TinyML and Efficient Deep Learning

Computing(Song Han)

Lee Jun Hyeok (wnsx0000@Qgmail.com)

April 6, 2025

I AE
1 AE
L1 AR

2 NN Basics
2.1 Efficiency Metrics L e

IT Efficient Inference

1 Pruning/Sparsity

1.1 Pruning/Sparsityo e
1.2 Pruning Granularity L
1.3 Pruning Criterion e
1.4 Pruning Ratio. o
1.5 Fine-Tuning o e
1.6 SparsityS 1123t System/Hardware L

2 Quantization

2.1 Numeric Data Type e
2.2 Quantization e
2.3 K-Means-based Quantization
2.4 Linear Quantization : Concept
2.5 Linear Quantization : Post-Training Quantization
2.6 Binary/Ternary Quantization L
2.7 Quantization-Aware Training L o

3 Neural Architecture Search

3.1 Classic Building Blocks

3.2 Neural Architecture Search

3.3 Efficient/Hardware-aware NAS L
4 Knowledge Distillation

4.1 Knowledge Distillation Lo

4.2 FoFd distillation Z-&

4.3 Network Augmentation.

5 TinyML 51

51 TinyML o 51
5.2 MCOUNet. o e e 52
5.3 Parallel Computing Z7|®HE 55
5.4 Inference Optimization L 60
IIT Domain-Specific Optimization 62
1 Transformer?} LLM 62
1.1 Transformer Design Variants L L o 62
1.2 LLM . .o 66
2 LLM Deployment Techniques 67
2.1 Quantization Z-8& L 67
2.2 Pruning Z-§& . . . e 71
2.3 LLM ZJd AL L e 73
3 LLM Post-Training 76
3.1 LLM Fine-tuning o e e 76
3.2 Multi-modal LLM o 80
3.3 Prompt Engineering Lo 83
4 Long Context LLM 85
4.1 Context Extension 85
4.2 Evaluation of Long Context LLM 86
4.3 Efficient Attention Mechanism L. 87
4.4 Transformer O] 0] Z|WHE 91
5 Vision Transformer 92
5.1 VIT o o e 92
5.2 Efficieny/Acceleration on VIT L 93
5.3 Self-supervised Learning for ViT o 95
5.4 VIiT & Autoregressive Image Generation 96
6 GAN, Video, Point Cloud 99
6.1 Efficient GAN L 99
6.2 Efficient Video Understanding L L e 102
6.3 Efficient Point Cloud Understanding 105

Part 1
=

1. A&

1.1. A=
1.1.1. 2
1. AlE

H g7]= MIT Song Han WY 9] "TinyML and Efficient Deep Learning Computing(Fall 2024)"S
7o el s

Gt o= model compression 55 E9F edge deviceoJ419] efficient on-device DLS % fl-§0 2
&, edge deviceol A= cloudol] P13 -5} 22 o412 H|2Fo] YIZIge], 55| ~ofE E(mobile ai)
ofJA] IOT device(tiny ai)2 Z+E 1 JLo} Y| B2 HZHoF 2 A7 -3 Ql.

TinyMLE edgeofA] on-device® 2ler 4~ Q2 Z]ZSIE] model T= 12 7]HE 2Fgl. TinyML
o 22 AL e AT} 22 AF, Hole, 8 5o 2GS BEAIAF §

g719] 2} Y- & E+& w=is 7|92 ol QloH g fZAX] ¢l AFglo] ol HEl =is
oJol H).

=Z1

i S

== — P 3

less computation TinyML fewer engineers
less carbon N e

less data

2. Y& +4

o] oA tFE= Yl oo -5

1) model compression(FZFs})S E9F efficient inference(F-E). pruning, quantization, neural archi-
tecture search, distillation <.

St o]F model compressions A J&& A Ei= TWAIGFHAA modelS X sFek. of gt 22
DLo] &-gx]1 QX]al o] = IFL costE 522 model compression©] &8 ¢F.

20154 ZSBE] model compression Tl FFe] 27} FAGHA Zop5hn Y, B Fa SolA=
model sizeZ} SFE 0] 2] ¢1 2|9l 7k 9] o]0 = A g o ufe} o] ZFSS model compressionS & off
= a7t s

before

after

d Inference

i

W%

Training —_—

Model compression:
Pruning, sparsity, quantization, etc
2) efficient training. gradient compression, on-device training, federated learning &

3) application-specific optimizations. 1, 2B oJA] CFZ efficient DL-S HFEFo 2 LLM, AIGC(AI Gen-
erated Content), H]E].2 5o et #2512 TH.

1.1.2. 329 A

DLO| 2} Y2 ZEWE ofF WAS] HH3} IFseA] HYHOZ opp
DL] th3t 97}3]] 24 Bt SEE, o], djo]El9). 212l tfet A =gt} g el

A 0] O
T/V(]El'

1. Vision
2010 o]z =2 AlexNet, GoogleNet, ResNet 50| 5745l L E9]4l= DL modelo] Q17FO] Q4]
Tie HolAlE FJes THRA H AT, =& accuracyE 7} modelE<S TIPS B2 ALY
a7} a3k efficient DL-E accuracyS -SA]SFAL Zo]HA] costE Y 4+ JE= g
efficient DL-S 55F K& 5F= AR HFT} o H 2] A5 &9 4], DL modelo] AOFEZOILF IOT device(~
nfEZEZRL Z]7] Hof o] AeHeE.) edge deviceofA] cloud serverelo] &1 glo] on-deviceZ &2FaF
P
5] ai Al2H2 AN A2 e HolEE Shel AEHoF S, ok Aol 7 JefE
{28l backpropagation Y4F 52 5oJolJoF L2 2 inference T} H]-§o] O] Z. efficient DLoJ 2]5]]
FHE £ QlE, devicedA] XA R 02 R = On-device learningS privacy, cost, custmization,
2.

==

AR

life-long learning 52| o]d& 7}]

Cloud-based Learning

On-device Learning

O -
-
(N ,M_
New and Sensitive 3 data cannot be sent to the
Data 1 cloud for privacy reason

User Intelligent Edge Devices Cloud Server

A
' il

2. Language

LLM, code generation, translatio
A= efficient DLE §ofl o] 7
E35] LLME pc, o] 55t 28 504 on deviceZ E2]i= 712 latency, QIEIY HZ, privacy 529]
Zulo]4] o] Fo] e

LLMOJ= redundancy? 9375 OB gl GaFo] gALF 2 U tokeng pruning¥ 5 91

3
oln
Mo
fa]
=)
Mo

SRFZFS T Q2 5}1, T T modelo] 7% FAH AX] 1
o

=
>
)
S

IESE SmoothQuant, AWQ 55 &85+ LLM quantizationS e 4 =

3. Multimodal

Multimodal-2- of 2] F-7°] modalityE &-§5l= DL HoF5 @l & £9], o]u]z] Hlo]E] e} HIAE
51075775 5,:17*7] &+ As

modalltyJ glojElo] Higt tokenizeE oJFAl +¥ T ACI7FY. HE HloJE=

2. NN Basics

2.1. Efficiency Metrics

2.1.1. Efficiency in NN

1. Efficiency in NN
NNojJA1 9] Efficiency(&)= OFell2F €9] storage, latency, energyo] SHA Fzteh o+ Qg HE2>
H 4245, WEFE, AUAE B AFGYFE cfficiency”} ETH & 5 9

/ N\

Computation

Memory

Latency Energy

Greener

Faster

2} & Computation(A} MemoryE 1 2olo] F& 4 Q15 ofgfof] 2] 3t NNJA] efficiency
£ et o] A[-§8F= Metric(B 712 H)= memory2} B Z 2} computation®] 2% 7102 L]H.

Lat@ncyL £ 2 S ekgole glof dels AT, A& £, modelof A= 5ol 2 el Al7ko] 1,
oAl 7 maflg] ¥ A2l Z2E AI7He.
latency+= oFefe} Zro] computation 2] AJZFE}F memory X2 A|7F & 2 Aof ofa} A=, ojof
memory X 2] AJ7FJl= activationT 11 2] 8foF s=1, activationS Z-§5F2H UI',—;L_J memory &
Zko] B R517] w gl

olmf memory bandwidth= memory2] tJo]E] o] £ 9], bandwidth+= Fofoj] wlaf fjo]E] o] & £
ol B9, 2] 2] 7l5eF HA] Hlo]E g & of 2] oulF 7.

Lutenc.v ~ max (n‘ulﬂ[}lﬂuli(ﬁl’ 7‘["(‘"1()["\‘)
NN Specification
Number of Operations in Neural Network Model

T, i R
computation ™ yymber of Operations that Processor can Process Per Second
Hardware Specification

Tmemory ~ Tdata movement of activations + Tdata movement of weights
T N Neural Network Model Size NN Specification
data movement of weights ~ Memory Bandwidth of Processor Hardware Specification

T __ Input Activation Size + Output Activation Size NN Specification
data movement of activations ™ Memory Bandwidth of Processor Hardware Specification

3. Throughput

Throughput(H2]F)E Ho]E] 2] S5 (rute)dl. 5, Az A2 dolele] A2l AF Fol,
G| 2} mellolg el wobEl 2 Aalgh ma o] Ao,

HA 2o == QAL latency@} throughpute Wi]a] BA0] Y| S B3] WE Hz] K2H 5
oNAE o] &o] BF w7 BS o Qs EF Buld J]7]o A latencyE, H[O]E4IE SoA&
throughput & 72 1F4L 5 g7 tal a8 Aol OE.

4. Energe Comsumption

I ZAA1 €] instruction F-7Ofl Wef oy 2] sH] o] thE. Z2AA 2R E Ha] Hol X device(register,
cache, memory 5) Y= o OES oy z]7} HQgl

Operation Energy [pJ] Relative Energy Cost

32 bit int ADD 0.1

32 bit float ADD 0.9
32 bit Register File 1
32 bit int MULT 3.1

32 bit float MULT 3.7
32 bit SRAM Cache 5

32 bit DRAM Memory 640

Rough Energy Cost For Various Operations in 45nm 0.9V 1 10 100 1000 10000

A=, NNOJ widthi= 5ol FFe] | 5Lt 72| parameters 7HITH 9= o wide-shallowet NN
2 gpus &9 &40 E HY A2 & 5 Yo E stEojFHor 8% o], kernal cause(kernel
oA 8] WE)7t Ha1, Gxdato] o]gt f4to] A5 WEH ol narrow-deepdt NN-2 T £-2 accuracy g H.Ql. 0]
=2 tradeoff Ao Qlem= A% Sh= Aol Fag

2.1.2. Memory-related Metrics

NN9J efficiencyE YEIH+ metric & memory2l FHE ZS GolHI). ARg 7Fseh g|aAHTE &
memoryS BRE $58 Aol o Wol.

1. Paramerter9] 7]

parameterQ] 7o) Wl memoryE AFESOF SFE 2 parameterQ] J4E metric 02 2.
parameterS] == ofell2l Zro] layere] FFHE Tf24 AR

1) linear layer : W] ¥49] 7.]2 channel(HE] 2] F7])& ¢;, &8 channelS c,2F 3FH ¢;-c, Y.
2) convolution layer : filter] @490 7§~ Q& channel(HE]Q] F7])& ¢;, &8 channelZ c,, filter
o] A2 o} 7t2 5 ZFZF ky, kw2l SFH ¢ - co - ki - kw Y.

3) grouped convolution layer : convolution®} Z-24] groupS &g+ Ho]|E 2, groupo] 7J+& g2}
SIH, ¢i/g - Cofg knkw-g=ci o kn-kuw/g¥.

4) depthwise convolution layer : grouped convolution} Z-25], g = ¢;O] 22 ¢, - ky - kw Y.

2. Model Size

Model Sizer= 3|5 modelo] 717 weightE *]ZSF= o]l Qs HA] memroy 7], =, ofafo]
A1 0 2 ARFel 4~ Q12 bit width-= 3FL19] parameter?F XFR]S= memory 7] 914, YHrz] ol 7
NNO] HE parameteri= =45 Z7] 5 A-&9F.

o
T

Model Size = #Parameters - Bit Width

parameterofli= puning=, bit width-= quantizationS Z-§5Fo] model sizeE = ¢].

3. Activation9] 74
ZF layero] &89l activation©] 7}X|= Y49 7o) o}zl memoryE AFEs)oF SFEZ activation

K(;.7——7 = AR

1) Total Activation-2] memory AFEEFS LFEFY. ZF layerQ] &8 tensor 275 Z2 B8 ALre
2 o] o

T OART -

2) Peak Activation2 G2 SF] memoryE YEFH. ZF layer < input activationT} output activation
o] 2712 tol AdE + U,

AlexNet CxHxW

Image (3x224x224) 3x224x224 =150,528
96x55x55 =290,400
3x3 MaxPool, stride 2 96x27x27 =69,984
256x27x27 =186,624

3x3 MaxPool, stride 2 2561313 =43,264

3x3 Conv, channel 384, pad 1 384x13x13 =64,896

3x3 Conv, channel 384, pad 1, groups 2|| 384x13x13 =64,896
3x3 Conv, channel 256, pad 1, groups 2| | 256x13x13 =43264 | Total #Activation: 932,264

3x3 MaxPool, stride 2 256x6x6 =9,216 Peak #Activation:

Linear, channel 4096 4096 =409 = #input activation + #output activation

Linear, channel 4096 4096 =409 = 150,528 + 290,400 = 440,928

Linear, channel 1000 1000 =1,000

g HIEIH
HIHIE
Il

CNNOJA] memory HES QESF= AL parameterZ} oL 2 activation. infernecel] 7F-2 activa-
tion®] Z|& &0]7]7F ol F 1, training®] -7 gpu W R E]E Ho] BS.

IS CNNOJ A= weight2} activation®] memory A-E EXE7F A2 of2 10, ZFZF imbalancesiA] £ 2] 3}
ajo] ohE. 2= =2 ol w2 activation] AFE§-7FO] w211, FHIOE B2 channelo] 5]
weight O] AF&EFO] =5

per-layer memory usage
o <— high activation memory activation B weight high weight memory —, ..--""

low memory cost

.1.3. Computation-related Metrics

NN efficiencyE& YEFE= metric & computation] ZE S o HZ},

1. MAC

MAC(Multiply-Accumulate Operation)= T4 ARF oF Wl ZA] 94 oF H-S 2.2 oJrie] o]= 3df
g Zo] 7|2 Hito] B2 gpuofJA] F2 9] instruction© 2 X|-EEH. MACQ] 742 conputation9]
OFO fL,I.ol—ﬁI- A 0] O

o= T =2 T ARE-

mx k¢l Wk x 09l FE-G Fohe
o] FFREZ MACS ARIE 5= Sl
37
H

olm 2 & channel(HE S F7])& ¢;, 8 channel:& c,2F 5}

on

© MACQ 7|5 m-k-nY-S AzlspH, ofgof ZHo| layer

1) linear layer : T g
ci o

2) convolution layer : 22 tensor®] ZF AM = filter SILFZF Lol AFEE[BE, ¢]2] channel(H]
Ho] 27])& ¢;, 28 channelL c,, filtero] 29} 7F2E Z12F kp, ky, 28 tensoro] A2} 7122
ZVZF ho,woBF SFH ¢; - k- Ky - ho - wo - ¢o Y.

3) grouped convolution layer : convolution®} 2] groupS 283+ ZIo]E 2 group] /|+E g=F
—O:PEL Ci/g'kh 'kw 'ho'wo 'Cool'

4) depthwise convolution layer : grouped convolutionZ} 220, g = c; O] B2 ki, - ky - ho - W, - €0 Y.
2. FLOP/FLOPS

FLOP(Floating Poing Operation)2 R&458 HLFY. GloJE 7] BEAFH o 2 23bE F-2(H)
ST} B4 Ot Z}2po] RFasg] OB, FLOPS] 4= MAC 7j4-o] 202,
FLOPS(FLOPS per Second)& 24 2] FLOPS] 7|4

3. OP/OPS

OP(Operation)& BE 915k 727, NNe| 2} o] i} 2Easg oz AFeo] Q7] e A9
ZAsFEE o5 VISl Z1¢).

OPS(OPs per Second)= 29 2]
GOPs(Giga OPs per Second)+=
OPs /byte= 1810 E9] jo]E] B

o] o] W et dlgheld], o]
o] 2 Zo] o] 42]¢].

0 .
S 4= Q= Ao HE FI7HG) B LE A9,
=

=
= HXEe] A=¢l. o] glo] S5 memoryoj H]5} computation
o A= memoryl2 TF computationo] RE7] wfZof] OPs/byte zF

> B

Part 11
Efficient Inference

1. Pruning/Sparsity

1.1. Pruning/Sparsity

1.1.1. Pruning/Sparsity

1. Pruning

Pruning(7Fx]| 2] 7])& densegt NN2J redundant(&H 2 $F) weight/activation 55 7FX|X]7]51o] 7] &
W8 SIS AL AISIEIA sparseal Tt T Z-e NN©.2 gl 7ol ofa] ofF tA-S prune
PoHe AL AT ke 022 AL Aol ke Al

NNOJA] pruning:S weight(synapse, filter), activation(neuron, channel)o] sl Z-&& 4 Q<. o]uj
neuron-2 synapsel] GAZ FZHE B gctivation pruningS weightof] Tiel coarse-grained pruningZf
£t o & 59, linear layero] A= weight2] oF &S | A= Z1 o] neuron pruning©]il, convolu-
tion layero A& filtero] E7 HES A 7]5F= Z1o] channel(neuron) pruning%].

o] -ofz] o2 LEpYH ofefef 25 ojufl argmin, (f(x)) (A G-l HEHY.) f(x)7} F]
A7 B[22 Sl xgke]. LE cost function, 1= Y8, WpE pruned weight, N 00] o} Zko] Z &

TR ||W llo= Wp2] LO norm(YHUstAl= ego] ofd.) 22, W, 0o] ofd gl49] 7 =
pruning== W, 7} 00] ol kS N7fj ojuto 2 7}Z ujf cost7} F|471 E]EE of= W,E 2h= 719 9.

argmin L(x; Wy) s Wello < N

memory AFE-S H4F AIZF, oJU Z], -E7F ZHojlA] H]-go] TFo] . pruning-S weight2} activationS &

o
of cfficiencyE ol i=t], 53] SHEgo]7} optd YE|E0] HHLR cfficiencyS FHTH= FolA]
ago] 9.

ojm o] H FH = pruningst=X] (granularity), oJH 7]F 22 pruningsl=2X] (criterion), GO} prun-
Z'ngo;}—,%X](’FatZ'O)% 71:‘]011/(_] /g'ﬁf__liX]-,

2. Sparsity
Sparsity(2]a-g)= YA a2 Tl tjgh gho] 091 Y49] HIE-Y. prunings 2§31 sparsity=
o],

. [[Wlo
ty=1—
Sparsity Total elements in W
A AYe] Ho] A = pruningo] ojLitar g,

1.2. Pruning Granularity

1.2.1. Pruning Granularity

Pruning Granularity(Al24)= pruningol A1 9] A|A Tl =, prum'nga Z]-gof= ofElS 2ol
granularity”F irreqular@<~= flexibledl1l, o]of w2l redundantst L4E 7 ’éjﬁﬂi 2R 4= Qlof
ming o7} 8 W reutor Bt 74 ool] oF o] st ol 2, " Heloh . .

celerationo]] -9-2Jgl. o]& z} o] FHL tradeoff HAo) ¢l

linear layer®] weight2F convolution layer?] filter(weight) ZFzFell Tl oI granularityZ pruning@
= =R, 22k tradeoffis AR LropEA].

1.2.2. Linear Layer9] ot Granularity

WZF matrizQl linear layerQ] F-% olgo} ZHL granularity”} $1-<.

AR

B Preserved
|:| Pruned

Fine-grained/Unstructured Coarse-grained/Structured
1. Fine-grained Pruning
Fine-grained/Unstructed Pruning2 W] 2} Q4o tfsl] Yoo &Jx]o] U= & pruningdl= B

2Jo].

2. Coarse-grained Pruning

Coarse-grained/Structed Pruning2 £% a T & JAE pruningsl= BH] Q.

1.2.3. Convolution Layero] 3t Granularity

filter(W)ZF 42} tensor?l convolution layer2] -2 o]}

e mnulam’ty7]— 9l2. 2214 tensorl
linear layer] WHC}] tjeFok Br&lo] ZAgk. Ofﬂﬂ 2ol = 2F 7S &Lt Wefo] tradeoffE
IR B = HR FElel A= gha

k, =3
I Preserved c|'|\ ?
[Pruned < ol
=2
Irregular Regular
Fine-grained Pattern-based Vector-level Kernel-level Channel-level
Pruning Pruning Pruning Pruning Pruning

1. Fine-grained Pruning

Fme grained/Unstructed Pruning2 QFoJA] ch2 Z1af Zro] Wel z} @ 4o tfef] ¢l2]o] Qz]of Q=

S pruningsl= Bl

acceleration, parellelism Tk ﬂem’bilitzﬂ]— Z Qs HElg =~ QIS o] Eol sfEgofofAE

Heo] & = QUXTF shelf hardware('H-§& L= o) EH HAl= £ A] accelerate® 5~ g2

2. Pattern-based Pruning
Pattern-based Pruning2 £7% miiElo] YX[olE Qz]of e S pruningdsh=

N:M Sparsity= M7J2] 24 oA N7JE prunedl= pattern-based pruning®]. ql-& £9], 2:4= J7f&

270 E AtAeFe] 50%9] sparsityE 2FE el Eol ZzF B RO fjsf o] Q]z]o] 0 EE 0°] ofd =7}

':07"’”‘1]2 L= BEFE[o] E] matrizE ‘”‘40}07 A Aejek 7 5. N:M2 giAZ accuracy
22 gAo 7

Fx]o

<

o

non-zero 2-bit

values indices

B[e

W | .

uene
L
0 N EN
| |

[

Dense Matrix 2:4 Sparse Matrix Compressed Matrix

3. Channel-level Pruning
Channel-level Pruning2 £7% channel AF]E prunings}|

\.

pa— -7 a-

L HFzJo]

of & layero] pruningS 289t PS5 of, ZF layerE H-F -5 S pruning ratio(sparsity) 2 pruning
¢ 2k 9, PHoR HYHE mtioZ pruning® £ UL FA} HAZ o FL. AF 5o
507;7' 29 transformerE o 2] layerﬁ Zrolx] AFE5= modelo] Itk SJEXL. &2 model &
PN partitionsto|E £ 012 gyiE BT W H2E A, JHH R HRg Yro
pruningo] TEE7] mfiZo] efficienyE © S22 ZF layer'd X2 op7F H2 g

g 705 Pruning (AMC)
5. 70.0

I I o
S 695

E— — 8
<L 690 ‘

< - o] -~ Uniform Scaling

[T

[] g«
E

e aee 67.5 .»"
Uniform Shrink Channel Prune 50 by e
Latency (ms)

1.3. Pruning Criterion

1.3.1. Pruning Criterion

Pruning Criterion pruningell et 7129, %, oft 2g AAIg Aol thet 7] Z9).
- =

720 2 synpase/neurono A H 5232 A& HEsro] ApAaliof oF. @ S22 A
NN efficiency= =°FF]. pruning criterionS ZF gjFo] el £ Q =& mjolsl= 7|F 02 AzF

o] o
S =

ot YHUHOZ FaEE YIS WoFE = §LODE heuristic YN EES AHEY Ee dlo]
E4, NN 5o ufef ofdl 7]¥jo] £/ tFE + l7] ufie], ol 7J¥E HET= d§H oz

HlAEsfo] 25k H.

Heuristic(F2 28, W) Gue|Zolat 54 24 thg 24491 shae 7] 918
220] PHiel. BEE A 2 %
wio] 2ol WasHA] ghe AR Aol MEA AT 5 Y= Y F2 WEa

1.3.2. Weight Pruning Criterion

1. Magnitude-based Pruning

Magnitude-based Pruning2 Z7]& QT2 = 9H4]¢]l. o]= o}oFsF granularityo]] Hjgr pruningo]
SFQSF A&~ o] O
=0 =2 T R@-

fine-grainedo]] QA= Z} @42 FFelslo] HHigro] 2k A& AMAIgE. coarse-grained &]2 £
2ES DEolE G2 djg 2459 tfgF Li-normE A{Felo] Hlw el E= L2-norm, Lp-norm &5
Z Ct

[e)

=
185 75z 92 pale] AAE G Fiol 2 gre] HiFo] A7,

deEAE B e B

o -

1—
Vi3
3| -2 L2-norm VT V13 0|0
- Row-wise -
1 5 VT J26 1 5
Weight Importance Pruned Weight

2. Scaling-based Pruning
Scaling-based Pruning=S convolution layerQ] ZF filterE A2l &8 gto] £ & YEFJE scaling

factorE #Hol= HFA] Q. o] & E3] channel-level pruningS ~3el 4~ ¢l-2.
scaling factor= parameter®2, channel® 2 sfLf9] go] EXJG). o] backpropagation © 2 XX S1=].

o] % 1 o] &2 scaling factore] ST EE channel> AFAE.

o]mf 9] scaling factor= batch normalizationof A] ZJA-Eo] Z7FsgF. =, batch normalizationo]A] scaling
29Il BT R ARD + U

11

Channel
Scaling Factor

— (X 117

Weight
_ A
_ A

Activation

PP’ channel 0 48

A\

0.10

A\

Filter 1

Filter 2

_ :
v | o P Crannel N-1

3. Second-order-based Pruning
Second-order-based Pruning2 hessian matriz -
1

hii=
oA ESFE AR JIXE FEY. 24 hessian

TAMA gle el g

A\

0.29

— | ® o082

A\

—> | X o056
\ J

hij =

o]
AR
27 =2 A9 S,

2} 71 2]l djaf o

LTV =) F—
EEomp — * o~

ofegfo} Zro] HRFE]= hessian matriz HO] Y4 Q). Hessian Matrive= oJH CFH

FNE AFESHH 7] model9] lossF pruningS 2§
. ARE 2 o] &FoFetH Lec03-Pruning-19]

Channel
Scaling Factor

_ S
EEomp — (%

Weight Activation

= -

HFX] o]

g8 2 7k 9] FREE Atlohs FA Y.
~5pof T
c}

Folof et
matriz gk ko] Hpa 2 ALkopr) R

=
1

%L

6’(0@(9’(11]'

ot model®] loss7He] Zfoli= ofefjo} o]
p62E B2) T B AF0] 9] loss 2FO|7}
Fejo] =418 ARl FoxE i1, 7 gho] 22

=

1
Importance = |6L;| = ihiiw?

1.3.3. Activation Pruning Criterion

1. Percentage-of-zero-based Pruning

Percentage-of-zero-based Pruning2 09] 7J+2 £ T E AHRsl=

sl channel-level pruningS 3l 4~ ¢l=2.

ReLUE A-g3l= convolution layero A1, ZF channelo] 3l ReLUoj

W& AA L H7F 7FE B channels A A g
Percentage of Zeros)eF1l gF.

weightof] gk pruning2] -2 static(FF) o2 =27 71+

HFR] o]

o]lE E35f activation]

3l activation© 2 E&F 09]
F02] H]-8S APoZ(Average

Qi

o]
ojuf HA g4of of

r

FARJak, o] HFAS activationS E-§6F2 2

AR o 1
o = o 5lo]5 5]
sample:2 925 5102 gk Sk 3.
Width = 4 Width = 4
0 0.1/05/ 1 | [0.1/o.5/ 0|0 | |0 |0 [0.8]0 05| 0 [0.2/0.1| [0.1/0.5{ 0 | 0 | | 0 |0.8/0.1] 0
< <
> 111.2|0.6/0.3[0.2| [0.20.3| 0 | 1 | [0.7] 0 |0.6[0.1 lolo2[12/0||0o8/0o|1|[o2/0]0]03
utput = £
Activations | 0 |05 0 0.3/ 0.1/ 0 | 0 |05| [1.2] 1 | 0 |0.2 2|12 0 |0.2/0.3| 0.1) 0 |0.1]1.0] | 0 |0.4| 0 [0.5
02| 0 | 0|08 [0.1/0.6(0.7{0.1| 0.5/ 0 |0.3]05 0.2(0.4/ 0|0 | |02/ 0[1.0{0 |02 003]0
Channel = 3 Batch = 2 Channel = 3
Average Percentage of Zeros (APoZ) =ﬂ=£ =i=£ = =ﬁ
2-4-4 32 2-4-4 32 32
Channel 0 Channel 1 hannel
2. Regression-based Pruning
Regression-based PruningS reconstruction error& Y A{Fsll X2 $}6Fo] construction error”F

a7t He Wel B

prunings %

12

£ Zro}, weightol] Al £ channelS AFAJsl= HFA] Q). o] & E&) coarse-grained
]

end to end2 NNS E2]l= AL vHREZ] mZoj regression-based pruningo A= model HAE A&
ofl lossE AXFoFA pruningsl= iRl layer ZF2ZF(layer-wise) ol tigF reconstruction errorg& AJ4FsFe]
pruning@}. =, SHLFo] W o] ot AeZ 8. o]uf Reconstruction Error(47-5 03D 7]E
2 glo]Elef, E Glo]E 2 A2 (reconstruct) gk to]E] AFo]9] @ XF(error)E W3l o]E Fof FA
model-Z A XH backpropagationS THSF= tj4l H A SFE)12 localdtA & 4 ﬁ’,lg ES5] LLM 5
backpropagtationo] gt H]-&o] & modelQ] F-2 1 &-§o] ¢ #AZ.

o 4T 02 LEPYE OS] 28 X, W ol T83} 21, No= 00] oft] channele] %
7]]"07 B+ channel o] tjot A2, EX channelo]] s gto] 00]H AAIE A ||Z — Z]|p
+= Frobenius Norm© 2, @& o] BE Y5 A&t gk 3t ohs Al&F2S 71 . o dA=

WS S f= WE 227511 error7f FA31E= 5 -S4 22 H, pE ZF ol ermﬂf R 455 =
We xl—l— 21o] o HpE gl

c;—1

Z=xwT = ZXWT

c;i—1
argmin||Z — 2% =12 =Y BXW 5 stlBllo < Ne
c=0

o] g prunings A&l =89 shape> >

Gi Co Co
T — P
b |x{,*xr|x3 X x :(} b { — I
C: 1 H H H
i “I
W
X wTl

Minimize the error between Z and i

X, wo y/

1.4. Pruning Ratio

1.4.1. Pruning Ratio

Pruning Ratio= A weight/activationof] tfa AIA=E j&lo] BI& Q). pruning ratioE X]7gslo] &
apLf AR o) el 7] EE Al

pruning ratios F= = sensitivity analysis, AMC, NetAdapt 5°] = ojuf groJA ot Z
ZIZY pruning /(]Oi]—,'_: layer B2 ZZSFE pruning ratioE ZFofof aF.

