T S ol AT o)) A A e
ol A AE MR A,

-

Tw x1, 0(x0) Tw x1, 0(x0)
Tw @ 4(x0) Tw

Stall — add x3, xl, Tw
sw x3, 12(x0) add

w o (x4,)8(x0) sw 0
Stall — add x5, xl, add x5, xl,

sw x5, 16(x0) sw x5, 16(x0)

13 cycles 11 cycles

2.4.3. 000 execution

Definition 76 H]<=2[2] A3H (000 execution, Out-Of-Order execution ) cpu’F F o] AP =AJE
FEREEECE

compiler scheduling®] A&~ZEE Qo] =FojX] Heo] Adl £AE HFFEE Zo]aFH, 000 executions
SHESJo] 2ol o] A wAE HIFE Aol
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ojof HiefAl= t] XpA3] tFRA] gl

Sz ZAol= 22 9] processor&2 000 executionsS H] A Q1 hazard 2] B o2 X239}

2.4.4. forwarding

rr
Y,
Mo

Definition 77 Z-]9 (forwarding, bypassing)2 HE 2] datapathE BF5o1A] dataE FE5F
ksl

S Eof o] H WHols} HekS BT registero] G2 writedt F T G AFEHOF HLFE, F B
ol& Sl k9] datapathE AR&dHA] HLto] EBLFRERE OS5 F ol = tlo]El & Addl= A A9 2.

1. forwardingZ} stall

forwarding© 2 stall& 93] TT 5 QL= AL oFH. MEM 24 o)) 78 A48 5 9
AFolo] A= 2|4 519] stallo] T QS

2. multiple forwarding

5ILFE] register gS 0] %o A 2| E]= of 2] B o]ofA] A& SOF S F--(multiple readers), 2
oje] glo] ofe] | forwardingd + U5

SILFY] registero]] of 2] FEojof fisf] glo] writeX]= -2 (multiple writers), forwarding== HJo]E &
23 o] olghl djolE ¢,

59

Mr

j.‘
of,
g

G

FASH & forwarding Aol A7t YL = {5 7F=F0] AP of 9% 2 datapath7} o]ojd 4
8=
o] A Wol7} R-typeo] At EX stage 0]& Aad B F forwarding© 2 stall ¢lo] thS HFHol=
A9 = =

Program

z;(:::ﬂion - 200 800 1000

(in instructions)

sub x2, x19, x3 L * MEM|—WB

o] ¥ & 017} load At MEM T o] %of glo]&7} EASIE & forwarding © = stallS $H5] o 4=
9lg. o]l A= TE; 5| Load-Use hazard2}1l .

Program

execution

order - 200 400 600 800 1000 1200 1400

(in instructions) ) :

sub x4, x1, X5 ID _‘ w wa

2.5. hazard detection

ofH 7%l hazard7} ‘WAt o2 |AStS forwardings A8 ZAJAE A ofsoF . pipelineo] 4]
hazard9} forwardingef] t]5f loglco] oj@7] st=gojAd o2 H53tE o] 3]

2.5.1. forwarding logic
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Definition 78 hazardQ] TS ZF2]3] forwarding] &-§ o] HE HHSFE= logic2 oFgf|2F ZHo] haz-
ard] SFHZ LA o] QL.

oluj] forwardingdl+= o] H & o] 7] registerol] ZFS writedl= F & o]oF 8] 11, o] H& o] o] rd7} x0(hard-
wired zero)o] oft]ofof gt x0o]H wo] forwardinget HR7F $l-5-

ofefo] =2lojlA] ID/EX.RegisterRs13} Zro] 2Fg % 712 ID/EX registero]] £Aol= rsl gbS 2ok
24 5 Aol AEH = signal:S JEE= HIOJE7F rs1 &2 TR=3], rs2 o &2 Zh=x]o] upef 2] H.
1. EX hazard

: ALU @4F A]o] rs1/rs22 o] o] o] ALU ¢i¢t Zxpel rdgho] AHEE|o]oF ok 49, EX/MEM
oAl ID/EXE Hlo]E)E HAF sHe 5%

if (EX/MEM.ReglWrite and (EX/MEM.RegisterRd != 0)
and (EX/MEM.RegisterRd == ID/EX.RegisterRsl))
forwardA = 10 // forwarding H& signal A|Y

if (EX/MEM.RegWrite and (EX/MEM.RegisterRd != 0)
and (EX/MEM.RegisterRd == ID/EX.RegisterRs2))
forwardB = 10

2. MEM hazard
L ALU $14F Ao]l 71 /rs22 o] Bol7} ALU 4} Zjel ragho] A1-&Eo]oF e -2, MEM/WB

oAl ID/EXZ t]o]HE HAFF ok 43

EX hazard2}e] Lol L rdzhs Agst= AJF Y

HE == =

EX hazard7} H<:64] BASHE -2 MEM hazard9] logics EX hazard2} & ot 2]7gspH EX
hazard?} MEM hazard2 =] 2]d = Y 07 o =, Rl rdglo] vFrgxz] ZoF 4+~ g{% EX hazardZ} B0
opX] g POl signalE X]"S’O;fEE 272 2150} 7

= Lal= T

if (MEM/WB.RegWrite and (MEM/WB.RegisterRd != 0)
and not (EX/MEM.RegWrite and (EX/MEM.RegisterRd != 0) // EX hazard A|2|
and (EX/MEM.RegisterRd == ID/EX.RegisterRsl))
and (MEM/WB.RegisterRd == ID/EX.RegisterRs1))
forwardA = 01

if (MEM/WB.RegWrite and (MEM/WB.RegisterRd != 0)
and not (EX/MEM.RegWrite and (EX/MEM.RegisterRd != 0)
and (EX/MEM.RegisterRd == ID/EX.RegisterRsl))
and (MEM/WB.RegisterRd == ID/EX.RegisterRs2))
forwardB = 01

3. load-use hazard

s ALU HRF X]of rs1/rs22 27 load F & o17F memoryof A read$F 415 AF§EoJoF 5l= F-2, 1H9]
stall o] MEM/WBIJA] ID/EXZ E7’]0]E']E g A ZJoF sF= AFSF stalldF Y o]FH MEM hazard2]
hazard detectiono]] OJ5f GJo]|ElE HLH.

1 - O

IF/ID9} ID/EXE Hlwslo] WYS)T stallS G2 5 U2

AR

if (ID/EX.MemRead and ((ID/EX.RegisterRd == IF/ID.RegisterRs1)
or (ID/EX.RegisterRd == IF/ID.RegisterRs2)))
// load-use hazardZ TCH 1 cycle stall &

N, N >~

HA o) ZF stages _%_/\] o] HH , MEM hazard2] EX hazard A 2] logico] E0]7}A] & A9 EX hazard
ALK o7 SASIH F cycle % EX hazard®} MEM hazard7} Ao AL == A2 3H2ld 4~ 9]
7 | 49l EX hazardqto] ¥Hg ==& sff Fof
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o
rr
Ju
AT
o
o
)

2 logice AME-SHH 2= forwardingo] ¥ a9t F-Zo] A2 H. forwardingo] #-§= o]oF
shel otele} 2ol 3714191
1. load-use hazard?l 739 (1 stall)

2. R-Ro] vt=2 Zo]%l= ¢ (0 stall)
3. R-RoJ ?t cycle 7+ =941 £0]%l= 7% (0 stall)
= 2t Eoll 9= Reg DAZE HAI=t, obnt detectiono]] = gl A2 Holsh 2xupat 9= 7

7}-_‘5_'8 Jog HQl o],

2.5.2. stall logic 1+&

Definition 79 load-use hazard2] stall A]o] s~ E= 22 ofefjo} -

%

1. ID/EX register2] control signal-S 022 Z]7ggk
EX stage:= nop”F .

2. IF, ID registerQ] gl Y} pc updateS B2

IF, IDAE H o] -t 292 o v o <951 E.