1.4.2. Sensitivity Analysis

Sensitiviy Analysise= ZF layer® sensitivityS 11 2]5}0] pruning ratioE ZH= HFA] ¢

Sensitivity~= pruning ratioof T-E accuracy W3} HEE el sensitivity’} =OCH pruningedr=
accuracy’F W2 A &0l 5.

sensitivity analysis—= ofgfo] IH S AAH s H

13

1) Z} layero] s ZHE A 02 of 2] pruning rateE Z-EH-S 9] accuracryE A4LFoFA sensitivityE
ol

2) @FAFGFo)] BeFsl= accuracy thresholdE XG5, ZF layerd 2 a5 accuaracyo]] ZHe pruning
ratios X

100J~ }
O SRR
> 72 threshold T’ R
S s o0 ow1 : I
8 o L2 L3 Pruning rates: —
< 4| 514 o015 P
30 A

10% 20% 30% 40% 50% 60% 70% 80% 90%
Pruning Rate (Percentage of Weights Pruned Away)
sensitivity analysis~= ZF layer£7]8] ZH X o]gl1l 7} oF A2 pruning ratioE AH4{FSFE 2 XA (op-

timal)o] oF'd 4= Q5. HAZE SFLO layerTho] ofjet A modelo] s 1l2]dfjoF 5fHE o]+
heuristicgt BFA1Q]. AMC, NetAdapt 52 A-g5}e] o]& 74 4= ¢l 2.

1.4.3. AMC

1. Automatic Pruning
Automatic Pruning2 AFEF il modelo]L} engine©] &2 2 pruning ratioE 2= 2] 9.

sensitivity analysis@] SHAIE G4 Al model AR gt pruning ratioE 7oF& 1 o oj, 1179l
4.2 PP ARIE] AYROE A Ao e GE e AUS. IS BT

AMC S A-g5FH o] 2ok 71 040] =0 2 pruning mtzoE ‘”% T 9lL.

0
l Bridge the gap + @

ny e

Non-expert Hardware-Centric
AutoML

3
v

Machine learning expert.
Hardware expert

Efficient Neural Net

2. AMC

AMC(AutoML for Model Compression)2 model FHFS 178{3F ZF layerd pruning ratioE F-ol=
depels BEQ. o= Algo] A Fel pruning ratios = AXh W21, Yol 2
pruning®l.), G54 Y.

AMCE 8F5%E model(CNN)oj tfjsf] &2Fer. ZF layerof TigF stateE embeddmgﬁi Hk37, layer®
pruning ratio(sparsity |73)E 2]]/‘7'0}07 gt 5 AA model® accuracyES HAFEF 0] errorE
ARgSFo] HARS AXHgE o] & of 2] Wl ¥FE gl

14

Model Compression by Human:
Labor Consuming, Sub-optimal

‘Reward = -Error

Layer t+1
?%

[0

Layert
50%

Layer t-1
30%

Agent: DDPG L]

Model Compression by Al: Environment: Channel Pruning
Automated, Higher Compression Rate, Faster

1.4.4. NetAdapt

NetAdapti= o] 2] pruning ratioof] HieF accuarcyS ZRFel= 23S YFESY, A model?] LFAFY
(ex. latency, energy 5)= WEA]Z]HA ZF layerd & Q] pruning ratioS ZH= BFAI Y.

ofell 2t Zro], QFARRRS TFEAIZIHA] ZF layerd 2 pruningS 2-§¢F of 2] Bl o fine-
tuning= F ¥ accuracyE ARV o] HHE F 7FE =2 accuracyE 7FR]& Ao] HEH. o]
1S vrEsle] 2 A 9] pruning ratioS X-E8F model:s P& 5 U5 ojuf ZF v]Ho] Oif short
term © 2 fine-tuningshs o], 7l YR ShES 27 ofH ¢klgFo] U7 Hr] ufZe].

Acca Accs ((Accc) Accp ... A(icz
Short-term fine-tune ‘

A A B Cc D z N
A A A A A

s [| A
)))) A

4 — A A A A A Lf(.)ng;term‘_’ A

ine-tune

4 — 3
)) A A)

4 el I B ; :

original model prune each layer to reduce AR Final model

1.5. Fine-Tuning

1.5.1. Fine-Tuning

1. Fine-tuning

Fine-tuning(5}%] £4)2 oln] S8l modelg 575 S} Ho]EIAlo] HEoFES 4] A7
ZIH .

12, fine-tuning A| O AFESI= learning rate= F&2 7] learning rate2] 1/100 = 1/109.

pruning ratio’} =ol84E accuracyZF GolF]. SEXTF pruning O] fine-tuningS Z]-§5FH 50|
WA E= R =L, pruningd} fine-tuningS HHe &5l H 71 Y= F o] JjAe 5 s HEo] ojaf
ch2 2] b o] TRlAE A5E SASEN % HEE pruncE 4 U2,

© Pruning Pruning+Finetuing @ lterative Pruning and Finetuing
0.5%
O e e e n R S
-0.5% el
@ -1.0% o
o .
= -15% sS
& 200 R
S -2.0% °
Train Connectivity é -2.5% A
< -3.0% &
v
-3.5% .
v
4.0
40 : o‘
-4.5% L i
40% 50% 60% 70% 80% 90% 100%

Pruning Ratio (Parameters Pruned Away)

Train Weights

15

<

pruningS 8318 00 ZP7RS(Fgo] L) FFFEAE0] AAHL, fine-tuning G5 F7FH¢]
slgrol] oaf 7ol o] m 121 27

1084 . Lo Jded " Lo Jed

08 4 - 0.8 4 | 08 -

y CEF kPN

-0.10 -0.08 .00 005 .10 -0.10 -0.05 000 105 0.1C -0.10 -005 000 005 .10
Weight Value Weight Value Weight Value

Count
Count

=Y

2. Regularization

fine-tuning A|oJl= reqularizations Zd35] Z-&5l= o] £2.

£ L1, 12 regularization® A1§5H=t), Aol npe} 5] ol s njEe] JPH o 2§
B e A2 AR B

1.6. SparsityE 1133t System/Hardware

sparsity S 11 #5lo] AAE system, hardwareE A HZ2} o]l Ao 2 XA 3F}E architectures A A SFL

/\]-.9_ S}t = 2

re=

1.6.1. EIE

1. FIE
EIE(Efficient Inference Engine)+ sparse/compressed DNN model-S 2] 3F accelerator . EIE= weight/
tivationo] St fine-grained sparsityE 12}

EIEE weight/activation sparsityE HF¥ sl computationZ} memory AF-go] -2

Hrof] oiF Z7Fof] A E]E HZOIE, index 5o 96l control flow overhead?} EXJ5F1, FCURS =]
2l 4 YS(EE FHZE transformer QF9] modelS F2 A-g5F7]= ¢F.). Eol EIEE= TinyML
= 95t accelerat0r0]7] 2o R E gjo]EE SRAMoJ ZFsta 2 QJulz]o] ALof tfst 712 ofyY.

2. Weight %3 4y

EIEJ A& weight2] sparsityE E-§&8F weightof 4] 00] ofd 3} 7 L]=]of] tffeF metadataTHS =7}
ofo] memory AMES =Y. =, OfEHJ 1R OfA] £1i= logical S 4] 0] weighto]1l, ol physical
2 pio 419 weight).

EIEo) A= weightE o]&] 7§2] PE(Processing Element)2 Lol X]2]gl ofglo] T1HoA= 4j7H2]
PEE AJ2302.

memory©l= & Yot PE] g == weight7]2] 5014 Agsl=t], gl7F 1 9IXE Agek A=
relative index?} column pointergh= = 71X] gFS AF&3l LIEFH.

16

a(0f@ello a)
X

PEO

PE1

_ PE2
logically PE3|010:0:0

1 1 ' |
0,0 Wy 2W4, 3

wo,0wo,1; 0 wo 3

b
i
ReLU b3
0
0

0 wry 010

Virtual Weight | Woo | Woy, | Wa, | Wos | W,3

physically Relativeindex| 0 | 1 | 2 | 0 | 0

Column Pointer

3. Architecture
EIE9] architecture= ofzfjo} ZF2-.

Pointer Read Sparse Matrix Access Arithmetic Unit ActR/W

input activation= BFO M (o] ofd Q@ AEwF ZEFA 1) indexE Activation Queued] E-2. o]%
indexE5 EQIEZ fetchsFil ZdoF ¢Jz]o] WSS A ¢IiFel olu] W& quantizationo] 9] 16
HEE 4H|EE ekl JHlo| B & o} 16H][ER decoding?l(WjA16). o] ReLUE A%l H &85
WH =], Nzero Detection Unitof] 2]l 091 A5 A= 1 non zero?F WH W (activation sparsity
o).

1.6.2. NVIDA Tensor Core

e
(¢}
9,

=)

2
>
T
&l
ke

NVIDA Tensor Corei= DL 9418 11<0 2] 2]5l= fjof] ES}E processor®]. o]
N:M sparsity(pattern-based pruning)E A-§F weight sparsityE 112}

olef o} Zro] metadata matriz-E -3l input activationof 4] kol AF-&EF
press®E matriz2}o] MRS 3

FRUFS FESEL, com-

17

Sparse operation
on Tensor Core

B matrix (Dense)

B matrix (Dense)

Dense operation
on Tensor Core

e
'[T

M M

| B

! K i C matrix (Dense)

A matrix (Dense)
A matrix (Sparse)

|

FKrz= 5 K2 Cmatix (Dense)
Non-zero data 2-bits
values indices

Dense MXNXK GEMM Sparse MXNXK GEMM

1.6.3. TorchSparse/PointAcc

1. TorchSparse
TorchSparses= sparse convolution X]2]& 9JoF 2lo]H 2]2]2]¢]. activation sparsityE 112 gF.

YE gjo]E]7] sparsedE e, Trael convolution 9I4RS BFESIH EX fl409] Zro] of2] HE]
g-g5]7] 2o sparsity”} 5]4E (denses7] E).

TrochSparse2] sparse convolutinon-2 &5 tensor7F Y& tensor2} EU3F sparsity patternsS 7} &=
2 549 ofe] 187} Zo] 29| YT U pattern FLFL F}YoliL, FEolA 00] oF
f4o] gisiA]F convolution LS 5 EF.

ol 7]of|A] oel} Zeo] 7} AL Py, P9t Qo+, Qa2 AT, weighto] QlEIAL 1 HE]
AlZFsfo] Z7F0] (0,0)]. sparse convolutionof A= P; oF weight] G14F0 2 Q; 7} I ZE]= Z} mapping
2 (Pi,Q;,Wayp)o] FEHZ LFEFY. 0]5 weighto] ¢1E] A o] mlakA] mapping g Ho}1, & Aok weight
Te) ol x HAHel Ag

Conventional Convolution Sparse Convolution
(Po, Qo, W1,1)
(Po, Q1, W10)
Maps (Po, Oz, Wi 1)
(In, Out, Wgt) (Po, O3, Wo.1)
(Po, Q4, Wo,0) (Po, Qo, Wo,0)
Computation (Po, Qs, Wo 1)
= + fin X Wwgi) for — (Po, s, W 1)
each entry in the maps (Po, Qg, W-10)
(Po, Q10, We1,1) (Po, Q1, Wq.-1)
9 matrix multiplications 2 matrix multiplications

18

Workload

Maps
(In, Out, Wgt)
(Po, Q1, W-1,1) Input Features Input Buffer ~ Weight Partial Sum Output Features
(P3, Q4, W-11)
(P1, O, Wa1g) PO \ Qo
(Po, Qo, Wop) z; PO PSUM1 / (Q);
(P, Q1, Wop) W11 —
P3 PSUM4
(P2, Oz, Wop) P3 / \ Q3
(P3, s, Woo) P4 2 X Cin Cin X Cout 2 X Cout Q4
(P4, Q4, Woo) 5 X Cin 5 X Cout
(P3, Q1, Wao) =0+ fo X Wa4
(P4, Qo, Wi14) = 4+ X W14
(P4, Q3, W11)
3. Grouping

QFojlA] Aol A ZHo] weight® 2 workloadE 46 H4FS oL, ZF weighto] T el mapping2] 7j
Zof] mraf computationof imbalanceF BHASF. OFoF weight ZFZF-S 78 2] 0 2 HRFSFCIH computation
regularity”} ofl->- QoA He 2 elo Eelslil, HE weighto]] Hiol paddingS F7Folo] JdEFH o= o
A paddingo]] TFE computation 0verhead7} Z]Zl. o]of] wre}F TorchSparseof A= ofgfjo] 12}

. P o o . = = =
Zol mapping®] 7|71 FAFRE Y7 weight5& groupingsto] ol s &g
SESES EEEEEEE =
— — —
=ll %gigg EI= |
Extra computation = 2/ 28
(Small overhead)
OOOOOOI0 ST O EET)
Separate Computation Dense Convolution Computation with grouping
Worst Best Worst Best Worst Best
Computation overhead Computation overhead Computation overhead
[
Computation regularity Computation regularity Computation regularity

o 7]ofl Al computationZ} reqularity= tradeoff Ao QIct= A

TorchSparse& 7JKeF TorchSparse++9 A= (Y7 &8 4
2t grouping®] aY}E ol &9 7S AFgek

Vanilla + Row Reorderil

Was Wao Was Was Wao War W Wes Wi v Wt Wao W
N e BE I RRE
-~~~ ~ . = [N -

[N [BE ...
3 . A . — a..- .AaA B..A:
e R B
i b | B s A.... ...A 5 N.. e, A Az. 8 -. A

o T B o, [A = A -

R LEY [= o, ol [0 [=0 [l [-]

Redundancy Redundancy Redundancy
’ redundant computation =12 redundant computation = 10 redundant computation = 8 .

4. PointAcc
PointAcc= sparse convolution R 2]E 9ot SFE o] acceleratord]

PointAcc= sparse convolution2] mappingS G820 2 22, ofg|o] 724 inputZ} output tensor

19

HA=31, input tensorg shiftslo] output tensor@l YX|5F= Q@ AF mapping L2 FIFeF o&
hiftSpA] Q=2 AEo Al L R]o}= F2E Wo o0l alole= mapping, L-E% ofgfl=2 oF 7} shift
IRl FEE Wy, 19 SllSol= mapping®. o€l 4] 22 ZF weighto] tiet mappingS H-F

¥
=

)

rob, Tu[r U
=2,

0
o i
I o
Y
o Sk

Input Point Cloud
Input Point Cloud Output Point Cloud
Po P1 P, Ps P

. 4
m AEEIERISEIRS — |22 2«
~ wT,,’anw,H +(1,1) | forwas
} stride = 1 H Wo.1| Wog | Wos le

a Wit | Wao | Wit Po P: P Ps Ps

@ “ S

Q@ N

Qs) TQTT/\T/‘C/\ZT/T/T/

= Shift Input for W11 ‘ Intersection %

Output Point Cloud (In, Out, Wgt)
(Po, Q1, W.1..1)
(Ps, Qa, Wa11)

PointAcc: Efficient Point Cloud Accelerator [Lin et al.. MICRO 20211

2. Quantization

2.1. Numeric Data Type
A 2 HFEPE(FYD)E Ao,

2.1.1. Integer

Integeroll= unsigned2} signed FE o] ZX|F.

1. Unsigned

Zo] oft] Y25 T ojdsz HH.

2. Signed

sign-magnitude L= 20] B HAHS ALE9)

Sign-magnitude= 4-9] HEE BT HER AT thul] HER 2718 YEfE B4,

29] B4 BHUL Pk sign-magnitudeS) FAsH, SoE FUG 27]9] o] o 19] WA
HtL(HEE HE HH) 18 Ot AS ZFo 2 5l 7] # Y. HJEZF nAf 9] ¢ W gF v EX= —2n—!
o Aot Aoz WhE 2 9L

|m

Sign Bit

Bllof+[1]ofofo]r]
X X X X X X X

- 264+25+424423122421420=-49

Bl [ofox[e]a]r]
X X X X X X X X

-27+264+ 254244234 224+21+20 =-49

2.1.2. Floating Point

1. Fizxed Point
Fived-point(29457) B2 244 91318 2ste] A48 BHSHE PAY. Y29} 25329

= o 1 =3
HIE 2 n]e] oFgl ¥ EHT.
ofuf He nilH] HIES] B9 29] n-1go] HFHL, £ niA] HEY F9 29 nge]

20

S, 7t 22o] ASAFES R cotd g 447} F
FL 2 HES} PR 2o P AoR Yofsn, At vxjele] 47§19 e 29] 7]
SAZE Fol shiftohe Ho8 PG k. g HAE fived pointo] LS H2 AL O] F 29]

AEAFBFE9] bit shiftE E5f FEEE 2 floating pomt_liE,L H]-&o] &L

[of1 1 o o o]1]

-23422421420421422423424 = 3.0625

X X X X X X X X

(-27+26+25+24423+224214+20) x 2-4=49 x 0.0625 = 3.0625

2. Floating Point

Floating-point(F-&244) A4S 2408 RE 7 2 A9 $AF H2 @ EF o072 17%s}o]
Eel dpa]o).

32H|EE AI-g3l= IEEE 7549] Single Precision(SHg W) Floating Point(IEEE FP32)9] H[EX=
Sign bit, Exponent, Mentissa(Fraction)Z Y= 11, L}59] #Z]of uf2l ZFe. EGF exponent ZFo
o2} normalized value2} subnormalized valueZ} EXSF. Ao -&4-& HEE] X HI]E 211512}

Sign 8 bit Exponent 23 bit Fraction
Exp it Fraction=0 | Fractionz0 ’ Equation
004=0 O +0 subnormal (-1)sion x Fraction x 21-127
01n..FEn=1..254 normal (-1)sion x (1 + Fraction) x 2Exponent-127
FFu=255 O thFO‘ NaN

subnormal values normal values

| | | | e | | | Il Il |
T T T T T T

+0 2-149 (1-223) 2-126 2-126 (1+1-2-23)x2127

3. O}t Floating Point
O] 2L 9] bitE A5 efficiencyE SFEE 5~ 2. exponentE 0] H mnge7]- =&, fraction
= £90]9 precisiono] Foly. =, EoF HE s=of gj5] range®} precisions tradeoff HAJof] <.

IEEE FP32 9] o} 22} 2] floating pointE EHSH= ola] W4)50] 25 7he H3ohe el
IEEFE FP322F =gt

1) IEEE FP16(Half-precision Floating Point, E5M10, IEEE 754)
2) BF16(Brain Float, E4MS3, google)

3) FP8(E4M3, nvidia)

3) FP8(E5M2, nvidia)

4) INTY, FPJ(EIM2, E2M1, E3MO)

21

IEEE 754 Single Precision 32-bit Float (IEEE FP32)

IEEE 754 Half Precision 16-bit Float (IEEE FP16)

Nvidia FP8 (E4M3)

-:|:|:’ * FP8 E4M3 does not have INF, and S.1111.1112 is used for NaN.
* Largest FP8 E4M3 normal value is S.1111.1102=448.

Nvidia FP8 (E5M2) for gradient in the backward

_:D * FP8 E5M2 have INF (S.11111.00;) and NaN (S.11111.XX).
* Largest FP8 E5M2 normal value is S.11110.112=57344.

INT4
. -1,-2,-3,-4,-5,-6,-7,-8
0, 1, 2,3, 4,5,6,7 01 2 3 45 6 7
ONRONIBIR| =1
(R[S =7
FP4 (E1M2)
-0,-0.5,-1,-1.5,-2,-2.5,-3,-3.5 —g9o000000—
-M M o, 0.5, 1, 1.5, 2, 2.5, 3, 3.5 0 1 2 335
Bl o] 1] 0252005
-1 1 | =(1+0.75)x210=3.5

FP4 (E2M1)
-E -0,-0.5,-1,-1.5,-2,-3,-4,-6 _eeeee o o o -
0, 0.5, 1, 1.5, 2, 3, 4, 6 01 2 3 4 6
no inf, no NaN
FP4 (E3MO0)
-0,-0.25,-0.5,-1,-2,-4,-8,-16 —emeo—9o— o o 0 o
0, 0.25, 0.5, 1, 2, 4, 8, 16 001 2 4 8 16

=(140)x213=0.25

=(1+0)x272=16 no inf, no NaN

2.2. Quantization

2.2.1. Quantization

1. Quantization

Quantization(YRFSHE L2 (continuous) o] ALF B2 QF
crete) gk°] Hefo = Bek(Aot)oh= AE ek &, A ghs Y& Heksle A 55 9rgk ojnf
n-Bit Quantization 7]& dJo]E]E nH|E Z0|9] integer2 3l Z

AT quantization©] Z-§% ko] xlo]& Quantization ErrorgFil @F. quantizationof Al quanti-
zation errorE F|A38}ol= o] = QGF

o
BN,
o
Ry
Ol
L
Ol
~
rr
)
iy
o
£
2
LY
ro,
=
¢

— Continuous Signal Quantized Signal Original Image 16-Color Image

M

Quantization Error

Signal ,?L\ \ﬂ_\
VARNY 711N\ h
[\
\ / time 4
Nt

—~

L4

2. Post-training Quantization
s}&E] DL modelof] quantizationS Z-&5F0] weight & activation?] floating point 1= integer & 5
(INTSO|L} FPj)02 W5k}, o]o] mpat Pl GIAFS integerZ +l5HER 4 = 98,

22

quantizations Z-&5FH computation®] SHOJA L AL 9] hitE * 2]5F= integer H4Fo] o] Wp=2 17
= = 0] A

oNIxIE € 5L, memroy SHA = 22 9] bit AFESFEE model sizeE =Y T A5

DL modeloj] gjgF quantization© 2+ k-means-based quantization, linear quantization, binary quan-
tization 5°] Y. ZF HHAIELS memoryof X3ZFof= WA TF arithmetic ¢ BF4] o] ZHH o] Bl w Sk

T s == T mef 2F 71l tisiA] quantization YE=IF EEFE & Qs

3:

[2] o [4]
= E En =107

2.091-0.98| 1.48(0.09

0.05-0.14}-1.08|2.12

ro.91|1.92| 0 |-1.03|

0
1
3
1

NEEEIR

1
1
[
1

0|1
ofo
1|1
101

wlo|=]e
vlo|e|=
<o~

1.87| 0 |1.53(1.49 0: m -1 0 o
K-Means-based Linear Binary/Ternary
Quantization Quantization Quantization
T Integer Weights; .

Storage Floatln_g Rt Floating-Point Integer Weights Blnary_/Ternary

Weights Weights

Codebook

. Floating-Point Floating-Point : ; . .

Computation AT AT Integer Arithmetic Bit Operations

A= ol 7IH2 edge device, YHIT= A|2H] 54 2] modeliBRE of 2}, cloud systemof| A=
2

ot oL

g
=
o

2.2.2. Mixed-precision Quantization

pruningof A A &, ZF layerd 2 Z X SIE quantization(precision)S Z-&35] 4

(o]
GASAE brute forceizi P B 50 47} EA5HLE, ofdls} Zo] FekolErS A8 HH

Ao
e+ A2

weight | activation " BISMO (Cloud)
e e e BISMO (Edge) ‘
Layer 1 - N
: 4 bits / 5 bits PE - PE - PE|
sar | Action B Hardware . f
CHLCHR -~ > | “Mapping~ 7| [re I
IR i R =
: 6 bits / 7 bits | mp - CTepo
Actor |- SEte.. ...Direct -

Hardware
Accelerator

|
R =
|

Bit Widths Quantized Model

2.3. K-Means-based Quantization

2.3.1. K-Means-based Quantization

1. K-Means-based Quantization
2 S k)9 group = ZFEF TF7RE centroidE 7FR]= A 02 clustering

K-Means-based QuantizationS 41S

ok, zF glo] el & ol groupe] Flo 2 Heksl= 7] Q. oluf Z} group™ FIFzH(HFEFL)ES Centroid
2}71 5}, centroid=L 7IX 1 = FEFRE Codebooko]2f 1l g

k-means-based quantizationof A= weight-& integer2 *]7ZF5l1l, floating point arithmetic ¢I{FS 59
gl =, o5 ZFS H4Fo) AR e mi= floating point=2 H3FSF o]uf codebook] S E-835]9] integerE
floating point=2 HEFSL2 2 codebookS floating pointd]. o] & BFA]L parametero] Ojsf =& precision
S JHSIAY BE 7L Jefgd Do Q7] ool +agk

FP32E AFE3lE parameter®] 74=7F mo]2l1d SFH model size= 32m bitQ]. k-means-basedZ n-

23

bit(INTn) quantizationS Z-£351'™H model size== mn bito] 1, codebook2 1 F7]7} H]wW & 2o B2
PAIS 5= 908, no] 245 H BRE memoryE £ 4 2.

weights cluster index) reconstructed weights
(32-bit float) (2-bit int) centroids (32-bit float)

slof2]1|a m
cluster [1 1 0 3 |2 m
Mdopont offBlon

3 1 2 2 |o:|-1.00

indexes codebook
32 bit x 16 2 bit x 16 + 32b|tx4 20B
=512bi|t=64B =32bit=4B" =128 bit=16B = R

3.2 x smaller

2l5] 2] © 2= convolution layerd]] TIeiAl= 4bit, FC layero]] QisfAlE 2bit2 quantizedl= FHo] & &
SF

“ top5, quantized only < top5, pruned + quantized % top5, quantized only < top5, pruned + quantized
“ top1, quantized only © top1, pruned + quantized “ topt, quantlzed only © top1, pruned + quantized
85% ' . > o o 85%

68%

51%

34%

Accuracy

17%

o ; : 0% &
1bit 2bits 3bits @ Sbits 6bits 7bits 8bits *1bit @ 3bits 4bits Sbits 6bits 7bits Bbits

Number of bits per effective weight in all Number of bits per effective weight in all
Conv layers FC layers

k- means based quantizationS integer® ZJZFSFHA] memory SHOJA]Q] o] HL Qlx]al, 0|5 dequan-
tizes 595k floating point H4AFS AFESFEZ computationofA] 9] o]FHL 2. sFxut LLM 5
Z|0] A2 HIo A= memory SH O 4] 0] AJoko] o] B7] miiof o] Aok a-§-o] EAgk.

2. Fine-Tuning

k-means based quantization2] codebook ZIL fine-tuningo] 2Ja]] X2},

ofgfo} ZH2 7S 7] A backpropagation®] = H. 1) ZF weight¥ gradientE H4Fet gradient matriz
£ 7248 2) =Uet groupd] G5l gradient7]2] HoFA] gFel (groupd gradient’} =&E.) 3)
group® gradientof] learning rateS &4 7]E2] codeboooko]] Tl gF.

weights cluster index) fine-tuned
(32-bit float) (2-bit int) centroids centroids

3 0 2 1 |3

cluster | 1 1 0 3 |2

M E> 0 3 1 0 [1:

gradient

group by

=

2.3.2. Pruning3} Quantization

24

1. Huffman Coding
Huffman Coding> HlZ=7F &2 OlgS F-& codezZ, Hlpif B2 Oighe 7] codeZ 9f%3l= 7]
el
quantize’l modelo] -5 ZI weight ' F]47F B AS S HEE ARgSf xSk, A7t
He Ao e mES e 3T = U
2. Pruningd} Quantization

= i

pruning@}F quantization, huffman codingS XM= Z-§35}c] model compression= 53
-2 pruningo]U quantization & oFLEF -80S wfHt 4 HFo] compresse 5= Sl
L)

AA
olgflo] 7a]Z = AlexNetoj pruning, quantizationS Z-§3-S o compression I 9]
Z YEY. pruningZ} quantizationS 2 F Z-g6F Zo] 713 HES compression©] 7}-s3F.

&

+ 91 o

= accuarcy

B o

‘O Pruning + Quantization 4 Pruning Only Quantization Only

0.5%
0.0%
-0.5%
-1.0%
-1.5%
-2.0%
-2.5%
-3.0%
-3.5%
-4.0%
-4.5% [1

2% 5% 8% 1% 14% 17% 20%

Accuracy Loss

Model Size Ratio after Compression

pruning= 2-85F H fine-tuningdl1l, o] quantization= Z-&3F & fine-tuningd}Fil, BFX]2FO 2 huff-
man codingS Z-&3} ©] compressgF.

Pruning: less number of weights

Q
=
@
a
@
b
£
K| @
:
Q
=
=
@
-
~
\
1
1
1
1
1
1
1
1
1
’
.

1
1
1
1
1
1
1
1

e

original same : same same
network accuracy ,accuracy accuracy
1
. = =
original 1 9x-13x | 27%-31x | | Encode Index | 1 35%-49x
size reduction reduction Ireduction
1
\ U
N .

~

1

A

pruningd} fine-tuning=2 Z-§5FH weighto 4] 00]] 772 HEo] AFAE] 11, quantizationS Z]-g&5FH
£ #EE discretedr BE-F 7FX| 7] H.

Count
Count

-

L T

-0.10 -0.05 0.00 0.05 010 -0.10 -0.05 0.00 0.05 0.10
Weight Value Weight Value

o

25

2.4. Linear Quantization : Concept

2.4.1. Linear Quantization

1. Linear Quantization
Linear Quantization-2 weight2]]2k} arithmetric J4F H= integer2 $~8J5= quantization 7] 5 .

linear quantization~2 Zero point(Z)2} Scale(S)o]2l= ZE(Linear Quantization Parameter)S -85
weightE quantizestil, Y Ea} ARV}l Zi= quantize® Fgtof|A] 09 diGof= FE2S X5+ integer
o)1, SE= scalingE SF= floating point ZFY. Z2F SEF Q1.0 X linear quantization©] 7FsgF.

Tmin 0 Fmax

Floating-point |
r range | >
S XS
" Floating-point
q Scale
Gmin Z Gmax
Zero point

linear quantizationofA] floating point 15 T3 (quantize)d}= integer et (qE 7 oF= ghol ¢l
Heh)S GASHA T integerof] AF§-5l= HIE o] wfe}l O] H. integer 2] gl nH|EE Ag-2tpH of
9 HER EAT 5 9l 29] Hernlgel 21~ 21— 10] H-2 Ao floating point S HFE
g E 5], 2H EE AFE-SIH floating point gh=S —2 ~ 1.2 gl fjFE o] AJAHLS SHE F7]9]
2% RS Al FIEE n = 8H|EZ} WS 55 Holohal 3H(WSAS).

2. 23 gy

floating point weightZ r, quantizeZS Z-§&3F integer weightE q2}1 XL Z2} S Alo]ojl= ofzao]
=2lo] Gl o] 522415 ARES] quantize™ qZE] reconstructe = §lS.

r=(q—2)-S

o] 415 AFE-OFA r& q2 quantizedl= F k= A Afbek = Ql5. ofm 12 integero] B2 ZF7R2
2 round(BFEEH) gl

1
S
OZEH ZQIL ST]:—‘ TJ_’IIL q917 }—,]E\Hﬂlﬂ]- }:'7_//1:_&7-0]] '9’175” éﬂ%}%] O}EHQIL 1751-0] T"max = S(qmaz - Z)QIL Tmin =
S(amin — 202 131310 SE ALVE 5 917, S2 PO H 7 Eok ARG 5 2. ol 7= integero]
B2 7}7R2 2 round@l. E tigro] Fof o] (offlof Al AEeE.) Z7F 001 [rimaz| = [rminl
ofolA] S& t Tl AE = 4.

qg=round (= -r+2)

S — Tmaz — Tmin _ Tmin —|"mac| o "maz|

Gmaz — 9min B Qmin — Z B qmin B 2N71

Tmin
round (g 5)

3. HF 3y

1) FC layerol 4] o] AL+

linear quantizationS 2]-§%F FC layerQ] weightof A AXHY = WX + b)2 ofgfo} gro] ek

oL, olu] Weh b Uba0 2 Fto] 0¢] YFELY GAE FHE . F, 2] BIA 0[] 09]

26

OFEIR] e B2 Zyw = Zy = 00]afal gt = S (o]A] Wt bo] tiefiA] Z+= 0¢] A o2 Z7Fget.). ot
SwSx 2l Sp= 2F2F FFS scalingsl=d], b= SwSx 2 scaling® glol] gofjxfoF sfE &2 S, = SwSx
ofof . WeF b, 22]11 S, Zi= A Hofl AlfFE]o] J B2 gy — Zxqu ol the HLF EoF ole] &

"/I_' /%Zﬂ7 O]% qbiasE E7]b;’-'
Y=WX+b

Sy (‘]Y _ZY) = Sw (Qw — Zw) - Sx (ax — Zx) + Sy (ap — Z)

| Zw=0
Sy (CIY - ZY) = SwSx (QWQX - Zwa) + 5y (Qb - Zb)
l Zy =0, 8 = SwS
Sy (ay — Zy) = SwSx (awax — Zxaw + Q)
SW SX l Precompute
qy = Sy (QWQX +4q, — zx‘lw) +Zy
S V Wine =~ Zxqw = ‘Hl}‘“ ¢
qy = ‘;Yx (QWCIX + qbia.\') +Zy

el obdjo] 44 e dito] £ g

Y=WX+b
Zw=0
Zy =0, S = SwSx
Upias = 9p — Z.\"lw
SwS
_|IYWYX
qy = wax + Upias) HZy
Sy
Rescale to N-bit Int Mult. N-bit Int
N-bit Int 32-bit Int Add. Add

Note: both q;, and q,,;,, are 32 bits.

ojuf FEH oz MuEx L G} (0,1)0] £3l=r], o]F gEx — 2" M2 EHY £ S
[0.5,1)0]] &5l= fized pointZ2, HT7F i 29 AGAlFLE FHEH A= 7] dLof

R, 5, SwEx B gl AL fived point AN YA ZE Y A/E o] F bit shift7} 288,)7} bit
shift2 49 5 1.

quantize®l g 7]2]o] 4] Hif= 7]E NHIEO] tis) overflow?} Bger 4~ gloeH&E 25 o] ply
SRFe 32H|E 2 S5h

= o =8, weight 27 integerZ quantize® SEjE Z[gjol=g], W22 Q] AR EGH integer
2 £oE Tol ol gkl HHojA] i E o] ojrto] BRAISE k-means-based quantizationofAf—= 32H]E
floating point 9RFS P, of7]ofl& S2HIE integer RFS AESIEE il ZH Ao o]Fo]
=gk

2) Convolution LayerollA]2] ¢I&F

olgjo] filter] 7} weight2} HHZTH= AL A 2J5HH convolution layero] 2] GRFE fe layers} 5

%1 a;k

27

Y =Conv(W,X)+b
Zw=0

zero point i int, quantized outputs
Qw

Zy,=0, 8§, =Sy scale factor
S/ Sy
Qpias = qp —|CONV (‘lw: Zx)
Upias
S S int32
WX
qy = (Conv (aw-ax) + qbias) +Zy
Sy
quantized inputs [e[TEGIFLY RN 31)

Rescale to N-bit Int Mult. N-bit Int ax dw
N-bit Int 32-bit Int Add. Add

Note: both q,, and q,,,, are 32 bits.

linear quantizationg AF&3FHA] weight-only quantizationg Z-835}7| & g o|& £59¢], weight= INT42
quantizes}il, activation> FP162 2 HAMst= W4A16(Weight 4 Activation 16)0]).

2.5. Linear Quantization : Post-Training Quantization

post-training quantizationo]| 4] model®]] st linear quantizaton= @7 2 -8k 4~ Q12| Lopr =z}
Z o]l A& 115}o] weight@} activationo] tiaf] 2| A 9] S, Z& F-& & YE=X| Lol =},

2.5.1. Quantization Granularity

Quantization Granularity= S ZF AI{Voll 2-gol= Tl tfgl granularity=, per-tensor, per-

channel, group 529 HH&]o] Q12 o]& 1185Fo] weightE quantizationdr 5~ Q2.

22 weight7} HTRE FP ZE 00]02 Sphg THLD YT U,
1. Per-Tensor Quantization
Per-Tensor Quantization=> {4 tensoro] tisl] ofL}o] SF Z& AlRFolal &]-gol= HF4]¢l.

ol tio] He o= & &&SpR]ek gigo] & (model size?} ZF:2) F-20ll= accuracy A7}
Alel o] ZF g4} (channel)nfrt Aol gt dynamic rangeE 7F& = Y=d] 1 7|71 4 0@ ZF channel
o] o] A2|7] WRS]. SoF 28 per-channelZ AFols A.L2 AL 4 .

2. Per-Channel Quantization
Per-Channel Quantization-2 ZF channel® 2 oJL}2] SOF ZE #{Fofal Z-§of= 4]l

o ZFe thoj 2 AR o B 2 oSl per-tensor quantizationof H]SY reconstruction errorZ} T
ol X[, chel B BRE scaling factorE MO} SEE ZAH memoryS AFG3A F.

ic
209|-098| 148|000 | |7, =2.09 S, =2.09
0.05 |-0.14|-1.08| 2.12 : | 7] oy = 2-12 S, =212
o 091|182| 0 |-103) _ |r| =192 S, =192
187| 0 |1s3]149] _ |r| =187 S; = 1.87

3. Group Quantization

Group Quantization2 &2 channelo]U weightl] YEE group O 2 Ho]A] ZF groupof] tjset S} Z
E Aol g5 F-gol= HHA]el. per-tensor@} per-channelof ol S7F 4~ ,__J quantizationo| 21
/U-’Z,I-ol— ~ o g_

group quantizationoflA] ZF channel 52 UE2] parameter(linear quantization parameter)g& 7},
group2] T2l parameter E ;} ZHR. o]uff Z} @ & W& AFgSh= HIE £ ofid R 271 AFgSl= HIE
2291 groupel] T HIE S5 LA AR = YL, 0|5} 2] & 45 FEoHe He] 4AH oz
AFgSlE HE &~& Eﬁectwe Bit Widthel1? ,5:,

28

effective bit widtho] BFF A & of, group quantizationS linear quantization parameteroj] gjsf
ZFo 71 RL5]HA] accumcy§ HzFsk Eg] 22 nm’dz’a_J blackwell -5ofJAl= FP4o] tjoF 1<
HAiE o= tensor coreE AlF k=4, HoJHE 48] E $F71A] quantmtwno}ﬂi’ H fjo]E] F#iE
of a}af A ':'7_} Ae]zF HQ3l group quantization< K]-JQO]-U# memoryE IJSFA] ARSI o HA]
o flexibleS}A] accuracyE& %7'_11 o = 9l2

group o] mlaf of 2] drilo] ZAsl=r], gEAH 2L VSQF MX7F 2. EA3F 720 2 multi-
level scaling2 o]sfer £~ Q1<

1) VSQ(VS-Quant, Per-Vector Scaled Qunatization)
VSQE ZFA| tensorof EHOF scaling factor 72]- tensor W2 HIEjo] et scaling factor S, & 2}z
AIRFoto] FHol= HH4]el. &, 2-level scaling @]

v+ tensorof s coarse grainC 2 AHRXFSF floating point scaling factord. floating pointo] 22 H]-&
o] 21 tensory ofLfEF EAE). S, = ZF HIE] o] 5] fine grain S 2 ARFSF integer scaling factord.
integero] B2 Hl-go] 1 2} W] Wz EAg.

112 fine graino] granularityZ} o Zefal 2tef. on] 2ol el E SE}.

2) MX/, MX6, MX9

MX/, MX6, MX9oJA]= ofgf] 783} 2+ ZXE 8514 group quantizations X831 o]of] MX
Tlof] & 2= effective bit widthS E"%‘

m

War Sl q

Wi r=(q-2-s," s,

a— NT4
—t—t—t— 11— r:real number value I :
L L L 1 g quantized value -

z : zero point (z = 0 is symmetric quantization) 1, 5o q
5 : scale factors of different levels
5[mAG 2]
EB E1 E MAG 2
"’Ifl SJ« q
Quantization Data Type Lo LO Scale L1 L1 Scale Effective
Approach Group Size @ Data Type | Group Size @ Data Type Bit Width
Per-Channel Quant INT4 Per Channel | FP16 - | - 4
vsa INT4 16 UINT4 Per Channel FP16 4+4/16=4.25
MX4 S1M2 2 | EIMO 16 | EBMO 3+1/2+8/16=4
MX6 S1M4 2 | _E1MO 16 | EsMO 5+1/248/16=6
MX9 S1M7 2 E1MO 16 E&8MO0 8+1/248/16=9

.5.2. Dynamic Range Clipping

Dynamw Range= HoJEL} {lo 7} Foeh 4 Qli= F| gk Z] izl AFo] o] B91el. o] 7] ol 4] dynamic
range= rof] ggt rangeE ©Ju]5l1, Dynamic Range ClippingS A dynamic rangeof A1 9] clipping
& &l TminF TmarE A F0F= AS ek Clippinge g1 HHE Aelol= A Y.

5l o]& weight= dynamic range?} DX == BFHOJ, activation ZF ¢Jgof u}al ofZ dynamic
ranges 7FX]A] EH. o]of] uFz} activationo]] model-S deploy(Hb’_l&)OIJ] Zoj activationo] fjet E7
2ol JHE Hol dynamic rangeE X O2 FZ5]11, linear quantization parameterE ZHJ4{ISFo]
quantizationS 2-g3F = QL. FE 3} of 7] Al cF2 2] SER]TF dynamic rangeS infernece o] 2]
o7 ¢ OIEOA_ %“—]E —:Xﬂihifﬂ 2

FH0 dynamic range ARG 1] F2 AFGIHE PHORL ofdlgl 2 2714 IHo] Ug.

1. EMA
EMA (Exponential Moving Average)& o4 <ol ¥HE AJ{F51o] dynamic rangeE £7

HFE 5t
1_ o=

oFNSL o] 574 atchell Hg dynamic range A ol batchol 9] ZEAs) o 412l
57—

A s 2F %’ﬁo}oi Alikelh olm a2& o7 batch®] dynamic ranges FvpLf HF
A1t

At _ t At—1
Tmax,min = Q- Tmax min + Tmax min

29

o]& &of 1] batcho] Hiof Hut 2 ¢l dynamic range FYXE L& 5 QS SFAE o] ofs Y

=
of #oi7} 7R3t Fooli Ahs gl =, A sHreks Fpollw F5eld oE FolA S mae
quantize3}= L9l Foo Hgo] EoF5E.

2. Using Calibration Batch
Calibration Batch= dynamic range 5732 9J5f er&5E modelo]] Y& tjo]E] Q. calibration batchg
modelo]] YB35, ZF layerofA12Q] activationsS o] dynamic range FZYX]E ALFeF 4= ¢l 2.

activationo] Hi7-ERE Fef Y uf, Q& Fero] 92|l 22 529] FFETFA] dynamic mnge7f3ﬁol-of77’]
E]H ofao] 73w} Zro] quantization} #%7%7 HHgo] "}o]'/_a Q5. o]l mret 272t dynamic
rangeE H4{F5F EHE5F= Zo] Q3

max-scaled quantization clipped quantization

- @
@

Tensor PDF
=
Tensor PDF

Y]

08 -06 |-04 -02 00 02 04 06 08 08 -0.6 -0.4 -02 00 02 04 06 08
Value Value

large quantization noise low density data

H2]9] dynamic mnge§ = YH.ORE ofg} 22 AEo] 9g. el FHEE FHYS
AGSHLE, 1ol T 34T H

1) E% inputd}, fiG inputs quantizeslil reconstructel gk AFo]Q] MSE7} 471 HEE olE dy-
namic range(|Tmaz|)& . E35] glo] gf&etA Ex (0,0)E f2&= -2 2, 8, 4-bt quant@zatzon
&l |rpaz| 7F ZH2F 2.83b, 3.89b, 5.03b0]H Z]Fo]alil g} STl activationo] TIA = o]l FZir
o232 ohS.

E

2) KL divergenceE X]A-3}5l= dynamic range(|rmas|)& Z-2. KL Divergence= F SHEEIE Afo]9]
#Jo] (quantizationo] 2J¢F Hlo]E])5 LEHPE GO, olafo} e +40 AtE.

112 Calibration(3=g W7]7])2 4 9 24 A2 ou|g

KL divergenceZ &-83}4 ofgf¢t Zro] dynamic rangeE 2F

GoogleNet:

AlexNet: Pool 2 § | incpetion_5a/5x5

S P _——

ResNet-152:
resd4b8_branch2a .

GoogleNet:
incpetion_3a/pool

[——

2.5.3. Rounding

30

Mg

oFoJA] thE A X & linear quantizationo A= rounding®] ~3=. o]of Rounding2 Y=g
2 YT o] YEro ek AS oJu]E
WS H (1Y AL 7102 rounding)o] HTH 0 2 THE BB, AL HHo] ofd 4
918 5] weight®] 2} gho] A= Ao Ao] fAFElH] we ol s ofel T2 gho] HrkE b7}
AZ]. AAZE reconstruction errorg FABFsH= HFE o] 22 9] rounding .

SH(W]), SE(W1), (W]) & J2l ZA & + J1, [|W] + 5|19 & 45
J82 T 5. 0 [0,1]9] &5} A] olg TFe ot gh O =, inputT} shapeo] £ & sigmoid 5O
© o]
. -

aF oft]

argminy||Wx —@xlli + Mree(V)

— argminy [[Wx — (L [W] + V) IXII7 + Af, (V)

X is the input to the layer, V is a random variable of the same shape 2
h() is a function to map the range to (0,1), such as rectified sigmoid ; M
fn,x[\f) is a regularization that encourages h(V) to be binary -

-6 0 6

2.6. Binary/Ternary Quantization

g A& H|E £E A}85= quantizatione LolH 2}, B2 H|E 47 HojZAttn AL of 1, ¥Lo=
ER quantizest 29] Aol 71 Foluheh 1t g

2.6.1. Binary Quantization

1. Binarization

Binarization(0] X3})& weightL} activation ZFZFS 2712] gt & sfut2 B atsl= 7[99, binarization
] 0 2= ofafjef g2 ZE0] IS gl& o]XI3teY 17]9] HI[ER HY o] 7l&ofH.

1) Deterministic Binarization(Zd7g2] o] FI5})

SHLIS] threshold:S X155k 2} 71o] el thresholdS |0 9l 1, §x] Bl 12 Wakshs W, o)
threshold= 2 002 8[1, o] -2 sign function(F-2 BFel) 7} = As]A] &2Fel

KlFA o] 11 1.2 HFE o] X|TF accuracy degradation©] 4]g}.

2) Stochastic Binarization(8&2] o]ZIs})

e dloje] i 53 Ao W2 Eo] o | T 12 WA= . o-F Sof, Binary Con-
nect(BC)oJJAl+= oFefj2F Zro] gkE5 Altlslo] Hetgt

+1, with probability p = a(r r+1 '
g=) P N Vi (). where o(r) = min{max(0L e —/_
—1, with probability | — p 2

elE2] Aelo npef R ghs A -goloF sfFEE o] ZH RS
2. BWN
BWN(Binary Weight Network)& weight9F binarizationd]-1Z, activation2 binarizationdFX] Q-2 NN¢J.

weighto]l sign functiong 2-§5Fo] 1H]E o]Zl g o &2 zgFsfal, ofefje} gro] 2lE2 zZre] digro] Hisj
HS ALF5F] scaling factor2 AFESF. 0] forward propagationo A X ZF= ZETF scaling factorE
T 5L QS
ol 2§32

1
a=—[[W[h
n

30 1L

5] binarization?S]-835}F17 scaling factor= AF§6FX] 9= HFAof HIS) accuracyE& 2FH e 4~
o
-

31

AlexNet-based ImageNet Top-1

weights binary waights
{32-bit float {1-bit) Network Accuracy Delta
2.00 |-0.98| 1.48 | 0.00 1|11 |1 BinaryConnect -21.2%
005 -014|-1.08(212| W WE [4[] Binary Weight
9%
T Network (BWN) 0.2%
097|192 0 |-1.03 =1 1 1 =1
07| 0 |15 (10 Tl W= wB”i_ =078
1 -1 1 1 scale
“:H = Sign {\V} 1 (32-bit float)
T[] 1
1 — ! X 1.05 =W,
0= :“w”l fr\r\"ﬂj B O O T T |
1| W —aWE2 =924

3. BNN/XNOR-Net
BNN(Binary Neural Network)= weightT} activation 2= binarizations= NN¢Y. £3], XNOR-Net-2
XNORS g 9412 +@3-= BNNY.

XNORE F =7 o 1, tf2H 0& Blalol= gite 2, sfEgjoj& oz Esk7] 5. XNOR
=2 binarization® weight2} ¢ Afo]o] HRFRS §8F o £aeF 4~ Q2. binarization® ZHS =

PR -15) 12 AZE 5 AR, AL 07 12 4. ofo] w2l YA 72 offs) Lo
XNOR §141 obil =22 q1e] @12} 2 Aabe 9 & 905, ol A2 Had] Weh gele)
2} Slzo] Tjs) XNOR S4-e 395k, 2 2ol 22 FeH(shift) 7 2149 A2 o 9.

o]

H
o1 popeounti= o2 45 5 18] 135 A dite2, XNORS o] S=geid oz 7]
#1-8. l71oIA popcountE A-G2E 03} 19] T A T Hol 2T 5 UL

-0
o)
il

i

Yi=-n+2- Z Wi; xnor x; = —n + 2 - popcount(W; xnor x;)
J

H memory
A 1
T H= 3

o] B A weight2F activation B=of] 4] binarizations Z-§5F11 XNOR, popcountZ &g}
oF computationof A1 9] H& FYAIL 5 U5 SIR]TF XNOR-Net7Fx] 7H4 8= ':'/(]?:;}
9] accuracy degradation”F B o]of EE]-E]- ternary quantizations A-§8 4 2.

input |weight| operations memory |computation
R R | + X 1x 1x
R B | + - ~32x less ~2x less
...B . .B e ~3.2.).<. - ..~58X -
popcount

2.6.2. Ternary Quantization

1. TWN
TWN(Ternary Weight Network)= weight& 37FX] (1, 0, -1) & s} 2 BaolE= 7] Y.

ofgjo] =&1u} Zro] Z} ZF(r)d} threshold(A)E B 5l ry, 0, —ry 2 quantized.

Tt (7" > A)
=40 (r[<A)
—ry (r<-A)

A= ofeig} Zo] ARFE 4 QL. =, weighto] 2} 7ho] HHFEe] Bitol 0.7 F5F A9, ol 0.7:L
A [e]

32

A =0.7xE(|r|)

ojmf ri= : AF R]of] AFGSlH= scaling factor®2, oo} Zro] go] ofd ZHO 2 quantize® {2 ZFHE9]
Igre] B2, AAZ weight= 1, 0, -1 5 SPIE G2 A EE 2ER 4.

re = Ejpsa(lr])

binary quantizationof] H]SH 7J4 % 7] sFx]|gl, o= ZESF accuracy’} BFHE]X] 98-S 4 L.

2. TTQ
TTQ(Trained Ternary Quantzzatzon),_ TWNz} Edstd)], ofa 2} Z+o] ry (heuristicl.) o
7153} parameter w, 2F —w,, S AF&SH= HFA] Q]

r
=
L
Il

Wp (r>A)
q=40 (Irl < A)
—w, (r<-A)

TWNEC}F accuracy”’} &% ©f 7j415.

Trained

Normalized Intermediate Ternary Weight Quantization Final Ternary Weight

Full Precision Weight Full Precision Weight

N e N\ e | B8]

ImageNet Top-1 G . g
Accuracy l Full Precision 1 bit (BWN) ‘ 2 bit (TWN) f TTQ
ResNet-18 ‘ 69.6 60.8 65.3 ’ 66.6

2.7. Quantization-Aware Training

2.7.1. Quantization-Aware Training

1. Quantization-Aware Training
Quantization-Aware Training(QAT)<= post-training quantization ©]2-of =3sH= fine-tuning

opof]’q XJE]O} A3t Zro], pruningo Al fine-tuningS X-§ol+= A X E quantization] fine tun-
ing= A5 accuracyE 3JEA]Z 4 Q& E] 22 modelo]] gJsjAl= quantizationFF 2-§35F= F-2
accuracy?} ZLf Holx| Al E|E & fine tunmg_,,7 go] =973}

k-means quantizationo] thelAl= oFoflA] T2 AXY QATE 8k 4= gloT 2, of 7|0 Al linear
quantizationo] tjol QATE rolH =}

2. Linear QuantizationofA]9] QAT

linear quantizationo] teF QAT A= STEE &850 simulated/fake quantizationS Y.
QAT] 7_1—;{’—5 ofg ol ZrS. forward propagation9 Al weight/activation quantization nodeg
AR L &3 ol Q()& quantizationS FFBl= functiond

33

— Forward
<— Backward

weights

“Simulated/Fake Quantization”
W — Swlw = o(W)

JdL oL
00 (W) 00 (Y)

Layer #mﬂ, activation o) — Layer
quantization N+

examp\e for operat\ons

ensure discrete-valued

5 Batch ReLU E weights and activations
H Norm ' o
: : in the boundaries

these operations still run in full precision

Y-Sy (‘lv —Zv) =0(Y)

weight quantization
8w < 8y <

QAT AJofli= full precision(¥+2) weightE AF§5}o] gradients 2] H5] Alfop 22 o5 @ +
Q1. o] full precsision weight~= ©]% deploy A]oJ] AFAJSF] quantized weightTS A-ggl.

forward propagationoi]/(-] = W3] quantize® weight/activationS AF-§oF] &8 7FS =&¢ oFF]
o} quantization2 of2j] 9] 12}]112,1 Zro] o]grA 0l 88 TE6FHE &2 backpropagationO A quantize=]
7L gudient S AISNE G4 0] Ho] sro] B

N W B O
A

—_
-

Q (w) = round (w)

o
o
e
N
w
=N
(9]

olof wte} STEE AFgdr ST E(Stmight—Through Estimator)= backpropagation A]o] quantization
function& identitiy function?l] 7‘7°§ FGol= 7] Q. =, backpropagation Alof] g SFE A=

o2 FFst=y], 1 gradient= Y2 WoJ il gradient2F EoF 702 ZHF3F

_oL _ oL
IV = 9w T aQ(w)

QAT A 2] o]& forward propagationT} backpropagation 275 Simulated/Fake Quantization©]2f1l
Sk
SF.

3. Neural Architecture Search

3.1. Classic Building Blocks

© A neural architectureo]] 50]7}= block=2 &olH 2} o ZA| S Y &L 01225 7|2’ D7) & Z15H4}

3.1.1. Bottleneck Block
ResNet509] Bottleneck block2 1 x 1 filterE 7FX|E= 27]9] convolution layer2l, 1 AFo]2] 3 x 3 filter
£ 7[R & 8FLt9 convolution layer2 24 E residual block].

bottlenecko A= 1x1 filterE AFE3l= convolution layero] 2]3f] tjjo]E]9] Z7]-& 2 X[SFHA] chan-
nel(depth)& nC 2 & 7 Q5. channel?] 7J4F E21 F T2 3 x 3 filter convolutions& T3},
CFA] channelsE E] E"EO] OfL]'PJ 3 x 3 filter convolutionTFHS s=8J'sF wj Hr} computationd} pa-

rameter”| O] = %"Z‘L 1

34

1 x 1 filter2] convolution-2 padding©] 0, strideZ} 10]1, 3 x 3 filterQ] convolution& paddingo] 1
stride”F 19]. o]oj] o} H4F o] HJo]E] 9] size?| 2-X]E] o] residual connection©] 7}5gF.

2048-d out #MACs

2048 x 2048 x HxW x 9
Vi
1/

= 512X 512 x Hx W x 144
512, 1x1, 2048 ‘

512, 3x3, 512
2048, 1x1, 512

2048 x 512 x H x W x 1.,

8.5x reduction

512x512xHxWx9 - # 512x512xHXxWx 17

2048 x 512 x H x W x 1+

2048-d in

3.1.2. Grouped Convolution

ResNeXt(ResNet9] c}-2 B)29 Grouped Convolution2 ofg] ZHz} Zro] o2 channel:S 7} &=
&2 Ho]ElZ channele] ol o2 group© 2 LF-0] ZH2bo] Al convolution 3= 7|H.

computation A4S G 5 Q2.

256-din

256-din

256dm
== ——— ™ 7 ——
256, 1x1,128 \ 256, 1x1,4 | | 256, 1x1,4 | g5a 256, 11,4 ‘ 256, m I 256, 11,4 Imls2| 256, 1x1,4 | ™
\ +* - paths + paths - I‘I
128,343,128 \ 4,3:3,4 | | 4,33,4 | 4,3x3,4 ‘ | ‘ 4,3:3,4 | 4,363, | ere | 4,334 |
group = 32 | B e & !
| — concatenate | — ‘ 4,1x1,256 | 4,1x1,256 | | 4,1x1,256 | /
|
128, 11,256 / 128, 1x1, 256 / _7_\¢—+_N_7___,_.,--7-- /
- '\‘/ -
(H— B——— B
— 256-d out ~ 256-d out -

3.1.3. Depthwise-separable Block

MobileNet2] Depthwise-separable BlockS depthwise convolutioni} pointwise convolutions- g7 A}

£5F= block®. o]m] depthwise convolution-& spatial(F7FF]) HAHIE ¥FYs}al, pointwise convolution
2 channel-wise EAZ BFY g}

computations I EO|HA] channel 7] HAIE BFY el ol x|t &0]& computationo] ool FEH
go] oy

Depthwise Convolution

—

Pointwise Convolution

3.1.4. Inverted Bottleneck Block

35

MobileNetV29] Inverted Bottleneck Block-S channel] 74~& &)= 7] &9] bottleneck blockz] Ga],
HIl] 2 (inverted) channel®] 7§4& s2]& 525 o= bottleneck block Y.

depthwise-separable block 0] & AFgsFe] ol HEolg-S 5]EA]Z]. o] & E5] computationZ}F paramter
& 5] ZojA EHES FRE - Y.

SEX]Tl channel 747} Eo]if= 9FE activation memory”Z| Ho] EA] EH. o] E3] training A]oj
§2o] B + U,

160x160xHxWx9
Depthwise Convolution Gﬁ;a;:gﬁ #MACs (N = 160) —960x H :f W x 240
== m
_ 1x1 Conv 160x 960 x Hx W x 1~
- K 960X HxWx9 - * 960 x Hx W x 329
(1= 160 x 960 x Hx W x 1~

3.1.5. Channel Shuffle

ShuffleNetofJ A= group convolution-=

st
o] Ao]r & 5131, group convolution=

=allol &] Channel Shuffles A3} 2 group©] 7}l channel
& o 23] group 7 A5 A -go] FF5HESR T

hannes o he
BN RelU

y Input
i) Channel Shuffle | .

R R £ GCom1
3x3 DWConv T Feaura
v x Channel
¥ EN Gooma yowwes vy [OTT = e
1x1 GConv

Output

3.1.6. Multi-head Self Attention Block

Transformer2] Multi-head Self Attention(MHSA) Block-2 olg|o} ZH2 self attentionS Z} headof
s +dJsl1l, 1 AIE o]+ blockd.

Concat
j]
Scaled Dot-Product h
Attention
Al Al yus
- - @ -
L] | L 1 L |

Linear Linear

36

3.2. Neural Architecture Search

3.2.1. Neural Architecture Search

Neural Architecture Search(NAS)&= NNOJ of7|EI2] & X502 231 A Sll= 7]H .

AetE] 217G o A1 Q] model:E efficiency@l accuracy AFO]Q] tradeoff 5 ZF 12l AHAE]o]oF &F.
O]II]] ’7X—]X—70] H?—/Uo]] 1]37—,2’1- manualo]-]]] o]—;]E—]lx-]E /HZ]]o]-—i e H],Q__L'L /(]7]. o]x—?]_ _]O] _]1:1 ot

o] £1, AA| 2= F|Z]o] ofd = QI&. o] uef NAS= aut0matw°f77] 2| 2] o] of7| 2= ;15:77],
o1 gA] 22 modelS efficiency, accuracy H=o] Tjsl] Z]&2o] ZEHT) o J&o] FrFil g

NASE ofgfje} Z+e EZF 132 7FE. search spaceof] EXJ}= candidate(—,;—_'i’) o}z|Elz] &9 5]
search strateqyE X_‘,Lg—o]—OZ/’ 1 5L gPolsle 29S8 HIESle] XA o] AL Holk ofF]HXE
210
A a-

ok

architecture
Ac A s
Search Space erformance
9 Search Strategy Estimation
A R Strategy
performance

estimate of A

NAS(FZ OFAS AFgol= A Z5.)8 g-8§3dle] CNN, transformer, 3d vision, GAN(Generative

Adversarial Network), pose estimation, quantum ai, LLM &oJJA] & 12 4529 model:S ¥& 5+ Sl
ol O

A Z7A & olu] 5% modelof] thgt compressiong THEET], 7o At oA F2bst=
modele] T3t o}7| €A AA S t}=.