T T
obF Y PstA] ¢h= A2 nop(no-operation) 2kl .
stall & 52 A7 AT FeT ATE 9ol 0T 5 G BT AE A

2.5.3. forwarding©] 37}5 datapath

Forwarding unit-& F7}6Fo] i unitof| 4] YE-A 22 logic2 4335t & 11 Ai}of 9]3f signalS 243t
signalo] 000" forwarding2 S}A] &= 7, 010]H MEM/WB registerof| 4] Zk2 7I- 2= 7, 109]
EX/MEM registerof| 4] Zt-& 714 2+= A 01.

forwardAof signal-2 A£3] 0™ rsl1of FS AEst= A, forwardBo] signal-2 A& H rs20] ZHe A
Sh= A4

load-use hazardo] 2]t stall2 5}7] ¢34 Hazard detection unit-2 AF&SH S unito] load-use hazard
ol AL-E 2l stall2 -85t o|F forwarding2 forwarding unito]] 2|3 = 2.

oT = =
-\
_.‘/ Hazard ID/EX.MemRead
detection
\ )7
. —DQHI‘ /
é ' ID/IEX
s / \ " E EX/MEM
o { Onlvul‘ u M E thEM/WB
; b'e — | W
: IF/D \ J ° i=d - -

Registers

I Instruction

orwardA T ™1 ™
ALU
Data —|

memory

Instruction
memory

I_;TJ

GEDGED

[

©

ForwardB

IF/ID.RegisterRs1
IF/ID.RegisterRs2

IF/ID.RegisterRd Rd
Rst /7 \<J -|
\—

‘/ Forwarding

L.x\ unit

o
N
sk
>
%0,
oo

2 o]7]9] immediate #2] mux 5
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2.6. control hazard

2.6.1. control hazard

Definition 80 HE-E 5% = (control hazard)= TFE F & o] 9J5f control actiono] GElX]&= F-2

= UFO]—
= 2

27| (ex. beq) L2 Q5| A|o]7F Hol7ks F-, vEZ ths F @ olF fetchdl= Zlo] ofy e} 7]} =
2]5 o] W olg fetchalloF of=r] ErpE A 2]7} glod AREZ] E1p7] o o] BLZ thg FF o5
o] fetchs.

control hazardZ S Z23s}= dHH 0o 2 ofgfol ZHe HEo] 912,

1. pipeline stall(freezing)
2. branch prediction
3. compiler scheduling

brancho|H EXof|A &£7] ¢14to] £ wj7hA] stallsto] sjAe 4 Q15 71E9] ¢ EX stage o] % 1 g
IF2 forwardingdl|oF SFE2 2 cycle Z<tF stallsfjof §t. p1pehneO] 7]011]@ branch AAto] AILE g
AASE 4= glo] @ H:E=0T stalldfjof St R stall penalty7]— IER=REapiy

compiler scheduling® 2 27|¢} AL HHolEL 24 436t E slof(delayed branch) sf2T 4=

[e) KN
2 =N
HHE o] A]AHL branch prediction2 F=2 ARG

2.6.2. branch prediction

Definition 81 branch prediction& branch o2 oj gjal] o] &5F= Q. branch predictionof= static
predictiond} dynamic prediction©] ${-=.

branch 210 o] E2]H, fetch=o] ¢t W o5l Ot register gHs AFAgre 24 F2s
FH431 flush7F +~BEoloF 3. 23 FoE A el nopO 2 HH

27] o] lo] E7]7F o] R A= ZF-2E taken, o] FX|X] G= 7H-FE not takeno]2til 3
1. F A d=(static prediction)

A B2 AFE FHOR dEeli A
always taken = always not taken © 2 o=%F

53] R SolE el B9 (3 EE H2) 873D, £2 26 28 vl 27517 g2
pipelineo] Lo H4-5 o5 Al A] penalty7} AANDE, FH o|3g F2 A

2. &4 dZ(dynamic prediction)

: AA] HoRe Z35lo] ZA o2 oZst= AL ghel

_,JE —/,‘—QBE,_J branch '17'?40?_4 taken historyE 7| =011 TS branch g Fo]7F FoFYE upefz Ao]
211l o5k

ojmj 1-bit= A Fg Tk i, 2-bit=2 g5 & (IS

O]
Rl

branch prediction2 F7} o| S} Zro] /g 54 ol 50|l Adufistd 54 &4,
branch prediction 2]o]|&= brancho] tst A% SFARE 5l branchPhS €ISt unitS F7}sfe] AARS
stageRtd B, 17 target F48 AGotol AHE T

A ol ZelAlo] o] It chepstt B =2 dgahA o
S ofZel Aol i ALgsHe BANAL A% 4% Hol

ot

Z5t AR o] 727 HAERE oFS
H

2.6.3. predictor

Definition 82 BPB(Branch Prediction Buffer)/BHT(Branch History Table)= dynamic branch pre-
dictionof| A] taken historyE XZol= units 2ol o] d&7] (predictor)BF 1 xE F.
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Ol

BPBojl= Z|2o] HAIg 74 27] 9go]o] F4E inders
9] Ao, ojufo] HE 7)o nje} FHE tHs 4
sig Weols} 27]8 Ael] =g

Fe] taken FE= not taken o]HE HIE
= 5 p0ﬂ§ olg| A2 ZFS Blolsfo]

%9,

1. 1-bit predictor
199] taken E-= not takenof tfjgF historyThS =] ZFgk.
W] 9 o 1o WEA BE =3 25 g,

ohE PR 9 o] o] falA] A% a4 A =) .

2. 2-bit predictor
olgflo] tojo] 7l Z¥o] oF O] taken FEE not taken O 2 FFYS vf2 ~35lx] g, B glo]
d2 o2 Fol2 Lo ks 49

Age & HdY + Ude.

Agole IHEES 7ML q52 AT, 5 A7t 2d4 oz Bt ER Al F=2 2HES AR

Not taken
Predict taken

Nottaken{ [ Taken

Not taken
Predict not taken

Taken

2.6.4. branch GAE 43t 7} unit

Definition 83 branch H4Fo] IsfAlE F4 GRS 7FsoF Wha] ~allsto] 7 HulE AFgsl= Aol
72]gl. beq HEHolE Q3 pipelineo] Target address adder(F4> 7F{F7]), Register comparator( 2]~
B g vl )& F7FoFo] ID stageof 4] Aibs e = Us.

Z|&90] H stall2 sEsFHH 2 cycleZF stallsfof Y=g, ID stageZ ¢4RE 271 42 1 cycle

oz §de - 9.

branch 42 93t 3712 91 unitEo] 57149 pipeline oo} 2.
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and x12, x2, x5 3 beq x1, x3, 16 3 sub x10, x4, x8 E before<1> E before<2>

IF.Flush

Hazard
detection
unit

i
EX/MEM

| - —
Data
memory
—
Forwarding '
unit
'

h=

Clock 3

Za12, 40: beq x1, x3, 160]2t2 A} 16(imm12)o] st ZH-2 0HA H|EZF AZFE AolBn g «
Qiro] 248 % peoll Hal. 3, x13} x5} @ AP 22 £

2.6.5. branch ¥4t forwardingo] I QgF A&

Definition 84 X/ Zoj £~aJ = %4%40f07’] OJ5f branch H4FO)] AFEE]E rs1, rs20] forwardingo] E.Q oF
32, Aol 295 BFol9] TRl Weh DA stall 7} Lo,

forwardingo] EX|SF] ?o",o,,Z'E]"]] branch 94FS QJoF Z7F unit 02 9Ql5) stallsfjoF SF= cycle 7}
Zol&XT ol& EX97 A1KS IDE nl2] YA A Sk 20| B2 forwardingo] A stall offof
ol cycleo] EASHA H