#3112 Design Space= DL model A7 Alo]] 2% 4= 31+ NN o} 7|84 U hyperparameters (3 X) 2]
A3kl

3.2.2. Search Space

Search Spacei= NASOJA] AE-E 1785l= candidate NN of7|El 5 9] Fe}Fe]. search spaceE 74
ol B O 2= oo} T2 ZIEo] (.

1. Cell-level Search Space

Cell-level Search Space+= N olF|EIAE cello] E-H O 2uF ZYSl= dFAJo] = R-QSF cellE2]
22 AT, A cell S-S VHE AHGDI] NG 745, o714 CellS NNE 745k 7.2)7}
L= blockd].

RNN controllerE &-£35f cell& A4S = 91-&. RNN contorlleri= olg|o} Zro] =212 © 2 hidden

stateS WH U 5779 RS Z}2F 27)9] I, 27/7’4 operation, 17]] combine method HEFY.]
AL 2SI candidate cell—Eg A = AS

ol& 59|, NASnet2 oo} Zro] RNN contmller% AF85Lo] reduction cellZF normal cellE2 -
HHE.

37

abew)
Y
Z 9pLIS ‘AUOD EXE
Y
1192 uoiINpay
\ 4
119D |ew.oN
A\ 4
112D uoldnpay
Y
119D |eWION
Y
119D uonaNpay
Y
1133 |ewION
XBLWos

Normal Cell Reduction Cell

design spaceZ}F Hs] .

2. Network-level Search Space

Network-level Search Spacel= NN O}Z|EIZE cellE2 F4E network THEOJA] FA45F= HFR] Q).
= NN9| z} BEHo] ZolZF block2] 7i4(depth), Y& to]E]o] Tt resolution, width(channels)2]
dimension, filter®] 7], topology connection(downsample F2) 5 ZZ5Fo] NN 4%

[48,64,96] [192,256,384] [384,512,768] [640,1024,1600] [1280,2048,3200]

£ ==

3.2.3. Search Space Optimization

FAE search spacei= 1 F7]7F G7Fs] 2 7] HlEof, HH)E FEofl =L H5S 71 AOR g EEE
HHE O search spaceE —g—a—yo]_-(narmw down) sk

Search S P
[Network Space)—{ (?ptrifniza‘t’;ﬁ\e)—{ Model Specialization)

o) 0 BE op7]EH] tha] HoHe Ao A5 ol 1F Hgo]
2. %, model o H|AZ B} §10]

5]
heuristica] 2|2 &y} ol B 5 o) memory A|oF 2H o] tis]l W02 =2 flopss

ZIAl= modelo] B £ He5 7T wHe 7 5. o= diAZ et memory ARg-oll iy
o RS YRS *;”0]-—— model_J o] o 7] tfi . o] A= search space Z35]H 5]
07_/]_/] model-S ZgFo}ALE, £ search spaceSE E-g5l= AHCF O =2 accuracys EEOFELE s},

100% —
A //‘ /" width-res. | mFLOPs
. L — o] = W0.3-r160 32.5
y (50.3M, 80%) p=80% . wo.4-rl12 | 32.4

Good design space: likely to achieve
high FLOPs under memory constraint

75% /(32.3M, 80%)

Bad design space

=- w0.4-r128
= w0.4-rl44
© w0.5-r112

39.3
46.9
38.3
46.9
52.0
41.3
31.4
38.4

50%
== w0.5-r128
— w0.5-r144

w0.6-r112
=* w0.7-r96
= w0.7-r112

25% ¢

Cumulative Probability

0%

25 30 35 40 45 50 55 60 65
FLOPs (M)

3.2.4. Search Strategy

Search Strategy-= NASOJA] search space@] candidiate oF7|E]=] & o] H A& KMejelz|o] tjjoF Zef
EL 23} Y. o} 2 JHE] U

1. Grid Search

Gride Search~—= ZF ¥ gl(resolution, width, depth 5)of HslE F A BHA OHo;]-
o] golsl= Al Q). ofgl 18]} Zro] ZF grid+= search spaceo]A4]<] gF ©

esolution
1.0x 1.1x 1.2x
Width
10x | 500% | 530% | 549% | [satisfies the latency constraint
14x 51.0% 53.50 55.49 |:| Breaks the latency constraint
1.2x 52.0% 54.1% 56.2%

ofuf 2} o7 |3 W IRG 4E +AT H F5E P, ARG WEATNE HA] of7]H]
A2 Aeg 7 918,
o= mAHo] 1 1 BT F T FACL .

2. Random Search
Random Search-= grid searchoj] ZF
didate OF7|HI 2 E 22Foj 2 Za} LS 3

Grid Search
S
e—o—-e—0—0
oﬂo
e
o—o-9o 0o

Hyparparamater 2

Hyperparametes

Hypen

mage SoUrTE

5. Betols
oF7|E| 2 & AASF= RNN controllers ZFsFols
ool &= elola, 1 75 Brek

o
of
:.og
Y
)
js)_\l‘
&
=+
29,
oo
I
%

L

R LR

39

A= AFg-Spzle H2] gopE ok

Sample architecture A

The contraller (RNN}

with probability p

Trains a child network
with architecture

Ao get accuracy R

Compute gradient of p and
scale it by R to update
the controller

Overview of RL-based NAS The RNN controller

4. Gradient Descent

gradient descentE &-§oFo] X &9 ofZ|HXE 35 5= GIS.
nodeof Al nodeZ Zli= oJ2] 7FX] edge({dEX]. operation)l o] &-F gt Fojofil, o g5
o oFE 7I5eS 2802 & o] % gradient descentZ SHE 15 XX 2}ek Aot o TH
=2 GES 7 edgeE AYe E2 ZF F-2of gieh AikS HE g5l FE XY ofoF ofEE
computationZF memory ZSHJA]= H]-go] Bro] &=,

FESF Z} gl o ool latencyE AI{FolAL 2 &9 415 cost functiono] Tl 5] latencyE 112{5}F9] edge
5 dee] ¢ £ 92

— 7

{3}
(oo explog ')
N z) = E = o)

0 Zw oexpla)

= x| KX

] > []
? (2] m (2
N 7 o

:I‘I[I.;m'ur_\': = o % F'eonv_3x8)+

|
7 % F(conv_ 5x5)+

Loarnable Block
| ___,_;‘____--f':f}f.- .141 R a % Flidentity)+

¢ % Flpool 3x3)

“m o Ellatency] = 3 Ellatency]

3
Loss = Lossee + A |[w] |3 + AoE[latency

5. FEvolutionary Search
Evolutionary Searchi= 2310412 W3} B4& misled, B4 o}7|e| A8 Yot H5o] 23

W 28 YA

40

3.2.5. Performance Estimation Strategy

]. o] perfor-

e,
3
Y
3
3
Q
3
(@)
(e
=
&
3
g
8.
3
<2
g
S
<
rr
=
o
n
<=2
R
o
~
Y
N
\}&
o,
or
o
B
o,
o g
)
N
Ol
~—
rr
ok r\>dl
oo

mance estimationo A= SF5S | A3F5F11 accuracyE G2Fs] =4 4~ Qlojof

ofels} 22 WHES] 0.

1. Train from Scratch

Train from Scratchi= & T2 2F oZ|e| 3ol chaf ¥l 3-8 Shrg FFoHe WA

71 ZFASpR| R 22 o] i A 17 HRE H-go] &

2. Inherit Weight

Inherit Weighti= 2} of7|Ej7jo] chaf 0¥l AR 46 ke T4, ofo] s modele] of
S E +o 5 aroks WY, 2. ThE model®] weight & A5l B8

inherit weightofA] Net2Wider 7] 2] weightE Yo 2 LFE A 22 neurons A 6l= H4H(wider
3l 7.)o] 11, Net2Deepr= 7]& networko] identitiy mapping layerE F7}ol= ¢4 deepersfF].)&.
o B o A7 A2E oJFIENE Y= A, o]u] EAfsHE oo thall ol network
transformation action(Net2Wider, Net2Deeper)S Z]-8F ZIQIX]E d .

ofEl 40 e ol |EAE AYSHAT T SETIA thA] S B gick. of AeolA] Al
s}AA] 7] H =,

=] - =

Net2Wider

A Deeper Model Contains
{Identity Mapping lnitializéd Layers:

Identity Mapping
Net2Deeper & st (B
=] =D =

Original Model Layers that Initialized as

3. Hypernetwork

Hypernetwork— weight =& Q/eF B 9] network$.

search spaceof]A] ofZ]€IA]E 7Fx{2F hypernetworko]] YO H weightE A4 SF. ©]< gradient descent
=2 hypernetworkE X &5}l

A2 ZF AR H A= e o] 7l B = EAIg

.

Initial Node
Embedding

=0 9-9

Graph Propagation

3.3. Efficient /Hardware-aware NAS

FA ThE AL Thea] o€ A S 2 WHo] T, modele FEL F70] ShE ol)1 shE o]
of 5122 S} ¢o] S Welgh NAS 7| Hol of® o] Qx| Cobuiz). Egh gkl A A% the AXH ol
modelg i 748 A5t Aol £aF

o

“~

3.3.1. ProxylessNAS

41

1. ProxylessNAS
ProzylessNASE proxy”| oFd target task/sF=EgJo]of XX SHH ol 7|EIX& ZH= BFE ¢

=
)£ NASE 022025 H7Ho]A]8 1 Te] Hgo] U go] S51. olo] ket IA] target
task/SFEgo] ot B 2 F&l prozy task/SFEFJOlE HHE X2 0] of7|E2F k5. prozy
= o 22 gJo]EJAl, F& search space, &L epoch, XA SFEGJo] AJoF] FLOPS2} parameter
Ng && Lok Aoz FYHYS. olAe G A = proxyof Al & F3HTFL targeto A= F
A AL obj7] afio] 9] oA E S e S} EATE. ProsylessNASE prosy
2l target:s ARE-OFES oF1, 17 H]§-& &2 "4 ¢l EoF network +ES ' o414 2} blocke] Tt
492 3

ProxylessNASE oo} ZH2 2xE 7. BE candidate path& A-g35lo] sHLFQ] networkE 4
512, ZF patho]] gjot 8152 LFEFYlE= Architecture ParamterE AFESF oF452 path2] weight2l ar-
chitecture parametere] tjaf 212} 2. ol wE patho] o3 T o] FBE FHFE AL A2
Aok mfa} BrFsslE 2, Binary GateZ 07} 12 2] ZsFe] gF Hojl 5FLF9] path(19] sigtcl= path)
o chalAT T4

gt AJofl= architecture parameterE& binarizedF ZHO 2 binary gateE 77g5F1l, architecture param-
eterZ freezeSl P2 weight’} SF5H. 0] & weightE freezedl Y2 architecture parameter”} o4,

HFHOF 34 o F VY £ FHEL AL pathE HEH

update I g Cat i T R AL
= - - ey P s eeern
CONV 0 [PoBEY | weight _, [NGONV . POOL
h 5x5 i 3x3 Parameters Jud kel 3x3
Y Tt updateD x“
a B & +~—— Architecture Parameters —»=a1 B &
i 0 . 0 « Binary Gate (0:prune, 1:keep) — | 0 1 R
o INANNANS i
(1) Update weight parameters fmap notin memory (2) Update architecture parameters

o
i
o

71eks] Y zpel] Bz BE ofE]A] 22} ;mejals ALk o HL computation} memoryS AF
oF A o] o
= T AR|E-

ProzylessNASE AF§-oFH ofeljel Zro] proxy til targetol] tjsf 2|2] of7|E|] & 2= o 5 Q15

+ CIFAR-10 ——— = + |ImageNet

+ Small architecture space (e.g. low depth) — + large architecture space
+ Fewer epochs training ——— = + Fulltraining

* Flops and parameter counts — + Profiled Latency

2. Latency AJoF 128

proxyof A+ latencyE FLOPs 5 Q&2 YFgslefd gx]ut, SrojA] of2 ZAE HeE 2] 5o o)
MACs2F FLOPsg< latencyE YEFYl= HEZ 9 | HEE AFEE]7] o]#&. latencyE geFs] BFY s}
7] Il target SFE Qo]0 tiaf latencyE XF SFol= o] ol g2 o]7]= ofx|gt Y7 22 deju
Hl-& = &

ofell aFa} latency |52 3l latencyoll tHet model T45he] AFEE 4 9LS. BashAl= o]7] e
9] 7} A Rtof] WE latencyE HIEF5l= lookup tableS model 2 AF§EF 4~ Q117, of7|EIR] 9} ZF HRFO]
latencyZ Y= dataset:S Z-§5Fo] 5ol linear modelS A& = Q5.

42

Latency Prediction Model
Kemel Size

AT AR
IO

Fredicted Latency

Fot Frl2 vaer FAl=, gpus layer£7]2] 9] Aibs A4 WE A e]F 5P|k SF=H] o] F-¢
layer® latency o ZgFS dE oj st ABcl AA] latency”} o] S 5~ 2. FE 3 0 2= computation-
boundo A= 18 ¢4F0] & ¢F QOfit, memory-boundol A= 17 I4F] BT A elofibei
o Zeold 9 gL o Bopuak

3.3.2. Once-for-All Approach

1. Once-for-All Approach
Once-for-All(OFA) Approachi= 3FLFO] 2 networkE SF&A]Z| 1 122 E Z} SFEgo] Ao &

3} sub-networkE=S F=6F= 7|H Q). o]nj] st&5S E5 AYE 2 networkE OFA Networkefdl
GF
SF.

cFoFst platforme]l Z|HHE model 2121 HASE SHEAIZITHA 1 wl§o]] A|A Hed,
OFAZ 2§45 314 ¢ ¥(One-shot) 0.2 of] 23] FHH2HE networkE 22 4 2.

AR

o= ofefje] ZIE 7 o] OFA networks oF5A]7]1l, 1 sub-networkE &3} SfEgo] AJf

PG 2L HoPfi 402 FAL ofuf shEFo] AoFO.RE Taa] deviced] Apo] Bk oft]z,
Wl] &2, memory AF§-F 5 ofe] Z)Eo] A& 5 9IS,

1= 10 Keep Arch
a=B0%
g

K & W(seconds)® *
train T Re-sample

once-for-all LatencylAccuracy Feedoack |
network

2. Progressive Shrinking
Progressive Shrinking& OFA networko] sl 7 2 networkE HJZ 02 Z4X]7]HA] ZF sub-
networkof] gjsf er&5S asl= 7]H Q). OFAE progressively shrinkingS %3 OFA networkoj] tjjgt

gl W] 8150 2 2}2he] sub-networkE0] ¥ EHIES 2 = U2,

r

o] 718 2 networke]] Tl AT 8l5-S s opH 122 E] FE¢F 22 networkol A= & XSk}
e 5~ 0B, OFA approacho Al HZIX 02 o150l HHAlS ALESE

network®] ZF Q 4 (kernel, depth, width)= SF&<S sdolH HUZH o2 . kernel(filter) sizeo]
ol A= 71 2 2717 E AJZFal] OFE weightz2 275 & ¢. layer(depth)o] oAl A layerE
AFESITEF B layer&- 7 E 9. channels(width)o]] diofiAli= 2E channel:S AF§oF}7F 5229
o} g gslo] spupy] A2l ek

43

progressive shrinking:
kernel size

Matrix
25025

i i unit i 1
layers -Hﬂ-l.* i L

train with full depth shrink the depth shrink the depth

channel channal
imperiznce

0.82 I
channel recng
soring o J—fﬁu
046 e il

L Lo

el

—.n —ein —eh
train with full width progressively shrink the widih progressivaly shrink the width

progressive shrinking:
channels

ofgfe} gro] Z} @ 4o tfsf X120 2 progressive shrinkingS 2-§-5FH eF5AlZ.

Full [Erastic FU” | Elastic | _ha F'—'“ Elastic
) Resolutmn Kernel Size Depth Width
Partlal

22 ofg|e} ZHo] roofline(o] 22 A% $HA) analysiss 43
2 HE=1 1t} memory©] H]|3] computationg To| -89ttt g

B EH OFA designed model5L 7]&2]

107
« OFA [(Ours)
MobileNet-v2
MnasMet]
. |
1
-‘l.l-"‘l- 1
a 107 4 !
z |
7
1
L
'
i
1
10! — T ey T
10" 10! 107 103
OPS5/Byte

3.3.3. Zero-shot NAS

Zero-shot NAS+= ol glo] Jo= d 5ol X2 9] of7|8lx]F 3h= 7|9 Q). 1 B 0 2= ZenNAS
9o GradSigno] Q-2

1. ZenNAS
ZenNASO A= A2 7712 = g fjs] &8 9] Zpo]7}F S5 (g wzral.), 2 layer®] batch
normalizationof A1 9] EEZHZ 7} F4E(HE o] £2.) model?] 50| =rf1l Oi]zop

OFellF @] 21, 202 AS Ejet AS score 8. O 22 AGE o = o 4 e(e B A2)
oli, f& ol'd oFZ|E A& AFgotT] TtE A E BE Y EE SE ol Z7]213 modeldl.

z1 = log(|f(2") = f(x)])

_ X0 Z
7= Cout log 7
2. GradSign

GradSign2 98 tlo]Elo] T2 local minima 2]F2] 2fo]7} H242 ZL model®] 450] =r}

o

44

25 =, vj24t ghe] Ho]E 7} FUst 259 gradientE FHAA His AL} HL4E FE model
=

3
I
3
3
3

I felxy), 30D 1 flxs), ¥5) I(folxr) yy) I(falxs). y2)

W

o (i)

1] } [

(a) Optimization landscape with sparser (b) Optimization landscape with denser
sample-wise local optima corresponding to sample-wise local optima corresponding to
worse .J(67). better .J(6").

3.3.4. Neural Accelerator Architecture Search

Neural Accelerator Architecture Search(NAAS)= Z]Z 2] accelerator(SFE¢Jo]) ofZ]E€z], NN of7]
%], Z12]31 o] & AFo]] mappingQl compilerg Z= 7] Q). XF7FX]= AghE sFEfo] 2g
3t #]419] NN ol 7|E] A2 5-0.2]31 Gt NAASOIA= H5/0] NN o} 76| 319} 5= gof o} 7] 64
HEE g 25

ofg|oF Zro] accelerator, NN, compiler ZFZFolA] 228 5ljoF of= H-Fo] Qli1, o] & &3 design space
Z AP 4~ Q2. o]uf acceleratorQ] connectivityE LFENE= BE 5 numerico] ofd gjo]Elof oj
A= LHE2] encoding WA]S 283

Key Dimensions

Local Buffer Size, Global Buffer Size, #PEs Architectural Sizing

Accelerator

Compute Array Size, PE Connectivity Connectivity Parameters

Compiler Loop Orders, Loop Tiling Size, Dataflow

#Layers, #Channels, Kernel Size, Bypass

Neural
Network

(Input / Weight) Quantization Precision

compileroll A= o 2191 ofw Al npeh 2A}HoZ H2|g A
AQIA]e] gk mapping .

NAASE ofgol ZFo] evolutionary approacho]] T2l accelerator ofZ]ElE AA5F11, OFAZ NN
oF7I 55 e, o] F Aole] AHEHE mappingS AT H, 1 H5e SFE

L2
&
L
o
o
o,
)
Y
ok

For epoch_naas in range(max_naas_epochs):
accelerators = NAAS_generate_hardware()
For hw in accelerators:

For epoch_ofa in range(max_ofa_epochs):
networks = OFA_generate_networks(accuracy)
For nn in networks:
map = NAAS_optimize_mappings(hw, nn)
edp = NAAS_get_edp(hw, nn, map)
OFA_update_optimizer(nn, edp)
best_nn, best_map, best_edp = OFA_update_best(nn, map, edp)
NAAS_update_optimizer(hw, best_nn, best_map, best_edp)

45

eF manualsH] HAHE

&
=
2
o
~
i
1
2.1
ra
\,q
\U.,
Ol
~
I
ay
<
I
<
ox,
olr
o
ofli
of
>,
Y
>
X9,
K
H

4. Knowledge Distillation

4.1. Knowledge Distillation

4.1.1. Knowledge Distillation

Knowledge Distillation(KD)S olu] t&5% Z model(Teacher)S -85l 22 model(Student) 2]

=
S1r2 B 7WY. 2, teachers) studento] BHE BEE B2 (align, match) S5 B

; -
ol 53] sfEg]o] AJofo] YAt GG A EOPlE ZRS model®] networke] ot5 W Y&

488 5 4.

KD¥E teacher®l studento] fjsf & AFo]9] lossQl Distillation LossE AH4F6F1l, gradient descentES
H.gof HHFE Ao .

7|22 o g ool ZFo] logit(classificaitonol 4] softmarE Z-g&aF7] 29 k.)ol thal]l temperature
2 5goL Ao FHT = 908 Temperature o2} 20| softmaz AN 7F GS i
WO, Zeglel e BEE 23 R G 1013, glo] AL5E e Bu} REAIY.

Distillation
Loss

Classification
Loss

4.1.2. Distillation TjA};

D= ofajop 22 gighEo] tiol] A82 + A5
1. Output Logits
ol T2 AHE KDE gl ol 458 + 9.

2. Intermediate Tensor
KDE weight} activationZ2 intermediate tensoro] sl Z-ge 4+ Q=2

ofel| o] 1y} Zro] £ layero] tis weight gl& Bl SFe] distillation lossE AXFe 4+ 5. 79
s} HL teacher?} student’| 7}X]= weighti= "1 shapeo] TS 4= QItl= Aol o] -2 projection
matmx(linear transformation)® shapes WFFHH H.

46

Teacher Model

— & =)
put l

Classification
Loss

Distillation
Loss

1
LayerJ‘[LayerJ A{Layer
1 2 | X ’

Student Model

5]

o
s

IESF activation(feature) o] A= &

3. Gradient
KDE activation gradientof] tjjaf] &

5HAl E layerd] Hisf

T -~ O
+ 9]

o

| == g

o;
=

oF student= & YoF ¢S F75LE 2 activation gradient& HEE Zlo

4. Sparsity Pattern
KDE activationo] gjoF sparsity patternof] Z]-&&F

= 9l
]2 O 2 teacher2} student’| Z7[X]E= ZF layerQ] activationS

- 0] O
% =

\l

5. Relational Information

teacher2] oj 2] Zkal student2] 037€f 5}'5

H*»*‘ 5 residual module]—-\| 5 residual module ‘}——\| 5 resioual modde | >

H]iz]o:]-.

32-layers
Teacher Net

(ol
hd

670 o]
H L2-loss H L2-loss H L2-loss
fedm| e] Gs

 imerproduet

Tdlayers il Elofzl oS} 2 resioual movue | /I 2 residual module ‘\—fl 2 residual module |\. of
Student Net 8 & 2
Wsps5ps 55 = (Isy = 2l llsy = 53013 - llsy = 8,013, - -lls,my = s, 1) is @

transfer

799

Model’s Representation

49 =7

Examples

Model’s

H]ﬂ

backpropagation A]ol= weight gradient@} activation gradientE = A4

QAFSF sparsity patterns 7}

24
/

6;7—_{,'_ o]

©
AR -

Fsl 4~ Q=g o]ufl teacher
EEESS

orojA] of2 Az} Zro] teacherS} studnet?F ZFZ} 7FX]= SFLEQ] tensoro] tfsjA] gl ofi]al, o]
tensore] Aol HJolA] KDE 98 5 9.2,

EX HEBo tfat 9 tensorS}F =8 tensore] WA(PE F)E Hlud 5 S E= A2 f 2
g gjo]El7]2] 9] H‘ﬁ]g =+ 5 ° =, teacher2} student2] 7’,% oo 2 Hwsl= Zo] ofi]al,

Residual module

vector of length n(n — 1)/2 representing pairwise distances of feature vectors. \

Relational

Individual Knowledge Distillation Relational Knowledge Disti

llation

4.1.3. Self/Online Distillation

ShEeAl 7] A

ool A C}Z A} Zvo] F37 pre-train(fized)E teacherE

47

2 H]-go] Ho] Tt self-

Jonline distillation© 2 o] & 7|Ae = QIS

1. Self Distillation
Self Distillation& F31 1773 = model Tj4] SF455F2= model-S teacher=2 A-g§3sF= 7]H Q.

Born-Again NN& ofajo] 781} gro] o] AJZ o] sF4e0] 2 H model-S teacher? sl AL
-2 ot self distilltion] 7). 5, ofefs} 2] @A) A1 Tt clussificationsy. o] 4]
719] distillation BF=& afgl zF A]F o) A19] modelE = =5l of7]|HIX{E 7[R 11, accuracy

L po] wef A% AUE. £ 7 AGOIA BIE assembledlo] HE A7E EEE + UL

X

T
W
< S == -*%
Step 0 l’ Step 1 * Step K Ensemble

2. Online Distillation
Online Distillation& B]g] SF5E teacherE &-§5lo] studentE eF&55l= dJ4l, teacher®} studentS
X9 from scratch®E SFGA]Z]E= HFA]Q]. ool = model:& A]Z7}F teachero] 2} studento] 1, ol
ofZ|EHIHE 7}2 £ ¢l2.

o]&A of&] model 7Fe] 4% oF&5S Deep Mutual Learning(DML)o]2FT & = modelof 3 DML
L AHgs5lH zkzF ol 2 st5A]Z mj Tl A 5o] SEAFEICE T of.
teacher2} studenti= o2} Z+2 cost functionS 715, oj7]A KLL KL Divergence2 Hslid, &=
&2 Afo] o] zJo]E LY distillations 32t

Z(8) = CrossEntropy(S(1), y) + KL(S(I), T(1));

Z(T) = CrossEntropy(T(1), y) + KL(T(I), S(I)).

X X

b

0l

3. Self + Online Distillation
ofgflo] T3} Zo] self distillationT} online distillations EAX|of] Z-g&&F 4~ ¢l-2. =, 5FL19] model
off tisf tf deepst Zof U= layere] S teacherZ /(]-—5316}07 shallowO,_F Z0o] Q= layerd] distillation

© ZQgs}
= 10 O-
/ Lot Eaoodle| ool oo
’
-
ResBlock 1 ResBlock 2 ResBlock 3 ResBlock 4

1 ¢
0000
FC layer 4
Softmax

TS
%)

n from hints Be xul eneck 1 Be ul eneck 2 Bottleneck 3 | I-

supervision from labels Y Losssource2

. ’ OOOO OOOO OO O O|kL
— supervision from distillation . 3
[(Id\,ll I(]«)lz FC layer 3
relative magnitude Lo
h 4 Cross entropy loss fro
[smm\ ax 1] {Sof nm ax 2 [Softmax 3}
s *_ e
oy G GED | G
scmion. GARD) (ARD) (GRED)

4.2. Bofd distillation Z-&

4.2.1. Bofd distillation Z-&

1. Object Detection

Object Detection2 o]n]z]oJ4x] EX gjilo] Q& 2= EAJY. ofg]o] 183} Zro] intermediate
kg AFo]l oSt classification, —,—]X]O;’] tfjst regressiono]] distillationS #-§¢eF 4+ Q2.

48

oJuff classificationo]] theF distillation © 2 A ISl cross entropyol weight& F7FeF A2 foreground/bad
groundo]] o2 Ew S ofack] 9/gkel. o]n]A] flo]EofAli= A= foreground(ZC 2= dig)ol
H] 3l background(Z 2]°] o4}, 7) 7F E4 E7] wfiofl, object detectionof 4] o] Bt @S 112 5F]
9101 modelo] backgroundel] TG o] S48 3 92,

> Teacher | Hint | > Detection
‘ ,,)
v v
e Soft A Ground Truth
v CIassngcanon Label Regr;ssnon Label
,,,,,,,,, Av4
L2 Loss Weighted Bounded SoftMax &
: Cross Entropy----: Regression > SmoothL1
0 i Loss : Loss Loss
f . : A H A :
A Back Propagation Adaptation Classification Regression
A Hint @ . . . A
1‘;"".:::':::::'::::::5:':':':r:r:r%‘:':':':“:.':' ~/ Distillation T
y N % - Ground
> Student | Guided) _Detection ———————————— Tuth_

PRI oA LU

EELEEER TS

(x2,y2)

2. Semantic Segmentation

Semantic Segmentation pivel =2 o]H classol] LoF=2]E Tlsl= EAJ9). =, pizel-wise predic-
tion /.

ofgfol Zro] LA eF &~ Q1L o 7]o] A Discriminator Network= teacher2} student?] &8-S JZE3]
= network2, student= discriminator networkZ} 219] Z8 1} teacher?] 82 FE5}X] Bl =

Z|==hg.

i e)

Holistic loss

Real embedding Fake embedding ——

Add a discriminator network to provide
adversarial loss: the student is trained
to fool the discriminator network

Lonawon

Pair-wise

loss Distillation loss

E=

Segmentation loss
Similarity map

Discrimination loss

Input image

3. GAN

49

@ Candidate Generator Pool _,

| §iie

Pre-trained Teacher Generator G* \
s ¢ <
gﬂ ‘.‘s >
o

P w w

<

"$aaa9

; - QE\ET&%Y{C(:
pravy

Super Student Generator G

b
Loss |

With Channel Configuration ¢, ¢, ¢; Fine-tuning
Distillation Loss Reconstruction Loss cGAN Loss
. L _JlIG@) -yl paired cGANs
Laaain = g IGx(@) = Sl Gl Lrecon = {n(;u) —G'(z)|| unpaired cGANs Legan = Eq ylog D(z,y)] + E,[log(1 — D(z,G(x)))]

Training Objective
L(x) = LeaAN(Z) + AreconLrecon (T) + Adistin Laistin ()

4. NLP
transformer& AFE5H= -2 feature mapEal ofU] 2} attention mapx distille 5 <.

LIHI L1H2 L1 H3 L1 H4 LI2H1 L12H2 LI12H3 LI2H4

Teacher

with

\ |
[P = Ty i

attention
transfer

Student Student

without

attention attention
transfer transfer

4.3. Network Augmentation

4.3.1. Network Augmentation

Network Augmentation(57F)2 networko] theF augmentationd.

2 modelo]] Al B&52 02 data augmentation] dropout 55 Z-§5Fo] overfittingo] BHAJS|
2| = g o] 7] A Data Augmentation(S-4)S 7]E9] Ho]E] 2R E] A2 Ho]E[E A-gofo]
overfittingS BX|ol= 71 Y. 2 modelo] oAl o]& 7| Eo] HoS =l A]F &2 modelo] o
A= 25]8 H5E DojZ . o= I modelof| A= overfittingo] T2 BHYSIX| B, 2R modeloj A+
underfittingo] F£2 BIAISE] w2 Q). data”}F oFY EF networko]] Z-§35= augmentation underfitting

O S AS A o]o
= Oi%FTA/ZD-

network augmentationS ofgf|o} ZHo] 7| E networkZ22E EZ 28 213Fol networkE Aok,
model S5 Alof] o] BFZHEl networks g-§-5Fo] =z}l

50

Eaug = E(nvbu.xc) + L(U‘]‘;l.\g‘a H”raug])
S——— e

base supervision auxiliary supervision
212 modelof] network augmentationS Z-&oFH 5o] JMAE I, YFH Z modelo] o]E 147%’— ffﬂ

overfittingo] BIAISLo] validationofA] A5o] Gold 4= Ql2. O] & modelS AJ45Fo] st&o] 2hg
= gl KD9} AR, KDEE} B £ 452 7% o

i

o

distillation®qF o} 2} network augmentation© 2% ZFS 9 9] accuracy s =9 4~ 9

5. TinyML

5.1. TinyML

5.1.1. TinyML

1. TinyML

TinyML-2 sfEgJo] & AJofo] AT edge device(FZ MCU.)oJAe] MLY. £35] MCU(Micro Con-
troller Unit, ofo| A2 HEE 2])5 T2 ARgol= lot 2H5 o4 9] TmyML,_ 1—?3 H-§, 22 o] =],
=2 88§y ot 11 FRE0FF

TingMLE An}EE 5 Bo[e] $5o4 Sophe mobile aic] MSAE & H2E Ak BEA
of gf. o549 —’—XHO]-—— 7]—-—_J TAE ais2 memory2l disk, computatzon energyE& U572 Wo]
/‘FQO}DE Aot 2o A= 4t B2 efficienyE 7FR]= ais AFESHOF g

2. Weight/Activation2] 2|7}
weight /activationo] HAZ oftjo] AFHEE Fof TinyMLAS] SFESo] Aok 1&g 5

oLO_

weight—= 1 g5 HEdJoF 5.2 2 storage(DRAM/Flash. &2 flash.)ol] A]%FeF. =, flash memory—=

model szze”Fﬁ_J FIFS ZFR] 1 QlojoF oF. o]uf] EIFF Q] SF5S oFX] YErFH read only= 23S}

7= gt

activations 1 gFS offHl AR 2 memory(SRAM)oj 2% el G A5LA = input/output activation

_77 ol-o] Zfol X8 (layer) o 419] peak actvationTHg2] memory F-7HS 71X 1L Yl ooF & &2 weight
ALF Aol memoryol] E2]X|gt, BEZQI fetchZ}F 750l B2 Z A 1 25kR] oS

51

input
activation activation

\

DRAM/Flash

Memory Storage

kernel output

A2 computationo] H]s memory”} H]-&0] =24, 71 FA %= weight(flash) X o} activation(SRAM)
210412 memory A10] of 2%,

TinyML- 02131 =73 Oﬂﬁ T8 F8d 4 A A deviceo| A F-85FA T, F mode
oAM= 54 FE 7]52 efficiency B HeF %ﬁoﬂfﬂ TinyML-Z -85 —r°§3}% Aol F& 4 = (visual
wake word)

o
i)
ko
rek

I
ol

5.2. MCUNet
5.2.1. MCUNet

MCUNet& MOU 58] $-3o14] TigMLE FHFER she AAH-oF1eE 35 44 299
o). MCUNet=2 network oFZ]€]z] A4S 9JoF TinyNASL}, inference scheduling 55 5+ ol= F=2

ozl TinyEngineC 2 F4 &1, o]& B Xfg o2 HASIE ol

=2 A7 (Inference Engme Library)& SF&5%E modelS -85 HAZ inferenceEs THol= HEOC
=2, compzler/runtzme S ESFSE compiler= 210]of] Tjgl compiler2} S-AFSHA] model-S 5 -3 9]
SFEglolol] A JFsgt Hel2 WESHe LRl runtime2 HuAE TES YAz JPoHe £
H o]

LA =

4)4

inferenceS 4— ikt

g, 4
linyEngine

Efficient Compiler / Runtime

(c) MCUNet: system-algorithm co-design

design

TinyNAS 2,

auto-optimize 4

compile & exec,
TinyEngine ——

auto-optimize

5.2.2. TinyNAS

1. TinyNAS

TinyNASE MCU 59| 3F7 oA ZoF7H= modelof] gjeF NASY.
TinyNASE oo} Zro] 2719 stageE 714

1) search space &3}

2) Neural architecture search

52

“Search space”)
Memory/Storage Kernel sizes

. Resolution Expansion ratios
Constraints | ; p
Width Multipler #blocks per stage
- ~ s . g Al
Full Network Space " Optimized Search Space | -1 Neutals.i;::gecture
L J " J - -

2. Search Space X|Z3}
TinyNASE search spaceE A0 2 X[SISF search space”’} ZF XX S]5)of g8F o2 4

HIHAE U2 5 UL

or
9

O
o 1-

ojn] EAolli= tlE search spaceE 1H|2 ZFX e} AFEE = QIARE, MCUSF Zro] =& &2 Aol
Bl djofAl= ZFE RS BT AoFS TFEAIZ|R] 2 4 Qlohe EAF QIS o]of mhef 7pA2
search spaceE scalingslo] X|X2fet ¥ &-83% =& gpu 50l WA= scale-upS H-&ol H55
-SR], MCUO| s Al scale-downs X-&5] H&S /AT 5 US.

resolution@l width(channels. width multiplier& Hol= 02 FdE.) s scalingS Z-§oFH
SRAM, flash XF@lo] 2eFol= search spaceE ¢S 5
width-= weighto] tfgF Z1¢].

olg|o} Zro] flash, SRAMS] 7 7] H5F} resolution, widthi= HHEo] Q2. SRAMO] #HX]H reso-
lutiono] Z7}5F11, flashZ| AR H width7} S7F8F11 resolution©] Z4aF. o] 7]ofJA] flash7F AHX]H ©f
oro weightE *J3Fek 4~ ¢lo] width7F Z7F5IX]8F, activation F7]= -S-X]foF 5FE2 resolutiono]
Zaarl A9,

O

Flash increases, same SRAM: larger channel, smaller resolution

192[0.4/ 04 05 05 05 05

SRAM increases, | 5 256 03 04 04 05 05 05 05
same Flash: gszu 04 04 05 05 05 05 05
larger resolution | £ 3%¢[%4 94 [ASTASTAS A8 02
448| 04 04 04 05 05 05 05 05

512[0304 05 05 05 05 05 05

512 640 768 BY96 1024 1152 1280 1408 1536 1664 1792 1920 2048
Flash (kB)
112 80

05 05 05 05

192|112 112 112 80 80 80 80 &0

5 256 128 128 128 128 128 128 128 &0
£ 330 112 112 112 112 96
E 384 112 112 112
W 448 128 128 128 128

512 640 1024 1152 1280 1408 1536 1664 1792 1920 2048
Flash (kB)

flash, SRAM =Felo] F9F5H= search spaces &, oAl thE A7 Zo] sk modelo] &2
FLOPsE 7IX]E= design spaceE 4183}

3. Neural Architecture Search

search Space% ;F'l(__)' 71;‘]077—1]:—- OFAS /(]'—§-3]] one-shot© = O]'7] E'_’,]X_-]—‘S— ZJ'—DQ —é—} supernetwork—eg E}-%
5 7 subnetworkE FZ5]1 fine tunings}o] FEE 452 o} AE 2.

TingNASLE 319102 78 o] ElA/o])]l memory AF§3& F0] L, block™ memory AHEFE
25} B4 FHIS Fzohehcl)

T

ol

5.2.3. Patch-based Inference

1. Patch-based Inference
Patch-based Inference= activations oJ&] 79| patchzZ Uro] A elsl= 7]H o2, MCUNetV29]
af3] ofo]r]o] & 5FLLQ]. TinyEngineofAl+= o] 78-S AF&5lo] inference schedulingS =3¢l

53

flashell AL A T2 AAE model sizeS S04 AH3F 5 2T, SRAME] oL peak
activation(©] 7] bottleneck®.)S & FHol & = Y. IZ2g] ofgf 27} Zro] ZF blocko 41 9]
(CNN 7] &) input/output activation g 5_2,7-070}] _li?j 9}@ layero| A1 2] memory AF-§-gFo] B4 HRS.
oJoj] u}2} patch-based z'nferenceO]]/(“]}: f]’@ layero 419] activationS &o]& S ¢

———per-patch inference —>

per-layer inference ——> peak mem: 172kB
1400

HE High | Low
. mem. | mem.
1120 Pl e—— 8x
o P larger
3 Org peak |
mem. |
g, 840 i
8
2
» 560 e New peak
g i mem.
g 280 256kB constraint of MCU
0
0 1 2 3 4 5] 7 8 9 10 N 12 13 14 16 16 17
Block Index

ol o} Zro] Z} layerofA] HE HEo] tgt AR F Hof del= i, AR of 2] HE (patch)
o2 UEA gt o]of et patchl] Fjg=of] HlFol= HEelE Y Us B2 UW’” 27}
E Asl1 ’OiOF of7] mjizo FRY EY 4 Sl AL oFd. O]Ev’ patch Y ArRE 9F layero]

X17—9-0]-077 activationS =¢].

per-layer inference per-patch inference

B In memory

conv1 conv2 conv1
s=1

*need to hold entire output

Z! 2 conv ¥4Fo) miel HR]E HEo] AA latency overhead?} EXgl =, =Y
ArRS ArYolA E + %’% £35] recepive fieldZ} AETH H2= FEo] o8 Z latency }
Z]. o] ufzf CUNetV,?O;’]H,': 3”@ layer®] convolution layerE HoALF =75} receptive field
E Zo]1, o]o] gjgl HAFo 2 FZE layerof conv layer& F£7Fol= Ho2 FEE 2.

conv 3x3 1 conv 3x3
s=1 s=2

Hec wsFBlcl

o]@ 7]¥-& ggsto] MCUNetV2i= MCUNetof v]af 841 42 SRAMO 2 t] Holdh 458 1 o}

-

N

MbV2-RD E

TR

2. MCUNetV?2 o584
patch-based inferenceo] el MCUNetV2E oo} ZrL olZ|EIAE 717, 9FE layerEofAlE A2

[

54

kernelS AFg3Lo] latency overheadE &P, S7F HE AL bottleneck blockoA] &L expansion
ratios AFE-510] peak memoryE 9. o] ¢ HH S tpA] SFHGE] Yol FE layerof Al 2 kernel
I} expansion ratioE AFEEF

+——— per-patch

R
fen
e
a

MB4 3x3

L

160x160 BUxBD

40x40 20x20 10x10

Sample arch from VWW. Legend: MB{expansion} {k_size}x{k_size}

object detectiono]| A accuracyE GA|5FE]H =& resolutione 2| 4 ojof slal, oJof wa} peak

Fal= audio H|oE = 229 H|o] ¥ (time, frequency)= HFs}o] visual H]]‘3 A A 4= & 59l
audio H|o]E o] = locality7} A2 2 CNN2 AFESHH £2 L2 HY 4 8.

anormaly detection 5o & MCUNet2 283k 4= 9J&. Autoencoder= JHI} =3t £2& T &=
modeS1d], o] Sl A4 YRt U Qels e 4 e BAAa A2l tal el
BT 222 £2o =S S5 A7 T, olF 54 dlol ek YAHoIA S o) YRl BUHA S 2ol
TE5.

5.3. Parallel Computing 7|®H&

5.3.1. Loop Optimization

Loop OptimizationE HHERof] Z-25F= optimizaiton O 2, ofge} Z+e 7| ¥ o] &2

Rand

ok

1. Loop Reordering

Loop Reordering2 TFZ loopo] Ti&l loop cA]E &35 AuiR]5F] data localityZE X ol S5l 2
ol= 715 9.

E3] ofgfjo} Zro] FE F& & 0 localityE T 25FX] & O™ cache missZF X BHAISE o] -2 loop
wAEF HHE A o] SEF :_7’-77’] WA = s B ol £AIE AEfAIsHE P Cof HlofAl=
localityE 2H-§olx] Zol=t], A Z= P& BoJA12] 7h0] coll A 9] overheadE EAI 2] ottt 3f.

for i in range(0, N): for i in range(0, N):
for j in range(0, N): for k in range(0, N):
for k in range(0, N): e for j in range(0, N):
Cli][j] +=Al1][k] * B[k][|| Reorder (i, j, k) as (i, k Cli][j] +=Al1][k] * Blk][]]

== | =

Good data locality ~ Poor data locality! Good data locality

* Assume stored in row-major order * Assume stored in row-major order

2. Loop Tiling
Loop Tiling:& *elol= FH(to]E])& ©f 22 9]¢l tileZ LF=0] cached] E2]= 7] Y. cache
Hrf 28 F7]9] tileS A0 cache missgE =Y + U5

ofgflo} ZFo] single level cachel] F7]of] BFE tilin
Z]-gsF 4~ Q2. o]of] ufg} cache miss7F 2= A7

g
o
2

o
st

= Q137, multi-level cacheo] A=

i
2
i}
rx
g
A
o,

55

for i in range(0, N): Tj=Te=T;=TILE_SIZE
for k in range(0, N): for i_t in range(0, N, Ti):
for j in range(0, N): I for k_t in range(0, N, Tx):
ST AL * ; Loop tiling for j_t in range(0, N, T)):
Clillj] += Alil[k] * B[k][j] fJ* HHREEE T
oriin range(i_t,i_t + Ti):

Accessed elements in A: N2 = TILE_SIZE2 . .
for k in range(k_t, k_t + Ty):

Accessed elements in B: N2 = TILE_SIZE2 for j in range(j_t, j_t + T):

Accessed elements in C: N2 — TILE_SIZE? Clillj] += Alil[k] * B(K][j]

T2; =TILE2_SIZE
Tj=Tk=Ti=TILE_SIZE Tj =Tk =Ti=TILE_SIZE
fori_tinrange(0, N, Ti): — for j_t2 in range(0, N, T2):
for k_t in range(0, N, Ty): fori_t in range(0, N, Ti):
for j_t in range(0, N, T)): ﬁ for k_t in range(0, N, T):
for i in range(i_t, i_t + T)): Tiling for muiti-level caches ¢ 11 in range(j_t2.,_t2 + T2, T)):
for k in range(k_t, k_t + Tx): for i in range(i_t, i_t + Ti):
for j in range(j_t, j_t + Tj):
Cli][jl += Alil[k] * blk][j]
B: TILE_SIZE2

for k in range(k_t, k_t + Ty):
for j in range(j_t, j_t + Tj):
Cli][j] += Alil[k] * blk][j]
B: N x TILE_SIZE (cache miss if we have large N!) B: TILE_SIZE2 — L1 Cache

B: TILE2_SIZE x TILE_SIZE — L2 Cache

3. Loop Unrolling
Loop Unrolling& loop L2 9] instuctionS unrolls}o] branch predicetion, loop ¥4 ¢I4F, ZAE 2]

59] overheadE Eoli= 719 22 ofe] whe} 7= o] Zol7 ol ATk tradeof7F
ol 2ol elilge £ 4 9lg.
for i in range(0, N):
for 1 in range(0, N): for j in range(0, N):
for j in range(0, N): for k in range(0, N, 4): # step 1->4
for k in range(0, N): Clil[j] += Alil(k] * B[k][j]
C[i][3] += Ali][k] * BIk][j] —) Cli][j] += Alil[k+1] * Bk+1][j]

e.g., unroll by 4 CIilljl += Alillk+2] * B[k+2][j]
Cli][j] += Ali][k+3] * B[k+3][j]
« Arithmetic operations for pointers: N3 -> 1/4N3

* Number of loop tests: N3 -> 1/4N3
* Code size of the most inner loop: 1 -> 4

5.3.2. SIMD programming

SIMD(Single Instruction Multiple Data)= SF=-gJo] 2 9] X]¢l-S &3] 5Lt 9] instuction© 2 oj&] 7§9]
glo]el & ¥E 2ajsl= 7|8 Y. F2 AFgEE SIMD instuction set 2 2= SSES} NEONO] <.
SIMD-= wvector register@} vector operations E-§8F Vector Register— of 2] 7J2] tj]o]E] & HE= reg-
istero] 1, Vector Operation2 vector registero] s s~aol= 9941

SIMDE Al-gs8lH o 2] tjo]efof tfjet B & Rk data-level parallelism) X instruction decoding A7}
c}z0 2 WE oAk et A=o] GEAFE.

Single Instruction Single Instruction
Single Data Multiple Data
_ 32bit_ . 128bit N
a aop a az as
X X
b bo b1 b2 ba

SSEQ} NEONojAl= SIMD progmmming—a‘l QJ5f intrinsic functionS A|-&-eF. Intrinsic FunctionS
c/cH++5 D5 Qo]oA] sFEGJo]9] SIMD instructions 2 &8 4+ Y= Hopde7F A&

56

Sho g0l SREGO] 23 Sel ol @B E|olE A1gshe th4l ofdsh o] o] Egate] SIMD

g o FF A o
programming& & 7 5.

* SSE: _mm_load_ps/_mm_mul_ps/_mm_add_ps

+ mm: multimedia /I SISD programming
* load/mul/add: load/multiply/add for k in range(0, N):
. . o "
« ps: packed single-precision C+=Alkl " BIk]
! with SSE
. . . for k in range(0, N/4):
NEON: vid1q_f32/vmulq_f32/vaddq_f32: C+=_mm_mul_ps(_mm_load ps(A[k*4]), mm_load_ps(B[k*4]))
* v vector ¥ with NE
+ Id/mul/add: load/multiply/add e
mu : ply. for k in range(0, N/4)
« 1: number of vector C +=vmulgq_f32(vid1q_32(A[k*4]), vidlq_f32(B[k*4])
* @g: quadword
Arithmetic operations: N* Arithmetic operations: N3/4
32bit 128bit
Alillk] ALIK*4): [a0 [& | 2][2 |
X X
Blk|jl [b] Blk*4](j] [o][br [b2][bs |
preprocessing(); /7 Initialize A, B, C and transpose B as transpose_tmp SSE intrinsics
. R X _mm_Load_ps/_mm_mul_ps/_mn_add_ps:
for (i = @; i < C—>row; is++) “oomm: mulTimedia
for (j = 8; j = C—=column; j++) { + load/mul/add: load/multiply/add
float accumulators[4] = {8, @, @, @}; * ps: packed single-precision
ml28 *acc = (__ml28+)accumulators; // initialize four 32-bit accumulators

for (k = @; k < A-=column; k += 4) {
ff vall@:a] = Ali)[kik+d] = A[j] [k:k+d]
_m128 val = _mm_mul_ps(_me_load_ps{&A[i] [k]), _mm_load_ps(&transpose_tmp[j][k]l));
/¢ accumulators[@8:4] = accumulators[@:4] + vall@:4];
sacc = _mm_add_ps(#+acc, vall;

}
clillj] = accumulators[@] + accumulators[l] + accumulators[2] + accumulators[3];
preprocessing(); // Initialize A, B, C and transpose B as transpose_tmp ARM NEON intrinsics
for (i = @; i < C->row; i++) dequ‘!32,-'u’r1r:u'Lq_f32;vaddq_f32
for (j = @; j < C—>column; j++) { . L:I.-"mul.éadd Load/multiply/add
float accumulators(4] = {@, @, @, @}; « 1: number of vecto

float32xd_t *acc = (float32x4_t«)accumulators; // initialize four 32-bit accumulators 9 quadword
for (k= @; k < A—>column; k += 4) {

J7 valle:d] = All) [kek+4] = A[j] [kzk+4]

float32x4_t val = wmulg_f32(vldlq f32(&A[i] [k]), vldlg_f32(&transpose_tmp(jllkl));

J/ accumulators[0:4] = accumulators[@:4] + vall@:4];

*acc = vaddg_f32(=acc, val);

cli][j] = accumulators([8] + accumulators(l) + accumulators(2] + accumulators[3];

E3F tensor coreo| A= A T FolA HolE 9] 2717} shte] intrinsico] A2 4 = AR & 7%,
tﬂ olE & o tile2 Ui ¥ Z 11e01] gt Aibe e oz 9k

Tile 0 Tile 1
(16xE) {16x8)

Tile 2 Tile 3
[16x8) {16x8)

Tile 0 Tie 1 Tile 0 Tile 1
(16x16) (1Ex18) (16x8) | | (16x8)

Note: The order of applying these four MMA intrinsics does not matter.

5.3.3. Multithreading

multithreading © 2 HE 22|& ZHY 5 S c¢/c++9 A= Pthreads2} OpenMPE &-8¢8 5 Sl

ofefol Z+o] Pthreads®} OpenMPE K]-—Q-Z" —/,‘— A& Pthreads+= B]w & HZFopR]at o] A2k 2ol 7F
7Fs81al, OpenMP+= ZFFsHA] ARg-gh = QUR]2F Hupdejo o] zpg o &2 AJofE. OpenMPo A=
42 BT RS Fgeto] HILA multithreading A E =5 A E + L.

57

int main(} {

{f Initiate the threads
pthread_t threads [NUM_THREADS] ;
ThreadData thread_data [NUM_THREADS] ;

J/ Create threads and assign work

for (int i = @; i < NUM THRE&I]S, nu {
thread_datalil.thread_id =
pthread_create(&threads([i], nu‘l.lptr.. mat_mul_multithr

\[struct ThreadData {
int thread_id;

¥

A/ Specify the function that each thread needs to do

voids mat_mul_multithreading(void+ arg) {
ThreadDatas data = static_cast<ThreadDatas=(arg);
int thread_id = data->thread_id;

cading, thread data(il); int rows_per_thread = SIZE_MATRIX / NUM_THREADS;
}

/f Indicate the starting and ending rows of each

) . . . threads

/f Juin threads to wait for their completion i - i .
kel " int start_row = thread_id * rows_per_thread;

for {int i = @; 1 < NUM_THREADS; ++i) { int end_row = (thread_id + 1) # rows _per_thread;

pthread_joinithreads[i]l, nullptrd;

// Each thread only conducts a part of the mat_mul
for (int i = start_row; 1 =< end_row; ++i) {

y o for (int j = 0 j < SIZE_MATRIX: ++j} {
for (int k = 0; k = SIZE_MATRIX; ++k) {
k ClL1(3] += A1) (k] = BLKI[j];
thread }
thread 1)
return nullptr;
thread
A B “Multithreading example code™ [Link]
int main() { The code of using OpenMP is cleaner than that of

const int N = 100; // Size of matrix using Pthreads

(Easy integration with existing code)
!/ Initialize the matrices with random integers
std:vector<std:vector<int== AN, std:vector<int=(N));
std:vector<std:vector<int== B(N, std::vector<int=(N}),
std:vectorestd:vector<int== C(N, std::vector<int={N, 0));

il Set the number of threads to use in the parallel region
omp_set_num_threads(4);

Ineds .

te the r of threads

!l Parallelize the loop with OpenMP
#pragma omp parallel for t
for(inti=0;i<N; ++i){
for (intj=0;)< N; ++) {
for(intk=0:k<N; ++k) {
Clil += Alil[k] * BIKI0I:

In OpenMP, we use #pragma to indicate where to parallelize

thread 0
. } thread 1

H
returm O thread n

5.3.4. CUDA programming

1. CUDA

CUDA (Compute Unified Device Architecture)= c/c++ & 155 A4 gpuE E-g8 + Y=
Nvidiaof|A] Z]EeF £ X EfJo] A8 CUDA= gpus g-gof= Hlof 4l E9.

CUDAOJA] host= cpug, devicer= gpuE Hol1l, devicedA] Eol7F= A EE Eosl= g5 Kernel

olatil g}, o]uf kernel-S gpuof A &2]7] —,—]o]] kernel call-S 2 asF=1], Olf kernel lanunch overhead
5 overhead?} EAA] 7FsoFH oF H1 9] kernel callofA] of 2] ZFYH-S A 2]l & FZ&sIctal o

CUDAE threado] st A5 FXE Algofo] aupzlol g z‘Ja]E SIEE F2 o] AE IRE
ofgflof ZFo] of 2] threadE HEEF5l= blockT}, of 2] block—— Fol= grid= 4945

o]
I:l

Regular application thread running on CPLU (the *haost™)

const int Nx
const int My

= 12;

= 6;

dim3 threadsPerBlock(4, 3);

dim3 numBlocks(Nx/threadsPerBlock.x, Ny/threadsPerBlock.y);

// assume A, B, C are allocated Nx x My float arrays

// this call will launch 72 CUDA threads:
// 6 thread blocks of 12 threads each
matrixAdd===numBlocks, threadsPerBlock=>>(A, B, C):

58

CUDA kernel definition
// kernel definition (runs on GPU)
__olobal__ void matrixAdd(float AlNy] [Nx], float BINy] [Nx],| |— & kamel code runs on CUDA device: Parallel execution
float CINy][Nx])
{
int i = blockIdx.x * blockDim.x + threadldx.x; Each thread computes its overall grid thread id

int j = blockIdx.y * blockDim.y + threadIdx.y; from its position in its block (threadldx) and its
block’s position in the grid (blockldx)

) Clil[i] = ALj1Li] + BIjI[4l;

2. Memory Model
device= hoste} E2]%E HI 9] memoryS 7}, oFge} Zro] deviced] memoryE &g5l, hosto] o
o]E|E 24 + U= FETF kerneloA HZE = Q= memory= Device Global Memory, Per-block

Shared Memory, Per-thread Private Memoryi 5’7]-/1’]07

[float A = new float[N]; // allocate buffer in host memory
// populate host address space pointer A
for (int i=0;i=N;i++)
Alil = (float)I;
int bytes = sizeof(float) # N;

float+ deviceA;
cudaMalloc{&deviceA, bytes) // Allocate buffer in device address space

// populate deviceA
cudaMemcpy{deviceA, A, bytes, cudaMemcpyHostToDevice);

Readable/writable by | Per-block je—— Block (0, D) Block Block (2, 0) Device global
all threads in block | sharad memory memary

Block (0,1) Block (1,1) Block (2,1)

Readable/writable Per-thread
by thread private memory

FReadable/writable
by all threads

I35t Nvidia gpu2] tensor core= tensor Aro]| tigt] =& throughput¥} thoFst data typed X {5}t
Aot Hlole o] 27|17} A-FE 7|E cored] 3t A5 Fdol AH.
]_ =

o]
4 tensor coredf A= W F o)A Blol6 o] 2717} St intrinsice] AT 4 9l AT 2 4,
o612 ol tile UHr ¥ 7} tileo] Sk QARE SAbA 0 2 Sk,

59

Tile 0 Tie 1

(16x8) {16x8)
Tile 2 Tie3d
(18x8) {168}
Tike 0 Tie 1 Tile 0 Tile 1
{18x16) (16x186) (16x8) (16x8)

Note: The order of applying these four MMA intrinsics does net matter.

5.4. Inference Optimization

orof| A pruning, quantization, NAS, distillation 5 2] 7|HE-2 NNojJA EAISH= 457 o] AL A& 4
or1

A5t efficiency & 7| A1st HHH 01]7] Aol Az = AARS AR &1 A A inference Alo]] A% 7H/‘Kj_0ﬂ
gt A Q. =, inference A o] A HA1E A 5] efficiencyS =4¢.

5.4.1. Im2col Convolution

Im2col ConvolutionS convolution H4FS WE FO 2 HLelslo] ALISHE 7]H 9.

g FL intrinsic ZE oA, building block ZFF A= 713 7] EZ] ol HRFQlb]of BFEll, covolution

Atk FE s ohE FH O] Al of 755}'3]' m2col convolutiono A= ¢J & fjo]e] & A3 s}
o] convolution HLFS Fg F0 2 AL

(o]

ofg| o} ZFo] input activation= H3Z F] X724 oF P& 7]2]o] A0 2 convolution H4F

oIO
U=

[:'E

Output activation|

— o Kernel 0
— ‘o Kernel 1
— o Kernel 2
= ‘o |Kernel N

== GA= ol uE F7FE 2l memory AFg-o] 2

5.4.2. In-place Depthwise Convolution

In-place Depthwise ConvolutionS bufferE F7F2 oL AFESLY] depthwise convolutionS 53517
2 AFE 9/g fjo]E] memory 5 G channelo]] sjgsls HEo] 2Zel= 7] 9.

60

depthwise convolution& channel@ 2 ¢{Fo] g2 o] AulZ 7]Eo] AESFE memoryo]

ZFAJ5Eo] peak memoryE &
2% 3,
Y
(}% (:/

"

Input activation Qutput activation Input/output activation Temp buffer
General depth-wise convolution In-place depth-wise convolution
Peak Memory: 2xCxHxW Peak Memory: (1+C)xHxW

5.4.3. NHWC vs. NCHW

O]-E]]_,Q]— 75']'0] convolution ‘,3__‘7/,5]'2,7 ==] II]'E]' _’Q‘%XJOI OIE—? E]]O]E‘]Oﬂ E]]o;l' memory Za,youtol 1:}-_':—'_
TinyEngine-2 convolution ¢4Fe] Z&o] u}2} memory layout—‘l z73 0]-0-'] cache missS F A o}gf.
pointwise(1 X 1) convolutiono] ¢ o] 1Xhlck of 2] channelof tjdll ¢I4FS ~afofjof s} 2 & offj2f
Zo] NHWCS] 24z HlolE S AFa1E Fo] F89.