1. R-type F&go]

branch Oﬂl/ffgo olst = ]-umt2 AF-§61R] e F-2 stallo] H QX 9IS
branch ¢4FS QJoF ZIF unitS Aol 32 1 cycle stallo] Z RS}
2. load FHFH o]
branch HAFS 9ol Z7F unitS AFESFR] 98L& H-2 1 cycle stallo] TR}
branch 9G4RS QJoF 7T unit-S AF&SF 32 2 cycle stallo] 3}
AHAE 2901 o] ¥ = stageE WER HH E W stallsfof sh=2] 4] 2l 4= 1=

add x3,x4,x5 IF D EX MEM WB
beq x8,x3,10 IF ‘ID EX MEM‘ WB

w x3,06(x4) IF ID EX MEM\WB

beq x8,x3,10 IF \|D EX ‘MEM’ WB‘

(o) 20

2.6.6. BTB

Definition 85 BTB(Branch Target Buffer)«= 27| target F4E XZFol= cached].
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BTBO|= 2} branch 5 0]9] F4(35 £709] pegl) & indexiz 4] Bgolo] tfgt £7] target 745
A

BTBOJA] hito] H 3L, predictoro]] ©Ja]] taken© 2 a3 -2 Faolo] thef RS 5}
o3l BTBO] gl 2 7pA 9} H7]g).

<,

9 Zow 2718 Aoleti dZHE Aol
NHEE Sol49

S 271 Aloll ol A7 g wWEA g 5 s

2.6.7. BPB/BTBY| 52 4]

Definition 86 1. =ZF HF&]
BPB/BTBE IF stageo]] Z3a}o] BE pegle Qb2 398 +33

BPBe]| 93] taken 0.2 e 55 75 BTBAA] pegho2 7] F48 2o} £7]3. ojaf BTB pe
goll ok Fa} Yok oY stageo] Al T4 ARE 514 BIFER stalle] BT 5 oS BE
A2 )5k Hp ol fetchdh A& nop Aok, E7I513] SR Z-oli nop Xelet DA}
g2,

BTBoJ peglo] dGEE FA47F QITtH HEZ pe2 JYdlo] stall o] B2 4 Q2. 52 o]59]
stagedl <] A2 AHAE ] H7]517] globof rkel Bo1e $1412] WEo 5 i nop Hz]afo}
o]—

BPBo] ]3] not taken© 2 GZE| =t o] 59 stageo A HA 2 ANHS uf Er]sljoF FrtH
oF o] 52 nop A E]5]oF gF.

2. A&

5-stage pipelined processor of, IF stage o BTB/Predictor & J*@31, ID stage °JA] Branch com-
parison o] ARFEICHH Z|oFo] -3 stall:2 1W7}x] gk WA gk,

E2 foruardingo] B2 75 SoJAE 2711 stallo] BT

3. advanced processor

3.

1. advanced processor

3.1.1. superpipelined

Definition 87 superpipelinedi= 7] &) 535F pipelineQ] stageE T A L= A 9.
pipelineof A= block G 5FLFQ] cycleZ AFEIFEE clock speed”F 41 Hrapy].

IF ID EX WB

| 1 | |

suol3onijsuj

v o

Clock cycles

3.1.2. multiple-issue
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Definition 88 multiple-issue= SFLFQ] FH o]0 =St pipeline of&] 7Y7F EA]of] Zr-Es5fo] of 8]
Fddo] 2 g oz Aalsle AL 2ha)

E2Z oJuf i ErL register2} unitEo] W RSF1, register fileof]A] 2] Z7F port So] HQSF
RISC-Vo] #-g35]] HH 5FLL9] pipelined A= ALU/branch FZHolE, tFE pipelineof A= load/s-
tore WHOLE Y8 PHE U2 EF Al T pipelinert F2Foh YepE Fol] g
pipeline2 nop= =] 2]}

IF ID EX | WB
IF ID EX | WB
IF ID EX | WB
IF ID EX | WB

suot3onaysuf

L 4

Clock cycles

3.1.3. loop unrolling

Definition 89 loop unrolling: ¥FHE-2(loop)of il W2 FZHol7F of 2] ¥ = EE= 215 FHG5F
B7] A48 Folt A% 2

oS FOIRIATE B B2 registerE ARSI X[7FloF ofi= HE O] Qo] Foufr] wfi7of, Yt E
Ze AL 2o Al~ EJ’O?W = & AFgs1A] g
Loop: lw x31, 0(x20) Loop: lw x31, 0(x20)
add  x31, x31, x21 add  x31, x31, x21
sw o x31, 0(x20) \:"> sw o x31, 0(x20)
addi  x20, x20, -4
W x31, -4(x20)
lw x31, -8(x20)
add  x31, x31, x21
W x31, -8(x20)
lw x31, -12(x20)
add  x31, x31, x21
SW x31, -12(x20)
addi  x20, x20, -16
blt x22, x20, Loop
Part V

o 2 2]

1. memory

1.1. memory

1.1.1. memeory
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Definition 90 memory= GJo]E]E ]2} accessSl= componentE el

memory®] accesso}o] gOJE[E J7FA Q= FS X (reference)ettlil 17 & &

%

1.1.2. random access

Definition 91 2Z-37F o] A] glo]g]7}F o] Jz]of] EXfol=X]of EFglo] LGSl access times
HZSL7] LIl random accessE @ access timeo] tfer ojSo] 753k Zlo] £ fjo]E o tfsf 45
= oKt Hoks AR Jsat A HollA o feleh HAE FHoE 9l 7F-% non-random accessi=
random accessof] H]5]l Tx]5] =&l access time= 714

random access& AFESlH= memory=2-= DRAM, SRAM, Flash memory”Z}F 9l

non-random access AF§SRE memoryls F 2-419) Ha ol w2} A8 (sequential)/H] A
(non-sequential) © 2 LFE. <212 non-random accessofl= magnetic tapeZ}F 32, H]<2F2] non-random
accessoll= HDD(hard disk)7} Q1<

&7 non-random access= ZF A2} L2

[¢]
#1112 HDDE LPES PA%1 9 A4 524

1.1.3. RAM

Definition 92 RAM(Random Access Memory)= random access& AF-§3l= memoryZ, DRAM,
SRAM, Flash memory(SSD)7} 1=

memory©f Al density2h H2] HiH] djo] g &5 el

1. DRAM(Dynamic Random Access Memory)

: Glo]El7} F£7] & 0 &2 refreshXE] o] oF Sf=(dynamic) RAM.
row G (4KB Fx)Z AF§-H.

=< density, W& Hg4LH, e 7pA v,

Aglo] Z7]9 fjo]E]7F £ 41H (volatile memory).

HIEY 17]9] EAALEE A3l oG HES] AotS 2elg)

o = I =
Al &5l A] refreshallOF of= £ leaky bucketo]2l1l s}F7] &= €F. capacitor(2F&o])ol Hsl (& )7} XFH
1, H]o]Ql o™ 002 Fgdh=t o] Hop7t Al Al= A(64ms F&=). 53] L=} wofx]H HAFe]
w&0] oz t mEA 4 (8~32ms F&). Tt ol capacitorZ} 2} Q=XE AAFE W RS
W1#1327] W2, read 7 £HA] ALIFF B
main memory= 52 DRAMCO 2 E]o] Q2.

2. SRAM(Static Random Access Memory)

: refreshofX] grot: f]o]E]7F 2R B = (static) RAM.

W2 density, & F4, 52 717, w}E(DRAME] 2~ 10%).
Helo] Z7]H dlo]E]7F &21E (volatile memory).

DRAME H|ET 17]9] EHAAEE AG}A]TF SRAME VEG jnG7o] EAAAEIE AHot7]
a0 density 7} W3, HES go] 21, v A,

registeri= 2 SRAMO 2 E]o] Q]2

3. Flash memory(SSD)

;o2 Aol glo]E] z]Zlof] AFEEE non-volatile memory.

block T2 Ho] g7} g H.