' : Weight data access sequence

e NCHW: ——~ — ~ "

P g 000 001 002 [l oos 010 011 [l 018 019 oz [l 0s1 o2 [
5 o 1 1 I P

=f=H ¥ -

oar [oos [1 NHWC:

000 009 018 [l 001 o010 019 [l 007 016 025 [l 008 017
N ANAN TSN TN AN TSN TN AN TS ANINT

depthwise convolution] -2 channel B2 HRFE sl 0 2 ofgfo} Zro] NCHWL] At 2 o]
577_ -]zl—o]._': 7—70]_& -7%7_

Input activation Weight

A : Weight data access sequence

- [E]= NHWC:

¢ 000 009 [l 072 0s1 [l 001 010 [l 073 os2 002 o1+ [
 S— 3

o8s
arofon H—1
o

e fl—1

ks
| NCHW:
Input activation Weight 000/ 001 ‘002 [l 000 010 011 [l 072 073 074 -081‘ 088 089

S A N AN TSN AN IN T NI AN T -

5.4.4. Winograd Convolution

Winograd Convolution2 input activationZl weightE el (transform) F4 HRFe] =& ZFo]&=
Z1H el

ke | ks

ke | ks | ke | kz
Data Transform
ks | ko | kio | kn
> overC

Kaz | kia | ke | Kas Il

Input tensor Transformed input Point-wise _

| EnSOmed O Multiplication ot
I transform
wo | wi | w2 Output tensor

Intermediate output

Wa | W4 | Ws ||| Fiter Transform
(Offline)

we | wr | ws |

Fitter
Transformed filter

oFefls} 2+ 4:410] w2} transform S gk <HAe Hefs
shift 502 o] FF5oknE 7 o] wjef #4o] Ba ¢

61

| 0 (o . , 10 1) 1 0 0 0
1/2 22 (X .
! 1 v | Gg=|" 1 1 G 012 2 of B7=|" 1 " B=|" 1 1 1
1 1 1/2 112 172) . 0 1 1) 1 1 1 0
r 1 0 / 1/ 1
0 0 1 0o 1 0 1] 0o 0 0 1

Output tram_sform (Online)
v =[A"]GeG] o[(BTdB]|

Filter Transform Data Transform

Output tensor

k2

Filter

(Offline)

(Online)

ke | kr

k1o
(3

ki
kis

Input tensor

Part 111

Domain-Specific Optimization

1. Transformer®} LLM

70

545 71

B

1.1. Transformer Design Variants

=2 x| AAE FE 9] transformerE A5 AFEE| AT, o] &

1.1.1. encoder/decoder®] &-&

1. Encoder-deocder(T5)

17, decoderojA] &g tjo]E]E& A4 g}

transformerQ] 2xXE Y2 £=7s5lo] of 2] HFA] O 2 encoder/decoder&

Z] 2 9] transformer= 1Y modelo] YX]Tt, Ts5= tha3]

T5E= FZFojJA 7JEFeE NLP model 2, encoder-decoder 72 7FHZ. encoderofA] ¢J& tjo]e]& dF

nt X;=to x;=buy X;=a

2. Encoder-only(BERT)

o8 AFgHE 2.

BERT:= o}ejg} o] 27}7] £-5.2] A}
o} g

St
of

T

R S e e S A S AT
[Encoder Block }\» L Decoder Block

t t
[Encoder Block j\ Decoder Block

t \) t
[Encoder Block j j Decoder Block
t t t t t t t + t t t t t

Xe=CAr x=EOS yo=BOS yi<Ich y,=will y,-ein yi=Auto ys=kaufen y,=EOS

BERT(Bidirectional Encoder Representations form Transformers)= AP 2@ ¥ NLP modelZ, en-
coderfts 2§54 NLP taskE 532l BERT= @59 ol fiet embeddingS gk o 7] 2]

T8 AFEE. o 7]o)A NSP o4 & A1-8517] gHe

62

1) MLM

A.

2) NSP

o] % taskol] B fine-tuning$h 7 AFEgl.

boring I

Transformer

Transformer Encoder

-—

E—

3. Decoder-only(GPT)

GPT(Generative Per-Trained Transformer)= AP 2 &%

Token f[¥]::[E]:f[¥]'n'[B]::[E]n[E]:
Embeddings : the :: movie : : is :: very : : Ak :: ' :
R T R
I " I " 1 " 1
posion (" JH(][b (s)i)i)
Embeddings :\“:“"’,': ":‘“’,' '.‘_“‘2"’,". “:’"’,' '._"‘“‘:{‘":-‘“’:
Input [the] [movic] [is very [lN-MASKJ ’ !]
the movie is very boring !

MLM(Masked Language Modeling)2 THofof] tfer ot oF5 7]H 0 2 token2] 15%E MASK token
© 2 Wk H o5 tohen A ZoE A0 R Srgl. W72 Eols T o H Hols} A FEA] WAL

NSP(Next Sentnece Prediction)2 238 #HAJo) Tl FJoH: Sl 7[H O 2 sequenced] = Z3ZFo] &
£ oIz E mHFslE binary classificationS $~a5fo] SF&F o]of 9]8 sequencel] FHHRE A=
2olYE F EZoz, x| Fuke JExR] gke F JZZoz 723k

NLP model 2, encoderfFS 2§54 NLP

taskE 3.
GPT= 7[2& o= vlz tg golF d&dh= A5 7] 5222 5k, o] fjsj+] AR
A5 Alofl= decoderE AF§-SFo] QFE tokenTlC & (masking) HolE 52k

Z ZF O

GPT & 22 model:2 fine-tuningS 2-§FX|2, Z model:2 fine-tunings of= 4l taskE FAH
AgAIE F B HolFH Eofy g (ol t ZopEzL)

o s
ol

Mo
ok

1.1.2. Relative PE

Relative PE+= attention score(Q2} K)& % ofo] 4jd A& Uelfl= 4]l ojuf Vi= 575}
2] 5. o] A& 7elE AF§sfo] ok HloJEHil 71 Zolo] Hlo[E k= Z Xajet 4 Q& 5l
EETDS

Absolute PEE= 22 9] transformerofA] AJeFeF PEO 2 2Q]2|o]] uf2 1175 H & 15 embedding(Q
ot K, V)o tjop= BFA]l. o] -2 92 Ho]E] 7} transformer Ao tiof Al<o]A] ZafE.
Relative PEYJ&= ALiBi, RoPE 5o0] <.

2. ALiB1i

ALiBii= ofgfe] =&]3} Zro] attention matrizo] Q9F K AFo]o] Atz A a2 offset:S Tl o=

2189, ool ufeh o} Kol SjgHohs tokeno] A2 E4+5 WIIEL ghol of Aok attention]
v,

63

Attention(Q, K, V) = softmaz(5L mlj i)
ention 3 y = SO max —m]—Z
Vd,

91 k1 0

92 " k1 G2 k2 =1 0

g3+ k1 G3+ k2 G3 ks +1-2 -1 o m
(Manually set)

194 K1 Ga* k2 Qs+ k3 Ga ks SR -2 -1 o

s ' K1 Gs k2 Gs ' K3 G5 ks gs * Ks| =48 -3 -2 -1 o0

3. RoPE
RoPE= Q9F K9] Z} gk& of2] pair2 2 F, 2214 FZF|A] all'gd embedding®] 912|255 2] 4]
7= 718 Y. ALiBiE Tk & BSER] T p5= AR E TR 3H(LLaMA 5o4] AFE-).

TFA A e 2= ofaoF Zro] 2F QeF K embeddingl tiafiA] gl 2704 L, o] = gle HE= ?}g
HE| S ol tokeno] 9JR]THE 2]HAIZ. =, 2F embedding®] 9]z]o] wfet rotatedt= F=7F Eef
ojuff ol 42417 Zro] 2] Q2 Ko izt Lh’*’ & = embedding®] o ¢l 92| zpoo] ujz}

] =]

o -

9

iy, B2

We need a big enough number to distinguish more tokens

0 = {#; =[1000020-1/d i € [1,2,....d/2]}

Xa| AW RoPE(z,m) = ze™*

| __ mm | (RoPE(g;,m),RoPE(k;,n)) = (g™, kse™)
(X' X Liodid ; S qjkjemisen_,‘g
-- ocsoadloceneand = qjkjelmie

n COrD (e [TV = Rﬂmf n)

. T meemEm * The phase angle of the inner product of two

D -+ complex vectors is the phase difference
E o e between the two complex vectors (thus m-n)

ol 7S ¥ (base)S o] A X|Zsprto] miep Z7]7F FolFl. 0glo] -7 X o of2] tokeng 2]
oz] HHI} —F’—.—E]Z] orAl BB 2 context lengthol] WEF baseS SE35] IA] 2]Z5l= Hol] 26
(2807 2 2 A BA7F 571?]3_ &l.). ESF fine-tuning KIO]] E] 7l contextE = 2]sFE= 5}7]
L8l 05FS 2017 & of=1, o] F-% 05 23 F ofFAlZIct L gk

ﬂ\/i\/\/\/\v/\/\ m€[0,2048%2), 0/=6, x

Extrapolation

m € [0,2048*%2), 6;=6,/2 \I

LLMs usually need to be
fine-tuned after extending
the context length!

A5 ke 402 YERfE ool 2. FE Rel &J4) Qo} K7} 5171E.
f{q_k}(w?ue T”’) = RE-.).?:LW{G‘JC}:E"L

cosmf, —sinmé, 0 0 0 0
sinm#, cosmb, 0 0 0 0
0 0 cosmbs —sinmba 0 0
R‘é = 0 0 sinmfls cosmbs 0 0
0 0 0 0 <o cosmflye —sinmifg
0 0 0 0 ceeosinmby cosmby,

64

RoPEE 2§50l A2t 217 228 §510] modelo] & 7] B3 AT + oA Hekir #h.

1.1.3. KV Cache Optimization

1. KV Cache
KV Caches attention H4F R|of] KoF V 15 AZF6l= gpul] memory &-7FY.

decoderoﬂ/l‘] £=3I5l= masked multi- head attentionof]A] % tokeno]] Tl attention HLFRE £~3JoF
=, A7) AR19] QeF, B-§5l= HiE tokens9] K&F V 5&~ Z] 2SI EJoF &} o]m] attention 9IRS
gt ot} D Q3 RE K9 VE /(]]E ARbele AL HAFsE Hlggo|OE, o] ARFHTE KoF VE

KV CacheO]] X—]X]’o]]]: 17 ._Q]‘_Q_O]'

Linput_sea>

input_teken T2 “love" "Troinium’
L0 11 xdal

oo DU VAL | e
o EEET A | G

Key kLOJ D:ka [:I:DH.JJ
il W1, 7 " VY e

= —= Ln__gmbdl>
SC‘“;*“‘” 23+ K01 = 03 aL2d « kL1 = 0. al2d « kL23 = 0.6

sequence’} 4 o] & % HQA5F KV cacher A& AXB 2 12 -2 memory -BZ7HS AFESHA 2 +

=], ol& MQA = GQAZ Jide + 5.

BS *32 %32 *128% N * 2 *2bytes =512KBx BSxN
minibarch layers heads n,., length K&V fpl6
2. MQA/GQA
multi-head attention T4 MQA F&= GQAE A-&5}e] KV cachel] 27/ &Y + A<
Aol

MQA (Multi-query Attention)2 Z} headd Q& AsF=0], K& V&= sfLfgt
MQA+= KC cache?] 27|18 A Zo]X]gF F@ g o] Hold £~ Q5.

GQA(Grouped-query Attention)2 ZF head'd Q& AJ5l1, K&F V= groupQ sLFR] AAJslo] ofigh
o
°

group®] headE7]2] F7ol= YA . MQAS] v]of Z7]= Y Fo|X|¢F FH &S vl WA &
Z 2 8719] headES 5IL}9] group o & =l gF.

Multi-head Multi-query Grouped-query

Values

- Quonon | 1000
—{10000000 00000000~ 00BAO0D

220 64'80°64*128°2048°2°2

_ © MHA BLHdJ T K/

2 GQA

9]

2 240 | 5 moa

N

o 160 |Model size

T —

S g0 BLHd T kv

S 8xsmaller | s4-80°54128°2048'2°2
0

90 64°80"11268°2046°2°2
1 16 32 G smalleg
Batch size

3. KV Cache Quantization
HlojA] o2 AXH Ko V(KV Cache)of] Hid]l quantizations Z-§-3F0] memory AFEES &Y

o] o
AR

65

1.1.4. GLU

GLU(Gated Linear Unit)<= olglel 22 FZXE ZIXE layery. transformerofA] FFNU{X GLUE
Aol HeS AT =52 ot 3

FFN SwiGLU

PPL results

Training Steps 65,336 524,288
FFNrovo(baseline) | 1997 (0.005) 1.677
FFNGeLY 1983 (0.005) 1.679
FFNguiah 1994 (0.003) 1.683
1082 (0.006) 1.663
1.960 (0.005) 1.648
1.942 (0.004) 1.633
u 1.944 (0.010) 1.636
FF\n GLU 1953 (0.003) 1.645

1.2. LLM

1.2.1. LLM

LLM(Large Language Model)& F&2 NLPOJ] AFSE= tii#H 210] model .

LLME model sizeE scaling updl= HFgFo 2 BFHSLT Q2. £3] of2] NLP tasko] tj5]] modelo] &
H3] 7]oF Z et J5o] L2 LFT gl scaling up A= & 9] 814 computation/accuracy tradeoff S
gr=7] Q5 parameter?} 55 token2] 747} FA] A Z{oF 5}a1, o] Chinchilla Lawzl1l ¢F. SFX]BF
inference ZHJAlE= 2 modeld] djsf B-E SF4 AJ7HS ARE3] inference costE 50]7]5 sicl 17
28

GPT, OPT, LLMA = tfefet LLMo] Sli=t], ZF LLMo] EX-& 7icks] 21 3],

1. GPT-3

GPT-39)A= 7] &9] g A& tasko]] BFE A fine- tum’ngOfE 41, model& scaling-upd}Fo] zero-shot
2 few-shot 2 2 fine-tuning R O] A2 taskE A 2]eh 4+ Y= P2

zero-shot:& FE O] fine-tuningo| L AAIE 2§52 il HEZ A 22 tasko] djet §HS AFoh=
FAJo] 11, few-shot=> HIE O] fine-tuning il & 7] A E-gofo] A2 taske] et SHS
Aok AT

ofe 2513} 2o 2 modeld+5, shoto] HOFHFF accuracy7} I,

Zero-shot One-shot Few-shot

g 175B Params
Natural Language e

60 = S
Prampt e \/
50 s
& /
; ® /
g / ,
B / \
§ 30 // Mo Prompt
Vi ; {no task description)
20 4 ¢

- = 1.3B Params

0 10" 10’
MNumber of Examples in Context (K)

2. OPT

OPT(Open Pre-trained Transformer Language Model)& metaolA] 7HEeF @ Z4 A model 2, of2f 2}
Zro AHS F1H-L.

66

* Open-source pre-trained LLM from Meta

Size: 125M/350M/1.3B/2.7B/6.7B/13B/30B/66B/175B

Design choices: Decoder-only, Pre-norm (post-norm for 350M), ReLU activation in FFN
175B model: hidden dimension 12288, #heads 96, vocab size 50k, context length 2048
Close performance compared to GPT models

Average across 14 NLP Tasks (Zera-Shot) Average across 14 NLP Tasks

" 0-shot

» few-shot

3. LLaMA
LLaMA (Large Language Model Meta Al)= metaolA] 7}
£ o Zeiwe.

LLaMA¥E SwiGLU, RoPE 58, Llama 2= GQA 55 &-&5l1, Llama 3= training token +& T %
Saji 5 ofa A]He] HEE] L.

g,
Sk
to
Mh
B
[
3

=
i
Q
3
T
L
=
S
&

2 NLPO] taske o} e} o] 2714
1

=3
) Discriminavtive task : Q2 o] o] oj
2) Generative task : 93 djo|EE &85 Ho|g & AJA T

1.2.2. Perplexity

Perplexity(PPL)x= LLM?] 455 UE= A #HE, LLMO] 955 #3eF gjo] 22rd-§S Lerd.
=, o] glo] &5 g&0] 2 modeld].

ofgfiel Ze Aof O] At ofuf N-& token®] ZH>0]11, P(t|tii-1)+= o] tokens 7]EFO 2
=3 @A tokeno] i &Y (2E AL WS modelo] wref Getd 5 lS). ZF tokend] ofgl
& 0| e 22 model?] d|50] FEstrh= Z10] 12, glEo] Wrls A+ model®] o Fo] E2FHH5}
Che A perpleity= o]F EFl= X HE Y.

1
Y, P(wilwii—1)

2|~

Perplexity = (

2. LLM Deployment Techniques

o4 LLMZ HH3ksh il e obuz.

2.1. Quantization &

2.1.1. Weight-Activation Quantization : SmoothQuant

SmoothQuant= activations E7 102 =1 weights= EAoF 78S &), LLM] tjsF quantiza-
tion(W4A/ quantization. INTJQF INT4) Alof] BRAISIE activationofA] 9] degradationS &o]+= 7|5
el. =, quantization WOJZEE activationofA] weightZ 5. ol F 2 cloudofA] AFgdl= 719 9.

o]of T}E quantization 7| ES LLMO] naivestA] 2-&5FH model sizeZ} HZFZE accuracy’F ©
o]Z]. o]= model sizeZ} XM activationofA] 2 outlier(o]4FR])7} BRAIS]Z] WiFE Q. outlier 41|
IH s ZIE2 (002 quantizeE] AL}, dynamic range’} FE. o]of] mEF smoothquantofA]=
activation =5 A oFal, Z18F weight kS 7|9 E8 55 FXIoFHA] quantizations 2-§3517]
HEE modelS W gl o] activationo A outlierZ} BIASIHE X[& (channel)2 1 7FE k1l &F.

67

Original Smoothed

Migrate the quantization
difficulty

sw0 ¥ o
Activation Weight Activation Weight
Hard to quantize Very easy to quantize Easy to quantize Harder but still easy to quantize

SmoothQuanto A= ofallel Zro] s; & AIkFst H(Calibration Stage), activationof= @ Tl element-
wise2 =11, weightol]= Hof EHOH element-wise2 FgF(Smoothing Stage). ©]% inference A&
smoothing®l modelof] quantizationS Z-§5fo] &g 4~ 912

olmf a+= Migration Strength®, activationo]A] weightzZ F7}sl= gHe]l 271 & X4k arF U7 &)
O qctivation©] o] 3] quantized}7] o] Hil, U2 I H weight”} quantized]?] o] Y| E 2 X4 sk
HE 2] Zs= Aol =3k OJA =2 0.57F sweet spoto]2F1l F.

L max(X)"
I max (W)

A A

Y = (Xdiag(s)™') - (diag(s)W) = XW

Original: SmoothQuant:
Abs Max '
X ANE 2 X=Xdiags) [577 3
. 1 2 16 Ji1lalalia P42 2, 4 4 4
E 22 8 -1 -9 2 1 2lia 2 2 -1 3 2 1 2
UM | a3 |8 s
""""""""" W emymax XTmax W] W = diagW

LLMOJ SmoothQuantE 2]-§&5FH quantizations 2] d 3] X-&& 4~ QA 12, o]o] ufzf quantzzeOIJ]
Zojl v]3f inference <=7} B2l 11 memory AFgEFo] ZolF]. o]of fine-tuning HOJE accuracyS
g HEJITR 3F EoF ol E Qo] AR SHOJAL, latencyE FX[oHA] T HL gpus AFET §
=] gpuE g A5 gpu 7F communicationo] ZojX| B & o]o mrE overhead”} H 1l HEH 2] 577f

Hels.

—~

olgf|o} o] SmoothQuantE Z-8&5}0] transformere] quantizationg -85+ 4= 912

i A

FP16 D)
(__LayerNorm]
— INT§ =— .

—

L @ ® J

LLM % SwishGLUE A}M835}= LLaMA= quantization2 2Z-836}7] t] ©]8-24|, SmoothQuant-&

68

|

2 go] 7hsahta

e

2.1.2. Weight-Only Quantization : AWQ/TinyChat

1. AWQ

AWQ(Activation-aware Weight Quantization) @ activationS 1 251 weightof]A] 1% 7F&F2] Salient (=
2 3F) weightE ZF1l, o]& scale up$F F quantization (g =2 A= W4A16 weight-only quantiza-
tion, INT{2} FP16.)& -5} FA¢. oli= F2 edgeo] 4] AFgSl= 7] .

single batch& F2 X 2]ol= edge ai 59412 modelo] a4l activation©] o2l weight”} HE
o). o] HL weight7} activationo] B &4 L memory FIFZ}F latencyES 7FX] B2, weight only
quantizations g9} oJuf nawestH 7]EQ] Z|HES AEolH perplexity SHOJA degrade”} Hf
28], AWQE &5 23] quantizatoineh 7= 5.

AWQo] ai}] oforjoli=, weight] H& F2o] TRk 2> ofLt{ B &, quantization A]oj 15 HE 9]
salient(5-2 ¢F) weightE quantizedFX] YO ™ quantization o] & o o] FXHLE Z1¢Y. BEAl=
o]@A salient weightE XS ZQI7FQIL], AWQoJAE weight T4l activation© 2 salient weightE
2. grojA] B AA Y activation2 outlierg 7FX| 11, ZZA] glo] & FEIF FolR|+= weight P22
HA) A3jo] O 2 FFe FOE salientshh 7 &+ GL(YAZ od T G| o FH 3.

Q(W)Mix}’rec

| 4w || =2 || =2
determine the salient
weights by activation.....---- » B
i | a2 || =8| =2
A (ORI IR0
|| =n || =2 =2
+2 | 4| -3|-4
X +0 | =4 | 42| +3
ail| 22| =2 =2

ojufl salient weightE quantizeStR] F=rlH F42F 45 FA]o A oloF sh=t], o]« sFEF o] 4]
o2 H[G&Z . o]o] maf AWQOJAIE SmoothQUantofJA1 2 F ZF s& weighto]] #3511, activation
of L} salient weightZ scale up@l. oJm] si= salient weight(w € W)2] ZFaF scale ups}il, o]
quantizations Z-§3F. =, ofefl2F o] quantizedt.

max(|w])

Qw)=A- round(g), A= ST

A
WX — QW - diag(s))(diag(s)™" - X) or Q(w-s)- %

2. gt s 2= 4y
A2 ofefoF Zro] roundofA] BHAoR= @217} s2 Lft=ojz]B 2 7 gFo] ZFolR] quantizationof 2JF
degrade”} 0]+

Err(Q(z) -z)=A- Err(Round(%)) -z = Err(Q(z - s) - g) =A- Err(Round(%)) ST %

ojuf sgko] W7 AXH AZF ZA] Gepx] ggo] tpA] Bold 4= Q5. &, s7F H-7F X O salient”}
2E, R TZH non-salient”} 4. HHSF sgh2 ofgl2F 2 cost functiono] 471 HEE
ol aE Fof HE& 5 & o794l sx+= activationo] 7IX|= FE9] 2719 Hut, o= 0FH 1
7}Z] 9] kS ZIR]= hyperparameterd].

69

L(s) =|QW - s)(s™" - X) = WX]|

s=8%, af =argmingL(s%)

3. TinyChat
TinyChat-2 edgeoA] ZoF7= LLM inference engineL 2, AWQE FEol= floj] AFgEE + A2
TinyChat-=2 efficients}xl, 7P 11, mfo]y z]Hro]HA] of 2] platformoflA] A}§-0] Zlgdfrt= o] F o]

o] o
AR

ofg|o} Z+e Z]H 0 2 LLM inferenceE efficients}A] s=3lgF.

1) Hardware-aware Packing

HFE= 7[2H o2 flo]El7} byte T2 XHZFE=rof B, W4A16904+= ZF weightE INT4Z
273kl ool alet TinyChat2- ofLE2] byteo] 279] weightzlS g ok=t], decodest?] =5 Af
2 2]Zoke gkl ofe] 1@ ap Zro] Hzof 7he Z 3 (packing) @t decode A]oli= mask2f shift= 7]

o o A]
e I+ A2

Bt Mask = 0x0F .. .OF (128-bit mask) Wiow=Pw & Mask

B
<«—> 4bit

Original
weights:

Reordering offline
Packed P
weights:

2) Kernel Fusion

oFojJAl o2 AR E, kernel launch overhead 5] 28] gpuofA19] kernel callol= overhead?} &EX||
ofbZ xJojsk oF W] kernel callof] o] ¢RFS fusedh= o] F5. o] wat attention L Y
dequantization 52 2 ZFZFS- fusion]85} SF B9 kernel callZ H4FF.

{40 2 scale up 5% quantization o) FoE S A TR 4 oA H. 1 Fol, 053 1 B 1
2 quantizeX= A% 25 FoHH 13} 22 quantized.

argmin, f(z)< f(x)& Favlohs x& 2= dats onleh

AWQE LLM, visual-language multimodal 5] A& = o] @3t 1A O 2 efficiencyS 24

o}
18

ik

2~
T A==

2.1.3. QServe

QServe(WLAS8KV4)= cloudofJA] 2] W8ASKVS(INTS)(SmoothQUant)T}, edgeol| 410] W4A16KV16(INT/,
FPI6)(AWQ) Z17}e] 932 253 /189

QServedl i oflo} 22 AW EE AFE T

1) SmoothAttention

SmoothAttentionS SmoothQuant2] ofo]r]o]E KV cacheo] Z-§51 7] ¥ <.

ofef “17} Zro] V= A& smoothS}A]GF, Kojli= outlier7} &gk = §lo] 7]&9] quantizations
o 3§ Jbit quantizes)?] o]eig. ofo] et Qs K7} FHADE KoJA] QF Hol=E 7

quantizeer = 912

70

o 10
Layer 24 Values Layer 24 post-RoPE Keys Layer 24 post-RoPE Keys
(Original) (SmoothAttention)

= (QA) - (KA, A =diag(h)

2 =max (|K;|)u

2) dequantize A]oj] 4] RS WA 5
7, $% S8 dequantize Al F4) SE W] 95he] overflowr} Yo gz

TAE ¢l WS =S g0l AL

U,Sh

12 W4A4 59] quantization HAl-& memory= @o] o}7] 2|9k, accuracy loss7} A5t GPUOA &8
Aoz ?ﬂﬂE]Z] 5239h £3] CUDAcore®} Tensorcores 2435 &-8514] 54t

2.2. Pruning &
nature languageo]= redundancy’} o 22 o]& Z 43| pruning®d 4 AL

2.2.1. Weight Sparsity : Wanda

Wanda-= activationS &H-g5Fo] weightE pruningsl= HH4] .

A
7] &9] naivedt BFH O 2= weightQ] F7]of] mraf weightE pruningW X9t Wandao A= AWQ2} 2
AFSHA] weightZF oFU 2} activationS 7|50 2 weightE pruninggl. =, ofgfe} Zro] Y& activation
245 W] FAZE clement-wisea A F¢F 5, 7 B2} 2L $1312] weight& prningl. o]o] mp}
activation Z7)e] L & B A= Ao] AAH.

Magnitude Pruning Wanda

=[W| cloTila] =Wl
40 |1|-1 41011 4/0(0|0 W |3|-2|-1]/-3| {{4/0|8|3]i |4|0[|1]|0
W|3|-2|-1(-3|»3]|2|1|3>3|-2(/0](-3 31|02+ 3]4[8[9[+0|0]|-1]|-3
3(1]0]|2 3 [EINROR 2 |! | -3 [NORIRON| 2 13]2]|0|6[|-3[0[0(2
Weights Weight Importance Pruned Weights X1l Weight Importance Pruned Weights

grouped per layer Weights and activations grouped per output

2.2.2. Contextual Sparsity : DejaVu, MoE

1. DejaVu
DejaVu= predictor& &85} contextual sparsityE F+&5h= 2.

actwatzonoﬂ jel pruning:2 o F&Zo]B 2 staticolA] A ElolE AL accuracyE FEF
S Hl ’?j Contextual Sparsity= 07‘3,407’] =HHog EA5l= headlf feature_J Ape BEof ofjgh
sparszty . DejaVuollAl= ofellel Zro| predictor& AFE§-3FA contextual sparsity] Y-S ol=¢F |
A3 e e gJofi Ak

71

/ Deja Vu \

Attention,,,

| | [| | ‘Predictor'
‘\/

MLP,

| | | | { | [| Predictor
'-\‘__‘—‘/' h

Attention,

| | | | :Pred\ctor

\'///

LA il

MoE(Mizture-of-Experts)~= Expertsgfil 225 FNN& of&] 7§ Al-§3511, Router®Z tokens Zf ex-
pertsi2 BHlJsl= dFA]o]. o]of] o} course grained sparsityE &S

router-= ofg|o} Zro] ZF tokeno] A2 CIE weightE AFEE 5~ Y2 EHjgl. o]of uf2} model sizeE
7] sFHA] = Z} inferenceo A1) overhead?F AXX] G E e 4= QlS. o]ufl routingsf= 7] ¥ o=

o2 §ao] A

- Addd + Normaliza
¥ .-"" e - I . L R
t .
[Al + NoMALES 1 T rems | [prma I
s] ;
EERGLEE T o S
Switching FFN Layer p=065 < I
Add + Normnalize Rouise .
$ ' : :
T T —
i ‘—“{ Ak + Mormalze]-—-
! f f
’ T Self-attentian
~ —
.
momiong ot
.
“ [T [T
More Parameters

o 7] A Z} expertZ} oF Blof] 2] 2] et 4~ Qli= token2] 75 Capacity2fil 5Fal, o]= ofejje} Zro] Al iFg
£ Ql2. =, Capacity Factorof] m}2} capacity”} X]X(j%]

tokens per batch

Capacity = x Capacity Factor

number of experts

2.2.3. Attention Sparsity : SpAtten

1. SpAtten
SpAtten2 attention score 55 E-&5lo] token E= headE pruningdsh= 7]H &,

ofg]] 737} ZFo] attention mapofA] token B attention score(QLl Ko] &) oIAE ol A7}
ZFL token2 pruning@l. EF G tokeno] oAl VE fetchd}x] L= ¢F.

72

Each row is a set of
attention probability

0.30

Sum each column more §
and accumulate to fun{

o
o
Accumulate vertically

previous than { :
cumulative token thei : 0.05
importance scores fjjm4 | 1

to get current

importance scores

B
04100312171.0041806191403090,4 €—
Y Y

X Y. Y
Tokens with small cumulative importance scores are pruned away

2.3. LLM AY A 2H¥

2.3.1. Metrics for LLM

LLMo] 3 metricS 2= ofao 22 A50] e
'F

LLMY] efficiency ZHoJX]o] BEHE TTFT/TPOTE £9°]1, throughput-2 528]&= AY. o]af TPOT
o throughput2 tradeoff Ao U= o] requestE $F Hlof Z]2]5FH throughputL SofLfX]at
TPOTE Zol%.

1. TTFT

TTFT(Time To First Token)= AFg2Fe] QJgi o2 HE]l A BlA tokeno] AW E 7| 712] dal= X 7F
¢l. prompt processing AIZFF A2 A Q1 token Ay Al7Fo) wal A H. £35] real-time 2 2 F&lol=
modelo] Tj5] =Q 3}

2. TPOT

TPOT(Time Per Output Token)= A|ZFG AGolE EZ9 9. AFSRFZl model9] & o] 27
L7lE7kE e A2 10 tokens/secondE Hr} o Zda]H Lajofyl L7]31, g da|H 2oy
Lr7icka gk

3. Latency
o]o]l u}a} latency= ofef e} Zro] AHzFE.

Latency = TTFT + (TPOT x A4

it
S
S

lo
b

4. Throughput
Throughput-2 inference serverZF ¢ 2] requesto] tjjaf] A Z7Hg A= EZ9] 9.

5. 9 Heuristics
LLM?] & F7Fe} oAl ofafl2F L2 heuristicEo] -5

1) output length+= latencyo]] FeFo] .

9) input length’= 4§ WA= GFo]] I, SHEGo] SHNAE o] F. input length=
TTFT 5o 992 & + 42.

3) model sizeZ} & latency”} 7. ©F, FH]F65IR] & &=

2.3.2. Paged Attention

Paged Attention2 KV cached] paging 7]H-S Z-g5F] Helsl= HH4] 9.

KV cacher= GPUQ] IZF memoryol] §JX[o}l1L, o] wla}f internal/external fragmentation, reservation

73

5l 9Jgt memory Ful7} BYT 4= 1S,

2 slots for 3 slots future used External
generated tokens (reserved) fragmentation

}Arﬁﬁcﬁ'a*m:étge ‘ is ‘ the ‘fu\turs of re;;ioi <808> <resv= ‘ | LLM ‘ is ‘ ‘
Al v
IRV cachle slots for Request A 2040 slots never used Request B
request A's prompt cunent step {intemal fragmeniation)
=] . [e) = . A 37 [e) = =
oo u}el KV cached] Hiof pagings -5} =e]& 0 2= AEH20l F7HS AFG-oPHA], &8]& 2

o
2L HjdLHoln HEHOR Ho]HE YT 5 UL Eet o] requestS g HaslAL} o]

Physical KV blocks

r.f'/- -\\\: Block Table Block Table / : -\.‘
(=) DEEES (™)
. N
Logical KV blocks Artificial Im:;l;m is the Logical KV blocks
Alan Turing is a Artificial |Intefigence is the
computer | scientist | and ";.gi';;" future of

H

2.3.3. FlashAttention

FlashAttention-& attention matriz2] B-E HES AXI5lE gj4l, tilingglo] SRAMo) 28 Hilsl =2
oF 1Al gl

GPU B AA] memory 1= ofdjg} ZomE o] G HCET T

UUTEr LOOR

e ————tale
KidxN
:I Copy Block to 5RAM Attention on GPT-2
Q:Nxd OQuter Loop VNXd
gy
=

SRAM: 19 TB/s (20 MB)

HBM: 1.5 TB/s (40 GB)
HBM

LUETLY LB, DRAM: 12.8 GB/s
(CPU DRAM) (>1T8)

Inner Loop
doo Jmng

B
a
2
B
o

Al

Memory Hierarchy with

Bandwidth & Memory Size SmIQKV: Nxd PyTorch FlashAttention

Inner Loop
FlashAttention

2.3.4. Speculative Decoding

Speculative Decoding2 autoregressive model®] w«XF2 Q1 Z]2]of] ot HE-S SJZASE] 93] draft
model 2 generations-, target model 2 verificationS TS = Sl= 7]H Q). o]E E5 infererences
I3tk

LLM2] generation-2 token by token O 2 2] 11 attention MRS FHJoF SFEZ, A2 memory
o} wE.

speculative decodingofAl+= 2719 modelS& AF&¢EF SFL+= Draft Model2, generations 9JoF 22 X
glo]. o}2 SlLFE Target Model 2, verificationS oF &2 R E Q). speculative decodingE draft model
o] autoregressives}A] k7J2] token= AAJSFH, target modelo] k7)1 9] tokenS B E 2 02 = a]slo] Z}
tokeno]] oot A SZlS =& A Sgto] HA] g} YX|SHH tokens AFg-oll, E2H draft model
ofl 4] tokens TFA] F-got.

74

draft model 2 generatesF 22 memoryE oF4 4 111, target model:> B2 =] 2] sfE 2 W2 2} ¢ o]
7Fsek.
Small model writes a draft —+ Large model verifies it

Verification

[LLJ_L

Draft everal famous 5 com posed
I' | 2) fe [a]TL g 4 '--]——| 1 T T T T
f [) f :
1
Small Model ' Large Model
(#parameter: N) - (#parameter: 10xN)
1
1 < 4 4 !
<g> S | o r : 1 I ! T T
=~ <S> 3 1 mou S
b T d L . J
Autoregressive (sequential) Non-autoregressive (parallel)

[START] japan * & benchmark beed &
ISTART] japan * ¢ banchmark mitkei 17 .5

ISTART] japan * & banchmark milked 1% isdes ress 22 -8

ISTART] japan ° % benchmark aidked 203 isdex rese 228 . 93 ; points

ISTART] japem ° 5 benchmark mikkei 225 {sdex rese 226 . 69 points . or 81

LSTART] japan | 3 benchmark sikked 225 inéex ross 28 . 0 points , o 3 . % porcent , te 0, 0850

ISTART| japam ° & benchmark mikkei 21% isder rese 128 . 49 pedints , or 1 . § parcent ,

ISTART] japan ° s banchmark mitked 275 isdex rese 236 . 69 paints . or 1 . S parcent . :

ISTART] japan * & benchmark aikked I8 isdes rowe 138 . 69 podnts , or 1 . § percent , to 10 , §86 . T6 in late nornieg frecisg . [EKD]

Autoregressive= o]0l B4 H tokenso] th& TA 9] Y o2 AMEEE Ae Tt

o)
.

2.3.5. Batching

Batching2 55 CPU ¥ GPU AFlS a8=0=2
2 5] A9

SFQSF o~ 9] LLMOJA] Q] batchingo= oFe]9F

et

1) Static Batchz’ng batch7]- 7‘ EH?]'X] 7]1:]'317:]'7]- 2/ g Z]-]__ el ZF Z—]E]o = % 07, oﬁclzne task([ﬂ
olE[E gF Hlof HofA] Rz])of EHOH/"]L gzl o] =gk, online tasko]] HisjA{= latency”} B 4~
oLg.

2) Dynamic Batching : batchZF B XA} Q7 A|7Fo] ZJLpH =] 2]sl= "4 Q.

3) Continuous Batching : token-by-token © 2 *]2]5li= BFA]Q]. = EX tokeno] tfjoF =] 2|7} ELFH
HEZ CFS tokeno] tfeh Xa]& AJ&Fgl

Dynamic batching for generative model inference

Static
batching
Dynamic
batching

H baseten

(0]

Batching strategies for LLM inference

Individual
reguests

Dynamic
batching
Continuous
hatching

& baseton

3. LLM Post-Training

LLM9] §t<5-2 pre-training data collection, pre-training, post-training, optimization®] <=4 2 3 &=1),
o]7]o]| A= 1 3 post-trainingof tfjsf AfmE.

3.1. LLM Fine-tuning

3.1.1. SFT

SET(Supervised Fine-tuning)2 2F It 2Z 3 &8 (ground truth)Q] S g-85}o] LLMS fine-
tuningsl= A Y.

o] & E3f oF&H model-S E7% L oQlo]Lf tasko]] A SIS, AFERFO] preference(helpfulness, safty
__)o” D]-x /R 07 O

Z} tokenol toflA] loss+= oFefjeF Zo] AIfFE 4 Q15 =, wo, - -+ ui—1 o oA u;7F &8 SFE]
298 H k2 Halet, of ftol 245 2 o3

= Zlog P(uglug, -+ ,ui—1;0), Loss = —L(U)

3.1.2. RLHF/DPO

1. RLHF
RLHF(Reinforcement Learning from Human Feedback)= AFES] Wk o2l model] &8 A&
BE235}9] reinforcement learningo] &-gsf= HFH] .

o] & &-gs5H SFTQF nfRFZ7ER]| 2 creativity, truthfulness, usefulness 5 Tt SH5HRS -85 model
o] 7}z]7] o] & EAS dHFgel o~ Q2. = LLME AFERFQ] preferenceof] W& 4~ Q2.

RLHFi= of#)o] 5% ufe} 4245
1) 8F5H modeld]] SFTE #-&gF

2) model:s g-§-5Fof opLte] ejgfo] et Z8& ofg] 7 A-golil, AE (labeler)o] ZF 8o S5
7.

3) 5¢°] BlAZ fglo]e]& &-§d} reward model-S SF&5A] 4.

4) reward model-2 E-§35F%] model-S 73151453}

76

Prompis Dataset

EEE—
Reward (Preference)
Model

T'e

Train on
{sample, rawand) pairs

Sample many prompds

L

Initial Language Modal Loewm ipaLim dailor

it et comsacts|

Adigadcing el Aen
- Donec guam feks R
Aam
4 vuipuiaie egel, g

) M s P

Outputs are ranked
(relative, ELO, ate.)

aros fawcbus brcid Muman Scoring
Wchus pulvinar, e

Generated text

2. DPO

DPO(Direct Preference Optimization)2 RLHFE SFT taskZ H3}gF 7|9 ¢]. RLHFOJ A= reward
model s} modele] ol 212} 5142 +Faflok YL, DPOSAL o] g1 W9 5402 A2l
DPOE ofgfjo} Z-2 ~2&] o] 218 Z o s}ol= policy model mg & ZH= I Q1. reference model2 param-
eter7F 1274 = model2, o]& &-§35}9] policy modelS SF5A|Z. o]nf refernece modelo]] gt 9141
pre-computed 5= QOB E o] £2] 2 thax SET taskZ & + 9=

mpute
T Vi [%)) |x)

max 4 E, . . glloge(flof win - fl lase

. win“lose Zrafyin) TrefVlose | ¥

Can be pre-computed offline

Reinforcement Learning from Human Feedback (RLHF) Direct Preference Optimization (DPO)

label rewards

= |> — reward model LM policy — b = final LM
S~
preference data maximum sample completions preference data . i,
likelihood reinforcement learning likelihood

Involves three model (reward model, reference

model, and the fine-tuned model) Only involves the fine-tuned model.

o]9} Zro] AR} preferenceo] Thaf alignmentE 4=3J5t= 7|HE-L E3] ChatGPTZE A|AHIQ] /A
oflA Fast

3.1.3. PEFT

PEFT(Parameter Efficient Fine-tuning)~ fine-tuningS -8 parameterg 4 3}ol= 59] 2] &
E5f, LLM fine-tuningo]] tjgt efficiencyE 2FH k= 75 Q.

1. BitFit
BitFit bias = Y2 biaso] gIA] Ol fine-tuningS 2-§of= 7]

5 9
weightof] B8] biasi= 1 57} 8F¢15] 2 0B 2 fine-tuning H]-§2 & =
Ao AR 52 ROl A
2 2719) modelo] SN 5 AJ317F BATCLD o
2. TinyTL
TinyTLojJA]& Lite Residual LearningS Z]-&%F.
Z, olglle} Zro] Z7]7F 2 main branch(H FE)= 5F&6}R] &, Z7]7F AL side(residual) branch(oF
ol 232) o] AT S8 T ol activation] 27| A R B8-S U,

7

-fmap in memory I:]fmap not in memory l:l i™ mobile inverted bottleneck block

learnable params fixed params weight bias
1x1 Conv . Depth-wise Conv : 1x1 Conv
"""" TO|2T LT =T ‘% T
6C, R 6C, R
Fine-tune bias only
Downsample " Group Conv ix1Conv Upsample
[=)
C,05R J C,0.5R J

Lite residual learning

3. Adapter
Adapters transformer ofZ|ElZ Z71o] adapter layerE £7F2 {FQJsk= 7]H 9.

Adapter Layer= ofg]|2} Zro] bottleneck 9] layer=2, E% taskH 2 EXSF. fine-tuning Aol 2}
taskoll disll model ZAo] tja] Sf&of= Hi4l adapter layerTh SFEAl%]. o] GAGF o= # 9] state-of-
wnte2o] 42 B g

E-Z adapter layerS £7F5FH modelo] ©] Zlojzx]= o] B2 inferenceofA] £7F& <1 latency”ZF 2HAY
SF= overhead?l 2. prompt-tuning E-= prefiz-tuning= AFESHH 712 Q1 parameterE AFESF]

OFO A o] O
o= T‘A&’n-

<

Feedforward
down-project

4. Prompt-Tuning
Prompt-Tuning2 & promptoj learnable prompt(token)E F7F6l= Z]H Q). oju] F7I5lE= prompt
L taskH 2 EXgl. =, A HA layer] ¥ 8 promptE tuning$F.

prompt-tuningo A= #712]2] parameterS A& Lo, 7]E parameter’= SHE] g =,
51L}2] pre-trained modelBhE AFE-SA 2} elo] thet taskE A2

Batch — | (11B params)

= = . | =
modelo] F£35] ZW B2 fine-tuningTH5-2] H5o0] LR} 3
Prompt Tunin,
Pre-trained | iy
Model Tuning Model 1 Prompt Tuning ‘
(118 params) I
1) Transformer
a] | Mixed-task
Task A 2 Task AModel | | Batch (Ge0) (ces)(sse) (eoe) (ses [0D
Batch = (11B params) Y, 2T 5 P (©e0) (cee)(sse) (eo8) (soe) (eos)
I | EET Model 655) (558)(sss) (s58) (s58) (sss) (s2s)
TaskB [—] | TaskBModel | | L1 (1B params)
Batch [—] (11B params) | | [€] ‘.
—J I Task Prompts fess) oos) (e08)
£ | (20K params each) . ‘
Task C [Cc2] Task C Model | !
|
1

78

5. Prefix- Tuning

Prefiz-Tuning& 2-E layero] A 2] ¢ 819] learnable promptE F7Fl= 7] 4.

prompit-tuning 2 CF 45o] & £} &

prompt-tuningZF prefiz-tuning 2= prompt F7FS[EE input length’F Zolx]=4], o]o] ufzf KV
cache sizeZ} 7]] 11 inference latencyZ} Aol 7. FEst A2 2] 7155t length7} ol 5 & Y=
LoRA 5& g-gs}H Z71F 9l inference latency 0] fine-tuningeF 4= 2.

Prompt Tuning Prefix Tuning

“positive” “positive”

(Transformer nsformer
(ceo](cee](ese] (ece) (sce] (ece] [(ece] (cee)(ece](eco] fece) (sce] (sce] (ece)
(cec](cee](ese] (ece) (s0e] (ece] [eoe] (cee])(ece](ecc] Jece] (sce] [sce] (eoe]
(ce0] (coe](ese] (soe) (ece] (ess] [(ece) (cee)(ece](e0c] Jece) (ece] [ece] (eoe]
ece) oxy

! > »
like fruits . I like fruits

6. LoRA

LoRA(Low Rank Adaptation)«= TinyTLoj A2} -FAFSEA], 2} layero]] tial] trainable rank decomposi-
tion matriz(adapter)E side branch®Z AFgok= 7] Q. fine-tuning X] 9 original branchi= SF&A]Z] 2]
oF 17, side branch9lS SF&5AlZ].

rank decomposition matriz= ofge} Zro] = HH o = L},

h
A PR

Pretrained —. A: projects d dim to low-rank r dim, initialized with
Weights r

* The LoRA module have two parts

gaussian distribution.

(\ « B: projects low-rank r dim back to d dim, initialized Os.

Ol

o] P H o] F A%} BE fused 4 9IS

J

h=aW +zAB = (W + AB) = aW'

LoRAE Z-g3slE= 3 ofE 9], base(pre-trained) modelof] TeF quantization FESF Z-§3}o] memory
& I &0l QLoRAZH= 7]H &= Q5.

7. Bit-Delta

Bit-Delta= fine-tuning©] Z-&X modelS HE &0 2 9F=35l= 7]H ¢l

fine-tuning2 7]& pre-trained modelo]] & FHHOIS CJsFEZ, o]2} Z+Fo] redundancyES 1 2]5}o]
HuE 0§ 9Fet > 9. o] Tef memoryE Of71T latencyE £ 5 2.

Bit-Deltaol A<= oF2le} Zro] fine-tuning©] Z-8&% modelZ} base model AFo]2] weightof] tF delta(H
S1FF)E 15| E 2 quantize(sign function Z]-§)3}1l, slE deltaol] &3 X+ per tensor scaling factor(a)
£ fine-tuningsl= 7] . o]m] a= 3% tensor?} 7[X|= HEL] A7]9] FutS Z7]|gk0 2 7FX| 1,
quantization errors FALDBloFE2 5.

~

A =Wyine — Wease, A = - Sign(A)

79

Fine-tuned Models BitDelta

+2.1 +1.7 1.8 (4] +
-1.0 +06 +1.8 = 01 x - * -
+1.2 08 +1.1 + - +
Base Model
» +16 +22 18 o+ |+ +19 +20 18

0.6 +0.5 +2.0 = 0.2 x + + + + 1.0 +0.5 +1.9

+1.5 -1.0 +1.0 + [+1.1 0.7 +1.1
+
+19 +19 16 - - +
0.8 +05 +1.9 = 01 x + [+
- +1.2 08 +13 1 K

3.2. Multi-modal LLM

multi-modal(visual-language) LLM-& # 2]5}= ®'H © 2= cross-attentionS ©]-85}+= Z (Flamingo style)
3} visual tokeng T 1F 02 R Z(PaLM-E style)o] Q13-

3.2.1. Cross-Attention Based : Flamingo

Flamingo+= deepmindofA] 79t visual language model 2, cross-attention ¢14FS -E3f multi-modal
lelg ¢

FlamingooflA] cross-attention HRRS ofgfof Zro] 23 E. Q] oA (imageE A7 3t) lanuage F-E-E
LLMO] ¥37, image 222 vision encodero] o] tokenﬁ]—o & perceiver resamplerS AHZ LLMS]
Kol V& AFgH.

Output: text

Pretrain frozen R
. R ™ a very serious cat.

Trained from scratch

[—_—

T r n-th GATED XATTN-DENSE
Perceiver Perceiver

Resampler Resampler i
- - i Tst GATED XATTN-DENSE

Processed text I
l <image> This is a very cute dog.<image> This is ‘

% Interleaved visual/text data |
- This is a very cute dog.@ This is

perceiver resamplerS E G5l imageE X 2ol HEL ofgjo} Z+-e X Q. oju ¢jg o2 Eolo
+ image?] & Zoli= ZFHZO]XITE, learned query®] Aol 1YE 0] Qla o] Efﬂf =g Zol7}
A7 E (attention RS AZ}s]H Gl). o]uf learned query+ learnable query vector$.

80

visual tokens: [27, dim] ! Attention
learned queries (Q): [5, dim] Pl e] I”‘"
ST

i

t=1 t=2 Learned

E EEE EEE latent
] queries

Attention map: [5, 32] Xe
output: [5, dim]

1 I
flnt(en

T

A A ° 2 HHE perceiver resampler2 2 E] U2 &8.2 LLMojA] O]'EH_Q,’- 77‘0] A= cross attention
I} FEWoA = off'd e1ih E7F tanh(a) & &t g1} 7]=9] YE< toF Z& =822 9F. o]uf tanh

gate= cross attentionof wre} £I7FE]E= szormatzonPJ oF2 z/“4‘]-7] sk Ao 2, OOE Z7|3}E] 31
SFAE]
SeE e

o
)
pplies a GATED XATTN-DENSE layer
: KeV=[Y] =[v]
: init with 0
X —— = GATED XATTN-DENSE |]
---------------- e mp L
cross attention N
return y t visually inforned language features
v K=V=[x] (]
Vision X ‘ll Language
input input

3.2.2. Visual Token As Input : PaLM-E, VILA

1. PaLM-E
PaLM-E(Pathways Language Model with Embodied)<= google researcholl 4] 7]8FeF multi-modal model
=2, visual 5 99/ 9] modalityE T tokenslSF1l LLMoj ¥ o] =] 2]gF.

: images
<emb>:

PaLM-E: An Embodied Multimodal Language Model

Given <emb> ... Q: How to grasp blue block? A: First, grasp yellow block
? ViT
Large Language Model (PaLM)
Control “ A: First, grasp yellow block and ...

2. VILA
VILA(Visual Language Model, VLM)+= PaLM-E2} Zro] T token3lE T 5H= modelZ, visual-
language 3 2]o] E3}E]o] Q1S

VILAE ofgfie} Zhe 7ZZ 2 EHo] Q. projector= ViT(image)2] AIE languageol] AF-g3F7] L]
H 318 follgl= —’,:’——’r"—%’ VILAE image-language©] ol alignmentE 9J5 241 projector& SF&5A]

81

7]al, o]% pre-trainings T F SFTE HEoh= 4|22 ofAl 4.

e
Lo

Generation: f a cat.

[LLM A
00000000
q o) |

This is a
image of

VILAS} Pl SERE obg} L A5 UL,

=2
1) LLMS &2 g% uf pre-trainingof 4] model:S freeze oY WIS zero-shot 4= H Y. oFx]ak
o] 2 in-contest S 5-2jo] Wol Tk B

2) pre-training A]0] B3] image-text 4 1§ AH}, images} textE interleave(WZoF) 5]
g Zlo] B £L 5 drki .

9) fine-tuning A]°] image-test Ao € 7S A-§5H= AL, text-only Hlo &S B AFESIH teto]
thF 32| 5215 image-test A2 -2o] B FopIrki 9.

4) H& to]El 9] resolutiono] ZH model 50| FoFF. FoJer F:& token ZjsH o} ¢ tjJo]E] 9]
resolutiono] Aj=o] ggFo] ¢ Z. & EFo, =& resolution®] HJo]E] downsampleS Z]-§3}],
token®] ZE -2 resolution9] tokeno] Jj4H T ZA] BFEol% 52 =2 resolutionS 7FX]=
Hlo]El7F B FTFi1 . B2 downsampledty] g2 HOJEIE G8e A2l G0l Y F2,

3. High Resolution Image X &]

A Aok AR Y 2E flo]E 9] resolutiono] #Z]H vision language model®] 50| EoFd 4 3l
5. oFX|ZF resolutiono] Z HJo|ElE =2 g-golH dLtgFo] 17 Bropx|al, 7kl downsample
S F-gslH H=o] ol oo wlgl vision language modell] ViToJA] high resolution imagesS
Al eJoh= 2ol ofefloF =& ZE0] 35

1) Tiling€ Thumbnail(Intern VL)

oj2] 2% template(ratio)of] HF HE high resolution imageE tilingdl1l, Y& imageo] 22 H
¢l thumbnail:s s BHEo] &89 o] tasko] mrel U7 BRE tile2 ZIH 5o Holx7]&E

[e13
.
448x448 Tiles Thumbnail
Bee 22 @ e**@
8% eied 7R
o
Matching | 2:3 (896x1344) Input Image (800x1300) . hi :
— T Text/OCR benchmarks: high resolution helps

Pre-defined Aspect Ratios ==y '_-,g,‘, ;

ilgil i) ey

Infovaa vel

1:4 1:5 1:6 R 4]

2) 27)°] ViT 2§

olef 7w} Zro] YE imageE downsample(low resolution O 2 W25l tokenslolo] text2} eFA]
visual language decoderof] 11, Y& images= ¥ 9] incodero]] E-2. 0]% low resolution image2}
tert= Q2 5}, YE image= KoF V& SF= cross attention ¢4FS ~dfsfo] 88 &3}

Knowledge/reasoning benchmarks: 6 tiles is sufficien

82

High-Resolution Cross-Module (% ' Original VLM :*: [Targ:l Text]

.. e
Lth layer R

Pty Visual Language Decoder
thlaver (hidden size = 1024) (hidden size = 4096)

Tjcross-atn[
st layer |
o g

concat
[High-resolution image feature | [Low-resolution image feature] [Text feature]
| MLP Adapter l | Word Embedding |

t 4

Task: How can | find an
apartment that offers free
Wi-Fi?

Plan: | Locate and select
the price filter option
2 Select the Free Wi-Fi'
option. 3. Apply the filters
to update the scarch
results, and choose one
satisfying apartment
Action: Move the cursor
to the "Price filter' on the
== left sidebar where it says

e e — o "Your previous filters’, and
| downsample |= g~ click on the Froe Wi-Fi'
T 4 checkbox.
Input Image (1120x1120) Input Image (224x224) Input Text

Flamingo©]| 4]+ image?} language”} asymmetric(H]) &)5} # 2] & =1, PaLM-Eo]| A]+= 0] & symmetric(Tt]
A)stA A2t

3.2.3. VILA-U

VILA-U(Unified Visual Language Model)= video, image, languages -F8519] understanding®} gen-
erationS T-5l= HY autoregressive model &

ot modelo] 2] 2F A1 o] SOTA (State-of-the-Art, ZFEH)BFFo] A5 Wl o
VILA-UE ofgflo} Z+2 225 71F. =, encoder® token3}ol1l generative modeld]] Y2 ¥, 71 HilE
AFE-SLA] decoderZ &85 A48

Multi-modal Multi-modal Token Multi-modal Token Multi-modal
Inputs Sequence In Sequence Out Inference Outputs

Text ‘ The man is
skating
Text Tokens

[/
e E" Text-aligned

............... E— Vision i
Encoder Text-aligned Discrete '

Video “‘ﬁ Visual Tokens !
g i -

Next-token Prediction

oJof ZA]Z] 0 &2 visual HJo]E] Q] X 2]ol= vision towerZF AFEE. Vision Towers= image ¢ &S
crete(quantization Z]-g) token © 2 H2lSF 5] o] & text Y8 aligndl= ZEO 2, olgfol -2 X E
1R, St Alol= text@f aligno] ZF E QE=X]-E YEFYE= constrastive loss@f, generations 2 53135,
LX]E LEE reconstruction lossE HJ4AFgF.

uction

v
This is an image m Contrastive . ’ . .
------------ id Frozen weights Trainable weights
of a cute cat -—_ Loss ® ahts & " weig
Text Tokens

3.3. Prompt Engineering

3.3.1. Prompt Engineering

83

Prompt Engineering2 modelo] {lol=
Heole YEs FAFeR He

o] o
AR -

1. Zero-shot Prompting
Zero-shot Prompting-2 ZF task B2 SFLLEO] model-S 4 8f AFgsFE HHA]T} gra], 5FLF9] foundation
model2 F712] ¢l ot glo] o 2|7}A] taskE A 2fer 4~ L= oF 7] Q.

2. Few-shot Prompting

Few-shot Prompting 2712191 5145 §1o], @ 73] A& Agste] ofd ML taskE 2P +
U= oF 75 ¢]. o] ¢ H AAIE9 ek context)E E-§5F2 2 In-context Learning®]2fl = gF.
few-shot prompting Aloli= oo 22 7§ ¢l & L op-7F ot gF.

1) classification®] Qiet AAIE A& mi=, Z} classol] gt oJA] o] 77 A2 g o] Ertal
2) text A 5 A& mil=, ZF Ao A1C] formatS A= GFEE= Ao FEolal &

3. Chain-of-Thought
Chain-of-Thought= modelo] of2] FIF HAIE AX Bt F2 g5
zldjel. 2, thinking processE = A .

%

ol

H&e -

Ol
)

=8 s

4
30,
e

tles] gl o2 "Let’s think step by step."o]2f= B3-S Z7I5k7]al gl E3Fol EA7F zero-shot
o2 s =7 = otrf g

Standard Prompting Chain-of-Thought Prompting
[T SEmmm——
' Model Input | Modelinput
Q: Roger has 5 tennis balls. He buys 2 more cans of Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now? tennis balls does he have now?
A: The answer is 11. A: Roger started with 5 balls. 2 cans of 3 tennis balls

Bach is B tennis balls. 5+ 6 = 11, The answer is 11.
Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples Q: The cafeteria had 23 apples. If they used 20 to
do they have? | | make lunch and bought 6 more, how many apples
/| do they have?

~ Model Output Model Output
A The answer is 27. 3§ gnumm:om;?ﬁmu

bought 6 more apples, so they have 3 + 6 = 9. The

answeris 9.

3.3.2. Retrival Augmented Generation

Retrival Augmented Generation(RAG)E= LLM Yo 2=l gjo]g]gto] ofi]af 9] (DB &)of =]
Fel djo] & ke 7o,

LLMe| 25 glo|elE Agetehd, o Hlo|e= 2] Ee £g 57 o2

ofgfjo} Zro] ALERFZRE] query”} S0/ 2H embedding model:S E-83] HJo]E|E vectorS}olil, re-

tricver2 query©l] 9= o[Lot ¥ LLMo| [Ygl EoF F712 rerankerE AFE-Sl queryLlQ]
Hege 2YT S

84

In the stomach, gastric acid
What the :
dlwcm:':::mlnu B Retriever BN mm g Reader Bog asstieacdsnd
infection? L~ f against ingested pathogens. bt

1] Wikipedia - Immune system
Text Collection

v

Embedding

o} model a
o

Language
model

5. Response

User 2. Encode

@ 3. Search

Retrieval
model

1. Query
4. Score

Reranker

embedding model-2& MTEBZl= benchmarkE AM&3) H7}Echa st

4. Long Context LLM

long context LLMo] t3t S5} inference Alof|= T &2 memoryE AFMESIHAA ¢ w22 XA sl6l=
A0l F3. olsh A context lengthiz LLMO| g o] A2l 5 9l Aele] olg elulgh. =,
o

2 A4 Aol 1T 4 9 context©] 27]¢].

4.1. Context Extension
long contextE | 2|& 4 QJE 2 context lengthS 58]= WS golH A}
4.1.1. RoPE

rol4] thE RoPEE &850l 05 245t O 7 contextE A StES & 4= 912 05 E0](baseE E9)
context length(window)& 5 4~ 117, LLM-2 fine-tunings}7] o] context length‘—‘::— Q2 S8of sttt
SH
st

4.1.2. LongLoRA

LongLoRAE long context LLM-E ol LoRA 7]BF9] fine-tuning 7] H ¢J.

oJW LLMo] A a]sF =~ Qli= Zo]Hr} 7] contextS 2] a]stE2 518 B fine-tuningS Z-§soF 5=t
long context LLM-S S} fine-tuning:S 1 H]-§o] ZE2 efficiencyE § =¢ 40| Q2. o]f

LoRAE e 2§o1H s A7} Holal, LongLoRAE 2§31 H&5& "X]"‘ 7 A=

LongLoRA9JA]E 1) shift sparse attetionZ} 2) enhanced LoRAE 253 efficiencyE FH g}

1. Shift Sparse Attention

Shift Sparse Attention2 tokenS &J2] group 0 2 0] attention H4FHS Z-&(sparse attention)eF 2
1o}, tokenS shiftel F| group Q2 o] attention H4-S X-§oF AulE B g-gol= 7H 9.
attention ¢RR2 ZF tokenbfrt LI Z] tokensof tier RS oI E 2 Q8 (token 7f)of u}E
HZF 7l n20]1l, long context LLMOJJA]2] HEo] H.

ofef| “17 7 Zro] ol & {171y HAIE LkaoF E 7] =9 attention L= G, o R group
LR O] tokenE7]2]BF attention H4LRS ~8lgl. 7]& HFA]of HIS] sparsesFE 2 o] Sparse Attention

ojzfal g},

SEX]F 2k 5] ZF groupS mh2 HLFSFH group 7] E]E contextZ} HFYE|X] 9FO0 B 2 tokenS shifts}o]
sparse attentionS -goF AIlE k7] g-goF =, multi-head= HYFO] headd] TJsJAl= BF> sparse
attentionS, L] X'7H]'0]’] Al = shzftﬁF 7—] sparse attentionS Z-§gF. o]of] ufal A2 CFE group

85

of] a4l contextZ} BFFE Ayfrl =EE 11, o]2 shift sparse attention layerE o2 7] roH BHfZ
& groupTFo] o] e} A= context”} H}OT’E}’/"]/ H-

Each pattern in half heads

“. /I ‘-----------"'---“
Multi-head 4 |Lora
Self-Attention A
} 1
/ ——— |
NOMge 1
' | Feed Forward 1

Pattern 1 - w/o shift Pattern 2 - w/ shift Combination v (T M N

fa) Shift sparse attention | (b) Low-rank adapt

5l Aol sparse attention=, inferenceoll= full attentions AF-5l= o] 50| o £rf1

w1
&

2. Enhanced LoRA

LongLoRA9JA]E input embedding layer2} normalization layerE fine-tuning®f. =, embedding/nor-
malization layerQ] parameter5S 8F4 7Fsol & X g F H fine-tuning®l. embedding/normalization
layero]] QA= parameter 77} 2 0B 2 AA] tuningeF 4 2.

sparse attentionBEGF oLl 2} embedding/normalization layerol] tjatF fine-tuningZ}2] Z]-&8oF LoRA
of FgFee HEA e rankE R HA] A50] full fine-tuningTFE L2

shift sparse attetion layero]] T A] layerH 2 crosset Ax JA|TF head'd 2 cross$t Ao] A5o] ¢ i1l
13

positional encoding& 74| 1123}¢] context lengthE o 248 4~ Qlttar Sh
4.2. Evaluation of Long Context LLM
long context LLM-2 B 7}5}= U -& QolX A}
4.2.1. Lost-in-the-Middle Phenomenon
Lost-in-the-Middle Phenomenon-2 long contexto] gl W& HHI} contextQ] oF £l Qs F-2o]

vl g7kl fli= -7l accuracy?} ozl Y. =, J& W EZE HEH Ofﬂb’ﬁf 7*07 uxf .