Helo] FAE glo]El7F 2% Z] gFS (non-volatile memory). &2 SSDE M-S ¢I7}opA] gk &
H7F gx]spH Ho]E 7F A4 .

SRAMS AR & Z& AL235l7, DRAME T2 73 mralo] 2 A}
SRAMZ AH85HE Zlo] Asol 5.

ofo
s
il
r
rift

d

ju

[
n
i
R
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1.1.4. non-volatile memory

Definition 93 H|3J2-Y o2 2] (non-volatile memory)+= F-@lo] 1A E]o] QUX] ol Hlo]El7F 7
2 El= memoryzZ, ROM, PROM, EPROM, EEPROM, Flash memory, Optane memory 5°] Ql-=.

1. ROM(Read-only memory)
s A BRI YE T o] ¢ tpA] £ 7 GlE memroy.
Hslo] 22 T(BIOS 5)2o] 448 Bar} gl HojEE 43

2. PROM(Programmalbe memroy)
gk wink mg T eglo] 719k memory.
F2 AEA SolA g W ZRIE 4+ YRS ¢ A

3. EPROM (Erasable PROM)
: Y8-S A¢a o] ZYe 5 Qs PROM.

4. EEPROM(Electrically erasable PROM)
2 UV, Xoray 522 Y&S 2|93 ofA] 2R o+ Qli= PROM.

5. Flash memory

s HEBZA O 2 (block T9]) Y-S -1 ofA] 2P = Q= EEPROM.
NOR, NANDZF EA]3F.

SSDoj] AF-g=. SSDojJli= NAND Flash7F A-&5.

6. Optane memory

: Intelof] A] 7J8FeF DRAMI} flash memory AF0]9] non-volatile memory.
Aol GEFAT B A2l

1.2. memory A% 7|4
1.2.1. memory A% 7|4

Al7ro] Aol et memory (All) A} Q] A5 (access &) F71= T2 A A of H|3) 36| B R 1L, memory
A717F EolUA Holl wet HEdA o] Aol SHARF 218tk #E memoryTHS AFRSHH JFZH o] YR
W4, ool ket memoryoll AAZS] Z @] A 9] AHo] o] Fol%.

hybrid solution© 2, memory 2] hierarchyE 1A% AF AFE-EE dlo]E+= W23 H]A memory(cache)
ol 278k, 197 Qe dlolElE L2l 7 4 memoryol A4,

A2, memory®] 7|7} A4S AsoF sl F47} WolA £ws} A,

1.2.2. locality

Definition 94 A7}/F715 02 A F4 5 54 F2o] F2 A== Z& HloJE/F ol 4]
o] (locality)o]2F 1 &F.

90/10 ruleof] 25} 90%2] accessi= A F£49] 10% A2 Yol
locality= oFel2} o] = 7|2 L4

1. AJZFE] 2] 994 (Temporal locality)

: old o]l /ol 7} F] 2ol AE-E] ATt T AFEE TFsgo] =

ex. FFEF

s

2. F7HH 24 (Spatial locality)
: o] fo]E] /& o] 7} AFEE QP 1 F£8 Glo]E 7} AFEE Tle o] =
exr. Hf Y.

g

memoryE 2] 7§ €] hierarchy2 2|5t} 5= FFAE & A= A2 HlolE 9] locality T4

1.2.3. hierarchy
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Definition 95 localz’tyo;’] _9]'5‘]77 memory_Q] hiemrchy% ;/g}g]_oq HH]‘% memory—§— 714_‘2_ /(]__g_g]_ zlk" /%Z—g‘

7] e 2 AE-cache-DRAMO] 722 AZFek & 2.

Processor
Control
Memory
Memory
% % Memory

Datapath g g

< <
Speed: Fastest Slowest
Size: Smallest Biggest
Cost: Highest Lowest

1.2.4. hierarchy g 9]

Definition 96 1. block

A2 CFE hierarchyoA] =1 EF= do]E] 9] tFo]E blocko]2l1 BF.

cache7] 2] block TH9]2 HlO]E] & F =], upper levelZ 245 blocke] 27]7} F Zokg]. o]
Al gl o] what upper levelZF block Z7]7F 28 4= o], upper level block = 7]7} lower level block
780k ARA AAHAE 2.

2. hit

o]l A=A accessPS uj st Hjo]E]7} EX5H hitalil &
hit rate(H]&) = hit 8 / access 5

hit time2 SgF level @] cacheolA] accesssl= o] A&l A]7F

upper level9] hit rateo] =5+=F J50] 5.

O
Rl

3. miss

ofH A|Zo Al accessFS wf oll's Ho]E[7F EA|SFR] gFOH missEFi 3
miss rate = 1 - hit rate

miss penalty = CFS level@] access time + G leveld]] 7132 HJoE]& X %}ol= o] A= AlZF
hit timeo]] H]S} miss penalty”} YFE 2z o2 2.

Ol levelo A] miss7} FTFE TF levelo] 4] HO]ENE T}A] ZH=t], o] TS hitd m7px] vHEg.

i
Ml

1.3. memory 29}

1.3.1. hierarchy %

offol| A} A memory ] FXF EootH offj et 5. thF-29] cpu corer= o] FRE 7HA AL Q&
L1 cache®} TLB X% data/instruction F&2o] FLEE o] Q1S
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Processor package
Core x4

Registers Instruction MMU )
fetch (addr translation)

L1 d-cache L1 i-cache ‘ L1d-TLB | ‘ L1i-TLB
32 KB, 8-way 32 KB, 8-way 64 entries, 4-way 128 entries, 4-way

! ! ! !

‘ L2 unified cache ‘ ‘ L2 unified TLB ‘

256 KB, 8-wa¥ 512 entriesz 4-way
To other
QuickPath interconnect cores
4 links @ 25.6 GB/s each To I/0
i bridge
v
L3 unified cache DDR3 Memory controller
8 MB, 16-way 3 x 64 bit @ 10.66 GB/s
(shared by all cores) 32 GB/s total (shared by all cores)
vid

Main memory

1.3.2. hierarchy principles

Definition 97 memory hierarchy2] ZF level H=0]] Z-geF o~ Ql= 3-E 9112 ofgjo} Z+-2.

1. B& g4 (block placement)

blocko] memoryoll =& Z1:2 associativityo] Tel H5o] Eapy.

associativityE S2|H miss rates Y 5 YT sFEFo] B, AMEF(H]E), Y ARS S7F
A7),

2. B& gl (finding a block)
block B A]ofl &= associativityo] TFef A-so] E2F3.
associativityTHE2] Hl @ ARRS S=asJoF 3. n-wayQl F-$ ntH o] HgFo] WG}

1

Jul

3. replacement
memory F-7Fo] B ZFS- g ofH blockE AAg Z191x]= F2 LRUZ uf&.
E= FERIE 2617 Skt LRUEY] g5 2Fol7F 18A] 22| gfomA]l -3 o] Zhokef

= -

4. write policy
memoryo]] W-&S 5= write policyZ-= write-through, write-back 50] $l-=.

1.3.3. write policy

Definition 98 memoryof Y-&S ZHASF= write policy 2= write-through, write-back 50| Q<.

QJHFZ] © &2 upper level memoryoll= lower level memoryQ] -go] Z2l7F1, lower level memory=
upper level memory®] HloJE|E ZgFola QIS (HAIZ o]FA HAgl.) o] ufe} £% memory2]
block Hl-g-o] 5% 75 5} levelo]] o]& ¢IA] BFF s & F QIR E policy= X 5h= 4.

1. write-through

bocke] HJo]EI7} 258 Wofc} oF9) levelo] BAEE 4],

W= vl2] BFrYeE 7] o] block WA= 7HHSIR]TE, o 2= o] H5 S ol write bufferE
201z Ao} g

2. write-back

blocko] AFAE uff 59| levelo] BFY o+ &)

dirty bit 52 Ago] H Rl block Ul-§oj =7 0] BRAYIS-S dirty bit2 LFEFY 11, replacement A]o]
S5 blocke] Y82 VIIFlFE A

write-backo] YBEFH o2 o w2 7] w2 VM 5o A= write-back BA]PHS AF-g¢l

uiell
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1.3.4. architecture designo]| @& A% H3}

cache =77} Z7F5HH, capacity missi= &1 52T A 2 access timeo] F7}3t.
associativity 7} Z7Fsh#, conflict miss= Z ]S 2| A 2 access timeo] Z7}3}.
block sizeZ} 57}, compulsory missi= &0 STt tHA| 2 miss penalty @} miss rateo] 5713}

memory H20] TEAH | A4 F 71 m2l7] o], memory A2H ] A Z2AA ] ] ol
Vg FaT BE 3 ohhel.

2. cache

2.1. cache

2.1.1. cache

Definition 99 7fA](cache)= W2 hierarchy(DRAM, Flash memory)2] Buffer2 AF§E+= &7F H
Alo] x7F F7F. cache= processor ol Exjg}.

1. level

cachei= =2 hierarchyol Al W& Z o &2 L1, L2, L3 5°] EXol=t, ZE2A|A Z}7FS55 upper
level cachegl 8}21, 2 lower level cachegl gF. 22 0] HHFE] A|AHOJAE L1 L2/L1 L39] cf=
cacheE Al-g¢l

L1:& FZok=H] 1 feycle, L2 H25R=t]ol 30cycle7lR] HE.

2. locality

spatial locality & ©o]-§&317] Yo H<L2Ql wordE =2 4= blockS cacheof] =]%Fel.

temporal localityS o]-&517] QJsl FLof] {2 GJo]E[-E upper level cacheof] XZei=11, E7 level
cacheolA] HJo]E]E AFAs]loF et mfjol iz 7|3 vpA o] HLol o]l E AFAgk

3. access time

hierarchy2] access time Z{F BF-S o=,

main memory ESF storage?] cacheZ A AFRE= Z Q.

2.1.2. multi-level cache

1. multi-level

cachet= L1, L2, L3 5 multi-level 2 AF2-3} L1 cache= £ 35| primary cachezt1 T .

ol

upper level cache 4= ¢ 211, w2731, ] 22 block sizeS 7}FA 11, T @& associativity S 7}4.

L2& L1Eth= =81 I X9 main memoryHTH= #2311 ZH7] @ 29] miss penaltyS &0 & 4 2.
E3| L3of] EE5}= access= 1-¢ A x4 L3 glo] ml ¥ main memoryo]] 214 25 EthH miss penalty
7t AR UA AA.

-2 9] A ARl A= L1, L2, L3TF ARE-6AL, Ld= A O] ARRE|Z] g3 A|AH 9] 27]71 A e (v E
) L1%, S L19} Logk AL ol 7] o

5l}9] cacheRt AFE-5)= single-level cache®] 3. 7] X Tt multi-level cache®] primary cache’} HIA 0 2 ¢
Z+2. TSt single-level cache®] 7| Htt L29] 37|17} ¢ &

2. level ¥ F94
o F-2-2] hito] primary cache@} L2o|A] FHAYSIE R, o] FR|A = hit time A S Eol&= 2ol a4

3. AA 4 o A](intel core i7)

Hof 5 843, cache= YHAH 0 2 data FE(d-cache) T} instruction F-E(i-cache)o] B & o] ¢l
AlAde] we e 4 QAR L1oj| tisA= data/instructiono] £ & o] Q131, L2HE 3
unified cacheq]. L3 E Fo]o]A] TG AFRSI= BRI,

rr
<o
e
o
st
)
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Processor package

Core 0 Core 3 L1 i-cache and d-cache:
32 KB, 8-way,
R R 3 )
Access: 4 cycles
L1 L1 L1 L1 L2 unified cache:
d-cache| |i-cache d-cache| |i-cache 256 KB, 8-way,
| l e l l Access: 10 cycles
L2 unified cache L2 unified cache ipe
L3 unified cache:

' [ 8 MB, 16-way,
| | Access: 40-75 cycles

L3 unified cache (
shared by all cores) Block size:
64 bytes for all caches

Main memory

2.1.3. cache miss

Definition 100 cachef] missof= ofgfe} Z+e ZEo] A=

1. compulsory miss/Cold start : 2= T2 73 AW X|of] ZA 2] © 2 (compulsory) GRSl =8} gl=
miss.

block sizeE 24 Fzo] 7AoL HolE e B o] FY = Y. Hz AP Ao 4

HloJEl& E'ofol A2 A,

2. conflict miss

: o £ entrye] e 6o} o] YA miss.

cache 77| EE associativityE 58 9 5 U=

conflict missi2 olsl 7]Z9] Ho]E]& AFAalo} &= AFSFS- thrashingo] 2} SF.
3. capacity miss

: memory §-F] SHAE ¢laf BAFSlE miss.

cache 7] & 58 &9 &~ QL.

2.2. cache arrangement

2.2.1. cache arrangement

Definition 101 cache arrangement= cacheZ} W22 0 2 HJo|E[-& & /A 3ol= dHE-S 2ol=,
direct mapped, fully associative, N-way set associative 0] Q-

2.3. direct mapped

2.3.1. direct mapped

Definition 102 direct mapped= Z} memory blocko] cache W2 o] Ex6F= 6FLF9] single cache block
of] directly mapping=+= BF4] 9.

2.3.2. 4% 9129 AR

Definition 103 direct mappedofJA] memory blockS cache blockC 2 22 x]3el nj= c}2aF Zho]
EL H]EE /(]._Q_oﬁ

ZF memory blocko] o] cache blockoi] g =] = 2] = sig memory blocke] £A4E cache entry 7J4+2
modular ¢94FS o] ZsF. =, ZF cache blockoli= = 4= A= memory blockE29] Fgro] a4
ol31, o]& modular H4F0 2 Fsl= ¢
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ojuff L} R cache entry (L= =) Ef g 2Fe 02 F4 HE F 5F9] & 7o H[E(LSB)
TF 7R 31 A%kS 7—5 ygh = U5 ojuf el o1 H]—E— = index2}al gl ouff cache entryZ L= Z1S

ZiE ez ofg F40 indeﬂ? HEE T2 7}X?’£—,'f A 5.

index HJE 9] F7]&= cache entry2] Z7]of] o]t A Q. cache entry JEE FEE 4~ Q= 5= gFF2

HEZF Atk A.

A cache blocke] =]
off shutAwt Z7d 4= QL

rE Jlm

e FAE0) Aol ZAST, Y Wel M memory blockE-L &

index Z] A o] tjgt 9 A2, cache entry7} 0~70]21H index+= 3bit I7]E 7F&. ESF 110101110 3} 3

79l B]E 1110] index”7} T 1 1110f s5}= cache block o 2 ufg = .

direct mappedof|A] Z memory block2 o} @} ZHo] FA Zhefl w2t cache blocko] nfj =

Cache

gges882c
L/
/ X<
\ N
N N
N N

00001 00101 01001 01101 10001 10101 11001 11101

o2/ glolg & A 5224 temporal locality S &85t

2.3.3. address?] £3]

of Hlo]ElE AFFALF cachedlA] HIo]EE 25
1. tag

Sote, a1l fole] 24 5 SIAE g AL5eio] oleE it
S QU=AIE e 4 9lolok B

tagis 4 3} A2 & 2 R, § AT index 71 TP inderS H]2JgE HE
pye - gloni 49 EES g2 & 5 9.

2. offset(byte offset)

AFgol=o], o] BEE offset(byte offset)o]2fl gf.

£ 7R+ gk

Definition 104 direct mapped 4]+ memory addressE tag, index, block offset 2 2 E3l5}o] cache

indexo] OJ5llA] cache entryZF EYE=0], oG cache entryol] o1& = = HloJE]7F o2 Y +
hit AF-E Bgolal Hlo]e]E ZpA ok A H, £ cache blocko] o] H memory blockQ] H|o]E]E Z3F

Pro & floJEE

w2 a] o] 2 block THIZTF o] Zo]H. =, block Z7]9] Hl4= yrEe] FAURS ARgSl o] ot
2F addressol Al block Z7]akg9] 22 g4 0to] Fol7} ez o5 AoJslal index?} tagZ

(o} W21 £ word FHIZSE o] o], Fk i worde] HEre] EAEHEL ol A
2 3Fsk Aol wsYol dlzda]4l 22 T 2] oFo W multi-word blocko] A block offset 2 2 ZF word

direct mappedol| 4 Z+ F4 H|Ex= o} 9} o] tag, index, offset 02 FLEE] o] AFEE] 1
A 0

Azdlmteh g 4 9lg.
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Address

Tag Index Offset

2.3.4. direct mapped®] &

Definition 105 direct mapped cacheofi= Hjo]E] & A ZoF= HE 9o, 2 ZlE fjo]E-& F£E517]

5t tag2l 3G cache blocko] tjo]E]7F Eof QUEX]E YERYE valid bit7F EXSF. o]of] valid bit2]
ZAgEE 022, Hlo]E]7F ZA5HH 1, EA5L] gfoH 022 X9l

YelohH, T4 HEA] offset:s A2}l Baok glES oF cache blocke] mFEHEAE HHo]l=
index 2 ANl 78] Y& HEZ sfuf cache blockofJA] H]o]E]E FZE8lE tagE A&l cacheof=
valid bit, tag, HA] djo]El7} A2 == A.

L2 cached] HA Z7]:= valid bit, tagS A LI AFE = = YA Ho]E 9] 2715 Hel. 9=

£9], JKB cacheg}H HAA2 cache} YAFZ 02 FZF517] Q5) 7IAoF 5F= memory2] _327],_ 4KB
Hol &

direct mapped®] F2F M2 AJ2fstH offet #z. 11 ot o] 172 o] MAof diet 9]= <. valid bit7}
AAH 52 AND gateo] L, tagZ7} AAH 3|72 = 7to] ZexE Al 3729l

1. access Alof] F47} A HE N index FE-& 3¢15to] EA cache blocke 2 o]% 35t
2-1. valid bit7} 10]H tags 7} e} vl g
2-2. valid bit7} 00]H hit AT & 002 BHY1 leveli o7t
3-1. tag7} Z' O™ hit AT E 12 HUYII datas 74

3-2. tag”7} Tt 2 W hit AT E 022 HY11 o} leveli Hojzt.

Address (showing bit positions) Q
3130 #es131211 4ee 210

Byte
oftset
20 J10
Hit Tag "\ N Data

Index Valid Tag Data
0
1
2

1021
1022
1023

2.3.5. multi-word block

Definition 106 ©f2] 7J9] word2Fg2] block Z7]-& AF§5}9 (block sizeE &514]) spatial localityE
BFQSF A o] O

=0 = T XRo-

of 2] 7§o] wordZ blocko] g E[o] YTHH cacheo]] ZFE G blockof 4] 5% word®] HJoJE[E A
£38F £~ 9JoJoF 8} block oAl ZF wordE FESF7] Y F7LE block offsetS AFETF. block offset
O = oA byte offset S 5] HIESS AFESHD, block 1] wordE TEE + 9L W] bi
= 71,

byte offsetofl& @& 0FFo] Fo17F UXITL, block offsetoli= ZFA] @5 =, olo] word2 -
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blocks} F 5] AHGSHEH] YRA0Z 5F blocke] ol2] 7fe]
spatial localityE AFE-o17 E&= 4%’
A7 Aol word7F sput e mjef &t A o = =gl H.

reference A|9| &= word7} opLf Y mjF ARk, hit®] 1 fjoE
7F -&2Foro] AE3t wordE HdE o= o AFol7F Yl

=]
=

Alofl block offset2 #1352 mux

Address (showing bit positions)

314441615+ 43210
C__ T 111
Hit Tag S N A Data
Index Block offset
16 bits 128 bits
vV Tag Data
4K
entries
Ji6 J32 J32 Jz2 EB
r:
] '
Mux )
32
2.3.6. A3l block size?] %A
block sizeE 58+ Z-2 miss rates E9F 4 JA|T, cache] A 7|7} ZU3H A9 block sizeZ} U5
AZH 19k AA 2= AFEEA] ot EH| = 17J°] o] 7] ufiZell 26]2] miss rateﬂ Z7VsHAl H.

gof del= 7‘]'?533:0] 59t} miss pena

— en

ERt HolHE &2 a AAsh=

U5 2 blocke Aol ke w Atk 814 pollutiono]

L1, L2 cacheo]|A+= block sizeZ} 64byted =7} optimaldlil, L3 cache?d©| T lower3t memoryo] Al

128/256btye S AFRSH7| . &

lty7} 571t
AHgsH & gk

z
Block size Block size Block size
2.3.7. direct mapped?] EAA
1. conflict miss7} AFF TS 4= Q12
2. conflict missZ ¢15]] glo]|E S WAH|3F Ao] E T} conflict missS o2 4= Q1S
2.4. fully associative
2.4.1. fully associative
Definition 107 fully associativer= Z} cache entryo]] o]H F& ZFS 7JX]= floJelafe *Zre
OIEE O].]_ Hl—x?ol.
o] - conflict miss7F BYSIX] QFl, capacity missTH ZYSIA H. ofgl, £ dlo]EE S of
cache o] EX5l= HE entryQ] tag@l Bl 9I4FS =3 g]JoF gf.

63




— Cache tag Byte select

Cache tag Valid bit Cache data
ByteO | Bytel | Byte2 | Byte3

0000

2.5. N-way set associative

2.5.1. N-way set associative

Definition 108 N-way set associativei= TJO]E]7} cache YHOJA] &8l EX set QlojAl= ojd
Aol HYE =T S YA

1. N

N-way set associatived A= N7J9] entryZ| Z} indezo]] &G E=0], o] N7J9 direct mapped cache
7} gz oz FAsHe Ay 2R, =, 59 indexo] oA A ZTFE tagE 7FR]= N7J 2] Hlo]EE
e = Qlaz, o]of wpel A& conflict] N7je] Hlo]E]E conflict §lo] A°FE 4= U5

ojujf spL2] indexo] Hiet entry©] X’r@:% seto]2fal g}

stLe] setoll a4 5 Hlo]El& 2o B E 2} tage] Tgk Nvie] ]
2. Ho]E]<] 44

conflictF BPAYSHH ol seto] o] Bl & & o] H o] E[-& AFAer 21 ¢1=] AEs]oF 5=, o]&= t&29]

replacement policyE TFE.

Rl
N
>
<
Mo
=+
.FIJ,
Qlr
=
o
-
ol
54

direct mapped®} fully associative®] AZ9t 0 2 direct mapped 2] ©@<est & 1} fully associative2] conflict
miss 3|5 gte EAlS 2183t direct mappedoﬂ/ﬂ TS 23 B4 working set (24 2] Aol A 2~470
% 259] conflict miss7} 2 WG], o]o] ute shbe] TjE & 2~4749] conflict miss HE L wg 5
A== FAT A,

direct mapped?] multi-word block}2] 2}o] AL, block sizeTHS 5 AL | Hlo|H Z_,J_J = SR=E=
A A AF3] spatial locality S -85t 210|311, N-way set associatived| A+ A2 BolA Q11 index ZrHHo]
72 dlo| 8 &9 conflictE a2 UTH= A Q. ofnf AA| LA o A= N-way set associative?] ZF & A direct
mapped cache”} multi-word block-& /\}QO}EE & A,

One-way set associative
(direct mapped)

Block Tag Data Set Tag Data Tag Data Set Tag Data Tag Data Tag Data Tag Data

0 0

1

Two-way set associative Four-way set associative

0
1
2
3

Eight-way set associative (fully associative)

Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data

A I O N N O O A B

N o o B~ W N =

2.5.2. N-way set associative?] ¢

N-way set associativeo] 4] Bo] 6] S 4 35H= 21 direct mapped®} FAKETE], BHke] indexo] tigh B7to]

ofg] ol mz & Hels|A YojFw .

reference Ao & indexS H| W5} valid bitS HASH= 7 —8— direct mappedSt EAFHA T o] T tag2 1]

8}— AL 7F W& A direct mapped cacheo] W] BE Z=agtch Aol 2po]7} gl o] Z7ko A hit
7t W= A o fﬂra‘r s glo]g e A4t
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Address
3130---12111098---3210

| | [ ]

22 48
Tag

Index

Index V Tag Data V Tag Data V Tag Data V Tag Data
0
1
2

253
254
255

2.5.3. associativity

Definition 109 N-way set associativeoA]2] No] XM associativity”} #HZ k1 &F1, No] ZFofz]

M associativityZ} ZFoFRIck oF.

associativityZ} Z7F}H miss ratel= Z0] EX]TH conflict miss ZF4), Hlal ARRS = s]oF o]0 2 o

/l}ako] Loly. ESF o] T associativity7} S7F6FH miss rate 2k Zo] ZfolZ]. A]AHofl 2 AH 5]
Z9] associativityS 4 OF g

=

associativitys o] 57 AIZ]H Hl W ¢ikgFo] ErolX[ B &2 hit timeo] & o] UX]TF, miss rates &Y
4= Q7] WjEo] A& 02 average memory access timeS =Y T+ U2

AR 0 2 L1-& 2~d-way, L3t 8~16-way L5 AHE-gH No| Y& 72| ¥ ot $3§5]|oF 5li= vl 4Tl
Wolz| B2 | fully assiciative®} 5L A 7127 H.

associativiy7} =thal SHAF miss rateo] © @& AL opd. cache T 7|9 Wt 2-way Q] 50| 4-wayHTh
L8 X 98 EE dutd o2 4 way”/} 2-wayH Tt miss rate®] 2.

2.5.4. replacement policy

Definition 110 Noway set associatioe 4 replacememf policy= seto] A Hjo]E]E AFAafjof g mj oH
AL oz oz AFAErz]of thst policyd

LRU(Least Recently Used) replacement policy~— 7} ZFA o] AFEE QT HJoJE] & R4 02 AFA]5}
= G policy)/ 2T 5.
Az Hlo]El S Aok g uf F7ko] Hle] 9l

replacement policyE I}=.

direct mapped caches] A= 81LE€] setel] 3hLHo] Hlo]ejgto] ZASIR of @ Hlo]HE Heste] A2 Ae]
e peko] Wasix] gre.

temporal locality & 883171 $Isl 717 B~ ol A= AE H| ol eS8 A A5}

Mr

B9 2 Yo u s, ¥ F710] g 7

)

LRU

4o

.

rr

2.6. cache performance

o] 7] A= miss penalty®} 10f w2 CPIR A5-S A&,

2.6.1. cache performance
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Definition 111 cpu?} oJH T2 T#HS $ol= AZRE ofefo] 724 245 71F. =
A2 2= A7 miss7} o F-9-0] B penaltyE He 9.

1. Program execution time : H& o] =3, hit time 5 g}

2. Miss penalty : cache misszZ QISF stall time.

missZF U= 29 stall cycle(Memory stall cycle)S Fol= 42 olgfel £
oh= ol o] HlEY) 1§ miss7F Bl HIE, miss Al 9] penaltye &ok A9
Rate of memory acess i = Memory access instructions / total instructions
Memory stall cycles = Rate of memory acess i * Miss rate * Miss penalty

JIN

, 22 H

S

ojf FFolo] o A= I-cachedf Al FH OIS 7} 211, memory H* G0 -2 D-cached]
Fasjof 3. 1el0E iz CPIS 23w ofgfs} go] 729 Aoz 73 CPI( base CPI)o]
miss2 15l BAISHE o cycleS Tl G| FJoF . o]of I-cachedlli= HE F o] 7F HZ5FR]8F, D-cache
0”1_ E;q an;vofCu]_} X—?:Lo].DE o}]w:]— H] e H]-%:Io;]] _,Zi]o]: z‘g},

Actual CPI = Base CPI + I-cache miss cycles + D-cache miss cycles

ool e el A9,

= Given
- |-cache miss rate = 2%
- D-cache miss rate = 4%
- Miss penalty = 100 cycles
- Base CPI (ideal cache) = 2
- Load & stores are 36% of instructions

= Miss cycles per instruction
- I-cache: 0.02 x 100 = 2
- D-cache: 0.36 x 0.04 x 100 = 1.44

sActual CPl=2+2+1.44=5.44
- Ideal CPU is 5.44/2 = 2.72 times faster

FASHAE, CPI9] At cycle =2 dfjoF 517 wlZof| AJ7to] Fo]Hth cycle1 2] A4l Fof <.

el
cpu logic®] 4J5-0] 575t miss penalty & &E°]= 2] T TJ‘?LEH e B CPIZF Eo5HA stallo] H
W2 cycled HHOF 5 H 5. A2H A5 B7F Aol cachel] T210] ¥ 2 FFEE 7HAA H.

0|

2.6.2. access time

Definition 112 AMAT(Average Memory Access Time)w= £7% level memory2] FHa access time
oI, o] ofefo] 4102 73 4 9Lg. hitFlgle To] A7k miss7} & wle] A|7HE Hlal) £ 4.

AMAT = Hit time + Miss penalty * Miss rate

miss penalty= TS level 22] access timedF TJo]E] X3F A7 Clgl AHo]BE ofgfo] f~4]oz 7
o} = Q]2 miss penalty= CF2 levelQ] access time= AESFE 2, multi-level hierachy2] 3-8 miss
penaltyQ,l access time2 A HZH o2 FHoJH.

Miss penalty = Next level access time + Data saving time

& 59, L1 (average) Access time = L1 hit time + L1 miss penalty * L1 miss rate©] 1, L1 miss penalty
= L2 access time + L1 A% A7+,

FASH &, multi-level cache?] cpi(4d%) AlAF Alof] miss penalty©|L miss rate”} globalHA| A5 = A thH
AAA o= Astehr= < 2.
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3. virtual memory

3.1. virtual memory

3.1.1. virtual addressing

Definition 113 wvirtual addressing-2 cpuof 4] sSF=9JJo] 4Fo] HA F4& (physical address)E AF§-of=
&l Z}AFO] address A& A = AEE o= AS el o]uf virtual addressingo]] s A-&&
4 Q= JFARO] address FAQ] 7F memoryES VM(virtual memory)o]2lil kil oJuj Q] addressE
VA (virtual address). Y2 A memoryQ] F4+& PM(physical memory)2lil of1 o]ufo] address
= PA(physical address).

cpuof A= virtual memoryE AFESFL, MMUZ= unito] o] VAE PAR H3}sfo] PAoj AA] zlo]
load/store®] &t = g}

Z} I 2 A A0 A= main memory HA S EXPA] AFESHE AA Y EX e E Fo] g
virtual addressing2 ofglo} Z-2 o] HES A

1. PAE 27185} 3] ofa1 B2 TS HAle o+ Q5.
2. lazy addressing(memory &2] Q‘%}/E]]Xﬁ)ol 715k,
3. ofe] Z2AAZE FAlO] main memoryE AFEE =~ SIS

o

==

5]
et
o

HHH = 5] wj- TFAet A| 2" o] A= physical addressing2 AF&5H7] & SFA|qh, T F2.0] A A”lo A=
virtual addressing-2 A&}

7t T2 M AEL main memory & 5-5-510] AF&SFA T virtual addressing €829 ZF |07} A2 5
0| 2] 2] L. (B2 4FS nA == A iEJ_E“E Z7¢t.) qHeF physical addressing2 AF-g-9tcHA 7}
B2 IR B4 749 PAS A§SLE2 77} A4o] Elofof 511, olof nfel addresse] Ab&-o] A%
SEE main memory AH8] Tigt E A2 otol EAIoF G SHAIT SEke FR0] T2 IS ohel
o]# A& AL5t= AL AT ]_&%7;4, Q. o]# o]} & virtual memory+ computing architectureo]] 4|

714 S17] 59 ofolelo] F shtz oA,

Main memory
0:
CPU Chip 1
Virtual address Physical address ;
VA PA ’
CPU vA) > MMU #) 4.
4100 4 5
N 6:
7:
8:
M-1
Data word

3.1.2. address translation

Definition 114 F4 ¥ Y (address translation )2 virtual addressing®j] 9] VA-E PAZ Halsl= 4
< Zol=g], ol MMUZF =% MMU(Memory Management Unit)2 VAE PAZ BH2eF5l= unit .

address translation& memory access AJOFCF 5%,

Z} T2 A AE T779F Memory address space(page table)E 7FX]11, o] -F7Fo)] &l AR 9] PAE
27717'07-.

5ol 2 H|AE Memory address space(page table)@} Processor state(register, pc 5)2 W& &1,
Rl B i Zoﬂ 02 T2 HAE AYstE -9 0] 5 memoryo] AA5H= 2G-S 349t o] EEJ\]

14
l> =)
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AFol 2] kg context switch2tal SH=H], memoryo]l Hlo]HE #|AStaL ¢lojetof stE = W=7 2] 2] 57
olE=.

address translationS memory accessutth =3 & 11, ™ Q 9t 742 main memoryol| &= A3 oF 517 wjZof
5ol mlAl= FIFol 211, critical patho]] EAoh= A4FY.

3.2. paging

3.2.1. paging

Definition 115 F[0]X](page)= VM4 9] blocks BFel. T ZA]A9] HJo]E]E page T2 R/,
MMUE= 2} page® 2 PASF o g3l

1. page table

page tabled] ofjg o] Zolx]o] Q1. ZF page= page numberE 7FX|=4], o] page number= page table
oAl tl-&E+= PAE 25

2. pagel] 77|

page®] FZ7]= Y¥HH o= JKBQl. VMOA] Hlo]EE ¥e|sh= T-917F pagesd, PMojA] Ho]E]l
Pelols Bole frame?ld], fRE0] -2 pager framed} 2715 BF FOl3t. =, VMO page
23] frume @ 2Ho] BB ES] = A9

3. address translation

cacheoflA] mapping A]9J address®] LSBZ block Z7]2FHE2] block offset-= Aol ZAX]g, VAE PA
2 ok uff page Z7]7HF9] page offset:S AFEEE page”l 4KBQl -2 page offseto] I 7] 12bit Q.

VASIA page offset AT 2L tagh T tagE page tabled F3] PAS] HGEE FEoZ
VB, poge offsctBF0] FEE thA] F7bsle] PAE 9E A framei} poged] 277} ooz
oldl 4oz Hee 5 UL,

ok Mg

glolH & 22 1AH A7]|= oFA ¢gow 7t TN ATE ARESh= memory 33t Aole] HlE= FXto]
A 717] $]2. o]& memory fragmentationo]2t1l St

frame
number

page 0 \ 0
T
page 1 [ 1 1] pageO
page 2 2
page 3 page tabl 3| page2
logical 4| page 1
memory
5
6
7| page 3
physical
memory

VAE offje} Zo] page offsetg A £]et 2o Hisf translation®=|] PAZ g,
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Virtual address

3130292827 veeevvennnans 15141312 111098 ...... 3210

Virtual page number Page offset

A\ 4

1 Translation )

29 28 27 cecedieee 151413 12 111098.."....3210

Physical page number Page offset

Physical address

H7| 4.2 PAE tag, index, offset 2 Z 7} cacheo]| A AFESE.

P A= 32H|E VAE 30H|E PAZ ¥} 912, &, main memory”Z} 1GB 27|91 A. X9 ¥
A & 4 9J%0], VA 74 Et} main memory2] 7|7} AZH w3 o] &]X] 9o} memoryE HAE ALE
7h 9l T A 64HIE F4 A A7 S5 2 A,

3.2.2. page table

Definition 116 page table2 ZF paged} 0j-&%= PA9] gy o] FoJxlo] Q= table®]. page tableS
&0l page numbero] tj-§E= PAg Hroke}.

7} 2 AL 5jLpo] A 0l page tables H-5-g.

1. valid/invalid

page tables2 cache2} ZFo] valid bitE AFE5F1, 712 access HoHS L,LE]'LHE itEE A =
a5t pageo]] thet PA (frame)7}F EA5F11, H+2 7F5SFeFH translationS Sl= Al

L2 A A= memoryE &3 02 ARESLY, WA ARE 591 addressi= Uli%’ O] =AlFe] page tableo]
A gFE]o] ss. A =2 ARgSFA] framed} uf E]o]oF Sf= paged] thof A= OS7} PME &tall & A.
2. PTE

page tabled]] VAL} PA AFo]Q] njyo] Zxfsl= 215 5|5 pageof] tfall PTE(page table entry)”} E£AH
gt 9.

3. page fault

page fault= address translationo] gjer A& gl =, page tableofA] pageol Tl access?} A mjjoF
2ol page tableof A1 9] missZ2 AJzFel 4 Q2.
page faulti= OS] Oof 22| E=r)], A =22 o ¥ (PA)ES memoryof Al 714217 page tableS 7%t
T wEe oA +YolE S o

ol pageo] S E= FE0| diskol] EAeFH 1 pageE PMo] Ee]1 wjgS F-gok Hao] PM
of Hlo]ElE ¥7]vk ol H ErhH, PMo| w2 e]E gefsll njES &-gek

4. page table2] 9JX]
page tables2 main memoryo]] EXEF. page tableL memory access AJAICE AFgE]o]oF SF=0] ojjH
main memory9]] FHZol= A2 FHZo] H|G&Z]o]E 2 TLBEFR= cacheE A8k

)

page table ofg|e} Ze F2F 7HA]AL F4}

b
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| Page table register

Wirtual address
130 8 27 «eeecerescsriescir 15 14 1312 11 103 B +-++-+ 3210
| Virtual page number | page offset
i\:": 12
Walid Physical page number
( L
I=]
page table
18
I 0 then pageis
net in mamory
2 2B DT e ... 15 14134241 9058-§--- 3210
Physical page number page offset

Physical address

3.2.3. TLB

Definition 117 ®2} A9] H/5](TLB, Translation Lookaside Buffer)< page tableo] tgF cached.
memory access A|Ofli= TLBE 241 8Fl5lo] hito]H T2 addressE AFESFH &1, miss7} LH
MMUE main memoryo] F25}o] page tableofJA] FAE 7FXeF TLBoj ¥FYsl17 addressg& AFEEl.

TLBE A2 L1 cacheHTlE e F7]E 7l =g, 37] XFA7F FFOH 2 associativityS: =of I
Hitgro] BR] gFof fully associatives A0l F-27F Hs. &0l ZFof MLE.11, associativityZ} 3F
miss rateo] <.

TLBE multi-level2 743 L1, L2 TLBE= 2}5 Alga}XJ8F T3 TLBE: 2 AMgol] Qe I
data/instructionof] ol Ee]ofe] GA517] = gF.

Yubx © 2 TLBE replacement policyZ LRUE AF&%).

T

ol

=, TLBE page tableo] HjsjA = localityE &-8-517] 919+ 2.

CPU Chip
TLB
A5 4]
(> PTE
VPN N
\ 4
cPU VA > MMU PTEA >
Cache/
1 i s| Memory
Data
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