20 Total Retrieved Documents (~4K tokens)

Accuracy
(=] (n)] -4 ~J
o un (] (9]

L
(%]

1st 5th 10th 15th 20th
Position of Document with the Answer

-8 gpt-3.5-turbo-0613
== gpt-3.5-turbo-0613 (closed-book)

86

2, LLM] long conterte] Tl WL FIS W T kT AE G2 BE Lo 4 A7} 7
o]BI2] 2] 9IS 4~ QL. o] HL perplexsityT-S X EZ E§5}H F7HojA] /SI'O‘O] ol & L
HHBo] _,]o}] /<'7’—O] 577’] e 4~ 912, long context LLMS FH7}8F = o] 2 1ol o] AGH ﬂ377]-7]-
L
= = -

4.2.2. Long Context Benchmarks : NIAH, LongBench

long contextE 2] 2]5F= modelS H7FSF= benchmarkzZ-= NIAHS} LongBenchZ} §l-<.

1. NIAH
NIAH(Needle In A Haystack)e= 71 24 (haystack)Q] 7o) B2 g1 (needle)S el modelof
o], ol needleS ZrE Sl benchmark .

ofgjo} Zro] o] 2] depth(needleS Y= $JX]) 2 modelS F7Igl. =, Lost-in-the-Middle Phenomenon
2 e W B,

Pressure Testing GPT-4 128K via "Needle In A HayStack”

Asking GPT-4 To Do Fact Retrieval Across Context Lengths & Document Depth
Top Of
Document 100%
Accuracy
Of Retrieval

oot
was tween

10%-50% document depth

Placed Fact

Document w55
Depth

Accuracy
Of Retrieval

o%
Accuracy

Bottom Of Of Retrieval

Document 100K 109K 18K

Context Length (# Tokens)

2. LongBench

LongBench= 671X] tasko]] tjet 217]9] gjo]EJAI-S & GF5FaI, Y] 130007]9] tokens 7FX]E= long
contextE gl o2 &85 F1, ROUGE 502 H7I5IE= benchmark$.

LongBencho]] 2]5}H long contexto]] ESIE]X] 92 modelof] 2 &H3%F PE 52 #-§35F= Z19] long con-
text 2]2] 58-S FAA FX]gk, o 29 long contextg o5 AA %] model 2= long contexto]
g 450] BoldH T

4.3. Efficient Attention Mechanism
long contexto]] gt inferences 7] A6}= W2 Yot 2},

4.3.1. StreamingLLM

StreamingL LM attention sinkE T 2{5}o] 2L computationZF memoryS AFESFHA] long context
of] tjst inferences 741}

1. 7] & 93] 9] gt

7l AFg2go] QFEE streaming(HAIZF 52 applicationof A=] 2]aoF SF= context length7}
AZFE decoding stageofA] memory A-gEFo] L2 AX] A H.

ofgflo} ZFo] Tl attentionS long contexto] il U7 BRE computationZ} memoryZ} &R G}
Window Attention& windows A5}, FZ tokens9] tJsiAIeF KV cacheo] 1S %5 =11
attentino ¢4ro)] E-gsl= dHAlo]l FASIAI L windows HloJY BE.L JFRS[X] EF=0], initial
tokeno] KV cacheollA] '47f" é7J el g435] goly.

Re-computationS &-§3F Sliding Window= window attentioni} 2 AFSEXBF, window Y] 9] tokenEof
s ol attention Y4RS A2 530G perplexity—= H] & FX]OF, computation©] 7 2,

87

(¢) Sliding Window
w/ Re-computation

(a) Dense Attention (b) Window Attention

ml Token o

*—— Tcooched okens = T-L evicwed . L cached - - e I
tokens tokens

O(T?)x PPL: 5641x O(TL)v PPL:5158x O(TL*)x PPL:543 v

Tas poor efficiency and Breaks when initial Has 1o re-compule cache
performance on long text tokens are evicted. for each incoming token.

2. Attention Sink

Attention Sink+= initial(3 H4]) tokeno] A ou]& FQ T of AFFo] =2 attention scoreE 7}
A& w4l

o= attention HALFOAIE= softmazo] O]a) T o] Z|7F A olef Fgto] 10]17, inital tokensS TFE
H-E tokenof o Ao 4] & E] 7] miio] Bk @Y. HA= initial tokens oFF OJn]7F gli=
token (38 BEX}) O 2 BBl =2 attention scoreE ZFXICFLL & =, initial token2 1 2] 2] o] 2]3]
c}2 tokensof thal attention score’} =7 AXFE] 1, o]o] u}a} initial tokeno] attention $ILFOJJA]
A E]=(KV cacheof|A] A|AHE]=) -2 model®] g&o] 5243 HoJZ.

3. StreamingLLM2] ofo]r]o]

o]oj] ufgl StreamingLLMOoJA]E W S J7H9] tokens(Sink Token)S KV cacheolA] A ASIR] &kl
attention H4Fo]] A< G-8ol= 7 02 long contextd] T3]l computation, memoryE 2 7] AFEFHA]
& (perplerity)S 72k olmfl sink token®] 7= 4707F FEH 0= Y Frl 3. sink token
o] 882 paged attention 5= Z-g5Fo] KV cacheQ] physical memoryTt HIF = Ao 2 268l 4~
A

4701 9] sink token2 pre-trained modelo] O]} A eF Zo] =], gjtl 5FL9] learnable sink tokenS
pre-training o F7F5lo] olg A7l A2 HAg = ok g

I oF decoder modelBERF ol L] 2} encoder modelo = attention sinkZF £xJolckal gF.

o[1]2[3]4]5]e 7]

s |0]1]2]8|4 5|6]7

(d) StreamingLLLM (ours)

Generating
Token 7

I Generating
. Token 9

evicwed ___ L eached _

tokens cns

O(TL)v PPL:5.40 v

Attention Sinks Evicted Tokens Rolling KV Cache

Can perform cfficient and stable
language modeling on long texts.

SEx]aF o] F-2 o= window?} o]-F5}H] A2 (evict)H tokenE-2 attend® 5= OB 2 context’}F 4 o]
Z]H sink tokenS A L]}l evicted tokenEof Hier FH = AFEFE. =, window F7]2] $HAO] 2]5]
Aol F23s] ol A E=r)], DuoAttention© 2 o] 5 AT = QL.

4.3.2. DuoAttention

DuoAttention2 = 7IX] 229] attentionS F-§3F] memory/latency SHOJA] 2] HES SJZ5] 17
HH £ Fo]HA] long contextE X 2]ol= 7] H ¢l

long contexto]] Tjjel]2l 2z} tokeno] tier KVghs X gooF SFEE memory SHOJAS] HEE
EAXola1, ZF tokend] et JHE FFZ5}] decodingS W SFEZ context lengtho] H] |3l latency”}
Zolsetole Y2 Zxsl Eot KV cacheo]] gjgl 7]&9] compression 7] &L LLM2] long context
2] 588 ol g, DuoAttentionS ©]2 memory2} latency SHoJ Ao HE-S J S}

1. Retrivial Head vs. Streaming Head

88

DuoAttentionofAl= transformer?] Z} head”} retrivial head2} streaming head2 FE2EH. =, = 7}%]
Z59] attention 94FS Tk

Retrivial Headw= HE ©]7 tokenol] 3l attention(full attention)S = head . =, o] token
£ = BWy =99l tokenS G454 H. retrivial heado]A]2] KV cacheZ compressions}H A5
]517F 2Hg 3.

Streaming Head+= attention sink token®} |2 tokensof toflA] (window AF-E)BF attentions <o}
= head¥]. streaming headofJ4]2] KV cache= compressiondll = J& AoF7F HolX] 2.

Layer 15 Head 12

Retrieval heads capture
relevant tokens in the
comtext,

Laver 10 Head 11

Streaming heads focus
on attention sinks and
recent tokens.

-51-8.3 1.3

f-56-57-a3 -2_1.

P wvj o kD et

Retrieval Heads Streaming Heads

2. 94 ofo]r]o]

DuoAttentionof A= H2-E headollA] full attentionS +FY HQ7F ok 71ger o] olaf o=
head= FH A 0 2 2 Q 5} tokenS HFYolH 2 KV cacheE E-§5F= retrivial head2, Y] = sink
token] F]Z tokenE BFYs 22 1774 %E KV cacheE F-§5l= streaming headZ A%}

oJuf o] headE retrivial/streaming headZ AF§SFX] = trainable gate value?l ag A-§SF F A5}
Zlgk Zlg o2 Aol =, 24 o™ head(iH1A] layer, jHA head)o] tfaf ofefl2l Zro] attentionS
Z(j'o’l’lﬁ:]_- O]IIH Mcasual7 Mstreamingi% retrivial/streaming ZII-ZIFO]] EH?;_]- mask%’.

full_atten = softman(QK” - Meqsual)V
streaming__atten = soﬁmax(QKT - Mgtreaming)V

attn; ; = a5 - full_atten + (1 — ;) - streaming_atten

o]5 ofzllof Z+o] loss functions FOJol] aE HA3Hel 5, full attentions -§P-S mjo] 27},
219t o] ag E&5f = 71A] attentionS 4 QS wfj o] &8 AFo]2] xpo]E &g} (distillation). EF
full attention®] Ap-go] FAs}E= Fo] FoO 2 oo gk Tl 283l

aof gigh X3l g ofli= NIAHSF 2AFSHA] 71 conteat 5-7Fll passkeyE 4 S synthetic(gHg) o]
OJEJ IS Er§-3. modelo] mraf CF2 X[TF Llama2-7B2] - 3271 9] layerollA] Z}Z} 327]9] headE

AFESIEE 10007] 71ge] afl ehgAlZ] | Hil, o]= A100 gpus B§HE o # Algto]d etz Fr}
7 g

N T
1 Ny i) [
Laistinn = N Z Z (Hf(:1J1] - Hrgﬁzmdb])z

i=1 j=T—I+1
L H
Ereg = E § |(1i.j|
i=1 j=1

L = Lyistint + ALreg

o]% inference timeof= threshold T ZI head2] a2} B 3l st ZFHECl 2 H retrivial head2, X0 H
streaming head 2 g8t GASHAILE LA ALF o] % ZF heado] &8 F9FH.

89

Deployment: Full Attention

(¥4 T !

-
=]
w

Q X kr’rf .{:] Retrieval Helld?)(V

No = 1
T

a <

|
Streaming Attention

IESE DuoAttention] inferencei= KV cacheo]] -5 YL 59 ¢S +35l= pre-filling stage
o & &85 A5l decoding stageZ LFE. o]uf] pre-filling stageo A<= retrivial/streaming head
HI=o] tfsf chunking(FlashAttention-2)-S Z-&¢Hclal &F.

o] Jbit KV cache quantizationS &7 Z-§58fo] o 7j4de = Qlofal &F.

4.3.3. Quest

Quest= query-aware attentions G-§5F0] inferencedf412] HLIEFS Zo]HA] H5S 2X]gk
accuracy, latency, efficiency =HA] full cache(full attention)ECF HolY.

1. A& WA A

full attention& 2-E tokeno] Tj3l] attentionS T SFE 2 ¢Rro] @8] Aa] 17, StreamingL LM} Zro]
DYE A0 & tokenS evictofi= Z]H2 AR AJZRS FO|X[EE evictH tokens THA] F2e = glof
& APt 2y gk

E5] B Aol SR} Wof evictH tokenk o]%o] FRE =A] B&H 7 s =, FA A eloF
+= queryo]] mef o] tokeno] FREZF 7P A Q). oo mfaf Questol A= query-aware attention O &2
ol tokens & FRE7} =& AE FEolo] BYEE FFHA Je5 +Ae

2. 94 ofoljo]
Questoll 1= KV cache FE GPU memoryoll 3111, queryhe] APH (F8.1)0] -0 HEnke
attentionof] Z-&5Fo] memory2Z2E] 9] data o] 55 &9 inferenceE 7F<gF.

THH o2 ool Zro] KV cacheE of2] 7§9] pageZ HEil, HAY query9} HlWofo] FRE7F
=2 pagel fetchdlo] attention ¢4Fo] g3},

ojuff pageo] BRE FEI} RS =P o}= FE overheadZF A B2 ofgllof Zro] AL}

1) Kgl& element-wiseSH X]&=glF 2 AzES Akl Z2pzfo] dish YE & H-5.

2) = dlg]of] fj3f] query@} element-wised}7] H41S T3¢l

3) &= HE] 9] grojl o] per-channelZ FTzlS A {lopo] ofrfo] HE[E L&et o] g1 attention
ALkoll oieh gFeks e,

4) olieh W E] o] gk o] digh of(score) & AILXHeE o] glo] oY page] 2T F LEY.

5) 2ol glo] 2 pageE Tt fetchl.

90

Page 1 Page 2 Page N

I
[aisiai1isiainris 4foisisisisieis
KV Cache [—— K i 3i2i0i3i0i4ai2is el 2i2i3isiaisiziz
eys aisiaisitiaieis sisioizioizioia
B H SR oA RA A SRR T

Reduced Keys L

Element-wi oMax Key Current Query

:" Stage 1: Estimate Critical Pages

i Element-wise [1 © &
Product |

Per-channel [T
Max aETE

Sum I__-I v

Stage 2: Compute Sparse Attention
H C

ofof mrat KV cachedl] A2 tokeno] &0]& m X|5glaf XS At ©]F inference AJof&
e)7l HAgls E&f scores At

A5t AXH Quest= KV cache AHAE Z0]= Z o] oz} query-aware attentione E3f inferences
7H&2keh= 71 .

4.4. Transformer 0] 9] 7| HE

transformer”} P HA & efficient§t o}7| €l 452 Arm H A},

4.4.1. SSM

1. Mamba
Mamba= SSM(State-Sapce Model)& -5 71 sequences Ay AR EZ A 2] E
transformerof A= tokens AFolQ] contextE YFFolE= F-E (attention)ZF, 7HY tokenof tfet ¢I4FS

FofslE BE (feed forward) 02 g, Mambaol A= attention 94FS SSM-S g-gaf] fjjzgk

SSME olgo} Zto] Z=ZFsF. MambaojJAl= o] & =3 5Fo] Selective SSMC 2 &8}, selective SSME
2} stateZ}F Slf'g token() g]) o] R0 WE A E= WA =, 7]E0] SSMofAl= ofefo] FE A,
B, C7F xof] oo &g & o2 AR A0, selective SSMOAlE xof ool 2 H.

State (h): Represents the current knowledge about the sequence.
Input (x): New information entering the sequence.
Update: The state adjusts dynamically based on input, focusing only on relevant data.
— — — — —k—
Linear h[= Ah[_l + Bx; Global K =(CB,CAB,..., CAB,...)
Recurrence y; = Ch, Convolution , — x« K
A controls state transition: How should | forget or update the state over time?
B maps new input to output: What part of the new input should | remember?
C maps state to output: How can I use the state for a good prediction?
A

1= ‘ E

n M
Mamba: Linear-Time Sequence Modehnq with Selective State Spaces [Gu and Dao, 2024]

Z]E2] SSMo] ZFR]= o] Y2 ofgh ko] xof ot convolution Hro = FgEo] zF FEE precom-

puteeF 5~ Qo= AHolgl "137’], selective SSMojJAl= di&FHo] gof] ELE B2 precompute7]- 37]-—07'
A i) e A2 Aol e o ster e

91

[4, 1,5, 3,9, 2] | Jl\\ ‘J\J J
\ R RG] R[BH|HR]®
00000 i i
i 5 [€] +1)
Computing the prefix D l & l
sum of an array e_, °_, Q ™ o | &
\\%L
[z,, z,, z,, z,, z,, ;] ‘)
' e |
B
I

Somputing hidden states @ ? ? @ ? @ NRL]\“’\ PK
of Mamba DD DND| D DB

[[[[
G’G’G’G’G’G Parallel scan Algorithm

2. Jamba
Jamba= transformer2} Mamba, MoE(Mizture-of-FEzperts)E dglolo] -1 efficiency AFo]9] « &

S Wz ojolHa = A]Q,

5. Vision Transformer

5.1. ViT

5.1.1. ViT

ViT(Vision Transformer)& vision X 2]& ¢t transformerg.

transformerof AJ= token TFZ do]E]E] a]gl. o]uf languageo] A= tFo] T o] Fal=
RIS Al H02 token 0 29] ¥lgho] Bewl. imagea] ol E A HE WEE g tokenizedtl
transformero]] Yoz Yo 4~ 9l

vision datag&] 25l= AFAA L HFHL imageE o] patchZ Z7JA] token3}ol= A Y. =, image
£ patch9] sequencez A 2]e = Q2. o]% oo ZFo] Z} patch-E flatternsl F AF&S= transformer
o] 2}l 0 2 linear projectionsFH E=t], oju] FCE & 5 QIX]2F ofg|2F ZFo] convolution layerE
A2l Zlo] YurF o] BFE Q] o] & M X tokenZ transformer(encoder)o] Yol Aa]d = ¢S

[H EEEEE

32x32 Con, stride 32, padding 0

Linear Projection of Flattened Patches]
in_channels=3, out_channels = 768

Image size: 96x96 Number of tokens: 3x3=9
Patch size: 32x32 Dimension of each token: 3x32x32=3072

Vision Transformer (ViT) Transformer Encoder

{ Transformer Encoder

"m0 @) @) @5 @5

* Extra learnable N R R
[class] embedding Linear Projection of Flattened Patches]

l
SEE L

Embedded
Patches

92

ViToll&= ofef|2F Zro] model®] ¥} patch sizeo]] Whef of 2] variantZ} EAgl. G ASHAIE patch size
ZF & o coarse(d 2 ©92 Aa])sF A

Model Layers Hiddensize D MLPsize Heads Params

ViTBase 12 768 3072 12 86M x Patch Size:
(iT-Large 24 1024 4096 16 307M 2,4,8,16)32, ...
ViT-Huge 32 1280 5120 16 632M

ViT-L/16: ViT-Large with patch size 16x16

ViTi= oF5 H]o|El7F 22 CNNHEU g&o] oF Fx]gh, ol HloJE7} Hopx|E CNNELE 0]

o = =
= I.Z]
==te) .

5.2. Efficieny/Acceleration on ViT

ViTE o287 ¢ efficientst= = £AS 4 Q2717 E3] image # 2 o)l= =2 resolution®] fine-grained
A7t 8 == 7 BAL(9S, efuro]ld, AAIZE Q14 F), Rt resolution©] &% accuracy ERF

=2 AT 19 weEt o B2 computation©] B QSR E efficiency 2] Q40| &.

5.2.1. Window Attention

1. Window Attention

Window Attention& HE patch7} A2E FFZR51Y] attention FRRS s sl= 7]E9] dFA]a} g,
Gohzl window W] tokenSl thoAI g SIAHE e A,

A A o 2= ofglof ZFo] ZF attentiond] Hio] window 27| HF F7] of= 522 X|Yolof &-§&F.
o 8] Z7]Z9] ViToAl+= attention L] O3] n? o] AJZFHER = E 7|2, windowd]] E0]7}= token
o] Zh7F a2 E]o] QOB = n(linear)o] AIZFHEYEE ZFX| A H.

L s [T 4%
LT s e vty

Window Attention

Original Attention

Swin TransformerofJAl= ofgf|of ZFo] ViTol window attentionS Z-§F. o]uj] e window attention
Biot ofi] 2], windowE shiftsl= Shifted Window Attention T oF AFESF o] = Bha window attention
o A= tokenso] ZFLlo] ZJHE window YR tokens7]2]TF JH 77} ZFst ZAI7F Y 517]

T ¢
t — -

L7
L

Layer | D Layer I+1
B [
Lo e e 4

W 7774

oo -4

Window Attention Shifted Window Partition Two Successive Blocks

Window, Shift Window

2. Sparse Window Attention
28]l imagel] EZJof] w}alA window attentiono]A] window?} L2361 HL ofLEZ sparsityS

koY SF A& o
&g+ As

93

opelie} 2ol ZF windowo] 2718 #UeHA] AT G window tfHo] EASHe Hlo]E 5 B-§8
A8, windown}r} LFshe tojElo] 527} Gaba] TEH Sl @iro] o]a] . o]o] ufa} Hlo]E]] 5o
w2} groupingshe] S1¢He 2 LS.

Equal-window grouping maintains perfect spatial Equal-size grouping ensures balanced computation
p y but breaks the regularity. workload but cannot guarantee the geometric locality
; B "
c c|E
E]} e (]
! (w/ Padding) LI |1 Fully
— |1 |F — |u 8 @
: m e
= 5 o
] swenn ree
Balanced!
Equal-Window Grouping Unbalanced! Equal-Size Grouping

5.2.2. Linear Attention

Linear Attention& softmazx J2] ReLUE AF§35L11, HLF £ A2 Z35Fo] n2o] YL Z 7IR] = 7]
Z9] attention HLFS nQl(linear) B e E ZIXEE JAeH 7] .
ofgljo] Zro] 248} softmazrE ReLURE BFFZ|gl s} EHZFw- 7] I 2 2]k softmaxrE TP o2
HRF A1 E EHI computationS £ 5 2. o]uf] ng sequence lengtho] 1, di= embedding X
¢l. o]& gsf Bl E AR5 HH softmazx attentiond}F ReLU linear attentions ZFZF dE Fof
oJgt F4 b0l dn®, PnEFEH BYSHEE 242 BT} n? 0l

Softmax Attention Relu Linear Attention Relu Linear Attention

(ab)c = a(bc)

e
associative property

[Linear] [Linear] [Linear] [Linear] [Linear] [Linear] [Linear] [Linear] [Linear]

T 1T I [1 1 [T 1

\ Q K v Q K \
Cost : O(n?) Cost : O(n?) Cost : O(n)

SEX]BF linear attentionS computation©] &0]E g 45 2|5|7F BRAYSE softmax attentiono] H]3|
linear attentionS = oF & Hof gjol attention scoreZ} =HA] AHRXIE]X] B5F11, o]of uf2} scoreQ] 2
ZF sharpsl] B GO oAlE o] & weakdltfil EE S). 1fA] linear attentionS ZHFH Q1 context
£ mrofol= 1 g o= B FEo] gieh YH= & ol R] 23k

ofof me} ofzl2F 2o convolution LR 57 F-E gt JHE Foll= tjo] a7&o|BZ o]&
branch=2 -8 5~ 912, o]uj efficiency XS 93] depth convolutionS &-gg}. o]HA] 5}H H&
Fop, o WA F

B Softmax Attention
EfficientyiT B ReLU Linear Attention
Module W EfficientViT Module
[output | o

S
{ 33
|-
i

772

Input
<xX0

DWConv 1x1GConv

ImageNet Top1 Acc

Aggregate nearby tokens to get
multi-scale Q/K/V tokens

Multi-Scale
Linear Att

5.2.3. Sparse Attention : SparseViT

SparseViT(Sparse Vision Transformer)<= windowd 58 & ARXFSl= 59 HFA] O &2 sparsityE &F
Ho}o] image X 2]E of= 7] ¢.

resolutono]] T-Z pizel == n2 082 ZJ}5F=r], 2715 resolutionTFHE sparsityS E-g5FH S ok

rol

94

Z7]9] activation © 2 high resolution imageS A2l 5 2.
SparseViTolJAl= &8 activationS 2] windowZ RH ¥, ZF windowo] s L2 normo2 7]

(magnitude)E AXFole] 1 glo] 45 2L} =2 A 02 HIFel o]F ofgfe} go] FoEE
7]%—O—E X(S“?E:]"?_}_ 7,:’] OIIE-] layer% 7‘]X]D"] Z"{]Z‘]_O_E E—] prunegp.

L 1D EoE-E-m

= HE| e = 1o

== - o

|| —_— .
Sorling& E
E’ 1
Input Image Window Importance N i

(or Input Feature Map) (L2 Activation Magnitude) Epaied Wlindols Asten

oJoj] pre-trained model:2 denseSF activation© =
ZFOISIA] A4 Slo] Z-8&5F HO 2 fine- tumngoh:]'
2] A 9] sparsityE Z=rCl g 07- ZASF 1f-go] o}

SparseViTZE Z-gol & AAZ imageE &¢I HH

l‘-{olx

lil
FE_, U?,l‘,u

=4, 2z} iterationaFr} layer® sparsityS 7
. ST evolutionary search& E-§3f layer®

=2S golnak

=4
gl go] 22 17 o] pruncElr}ir §

|

O]
R

r
r

o] o}o]t]o]: language modelo]] oA A= 4= gtk

;
]
ok

5.3. Self-supervised Learning for ViT

VI dlo]l7} B8 o) 43501 FOLA1L, Hlol el labeling8le 21 3801 7ol 5. olo] 02} dlo]ele]
gt labeling §lo] 01‘,’5; #og = self-supervised 7|2 O}O}EZ}. o] q Self-supervised (A7 A &=
learning-2] 0] Eof tigt HX 9] label §l©], modelo] A A o 72 S5 & HFSo] Sh&5l= HhAl el

o

5.3.1. Contrastive Learning

1. Contrastive Learning

Contrastive Learning(t <&)S 7AFet ¢ 77]'3]1_ ARZF 217 R ==, oot ¢ gl 7] el A 2]}
HolX[=2 JossE A4FS= self-supervised 7]’,::’,’

FAR O 2= ofafo] ZFo] positive sample_l/]- negative sample2 4= gJo]E] XIS &-gd5lo] ZF em-

= = 0

beddmg— Aol vlaek. ofufl F embedding Ato]9] Zgl= 2B E 712, ALY FAME S5

gote] Ate + 9lg.
Pull together Push apart

encoder J encoder | encoder]
o [
a 2‘. " Negative
i :'J samples

embeddings [

Positive
samples

A%

supervised ViToj] H]S] self-supervised ViT9] 45o]] £}l 3F.
2. Multimodal Contrastive Learning : CLIP

CLIP(Contrastive Language-Image Pre-training)2 2} ¢J2of tjet embeddingS A eF | FAFQ]
LA E ApFslo] QR]5HE @] glEof fjel Zho] U7} E] =& sF5A] 71 language-image multimodal

95

=, ofglel g2 "t 22 ofgs 79 &2 oY ofgS Aol image-text o] HloJE{AlC =

ZA5lfoF gF. o] & A]9] 85 o] L= zero-shot C 2 & 4J5o] FTIA 9F. 0]% inferenceoll= ¥ 27F9]
FARQl FAHEE ARl 713F & AV E IR S 598

b nT T T 1T

Pepper the e
aussie pup ||| =) " Encoger l l l Abate of o
Training: n|mn|m| . | m Inference: ‘ ‘ ‘

L ||LT [T hTs LTy

|7 . LR ™
Image 1 13Ty | 13Ty | 15T 13T
EFEWNW s 3Ty I3 T2 | 1Ty 3 Ty ,
mage | Ly T | LT (BT T
Encoder

5.3.2. Masked Image Modeling : MAE

1. MIM
Masked Image Modeling(MIM)& €& image2] Y2E maskingel 7 o] & EolEE of= IPgo &
st5A]7]= self-supervised 7] E @], MIM_J jEA <] A 2= MAEZ} Q-&.

2. MAFE

MAE(Masked Autoencoders)« oFg|2F Z+o] encoder2} decodergl= 2E (& Cf transformer?] encoder
model®].)& &-gofo] MIMO 2 SF5A]Z]= modeld. o] encoder— #2 B2 o2 ZA o et 7
HE FE5)JoF]2 2 heavyd|il, decoder—— o YJHEZ EQuls ~alsla 2 lited}. oFL 0]—,—07’]——
decoder 222 A5} encoder FETFS E-g3F.

! Heavy
EESEE =5 Lite HPNE™
ENENS | - ENTE
IWEHMENE > 5. lencoder —> decoder — - [HHEE
aumne M ATl
(] [T HEREN
input . target
R

sl Al ¢E imageo] D3t maskingE 75%7}A] H-LHE A5 =517} ok oF. 22 BERT
of A12] Zt masking ratioZ}F 15% 916, images= textl] H]3 redundancy”} 7] wj2ef o] 75%7}x] 2]
maskingo] 7F5oF Ao 2 Q=6 £~ 912

o)== BERT 59| language model 2 2| 7}4-2 ofo|t]o]¢].

5.4. ViT & Autoregressive Image Generation

5.4.1. Autoregressive Image Generation

1. Autoregressive I'mage Generation
transformer& F-85}9] autoregressives]H] image generations T ol= generative model-S& T4

T Q5. A7|oAE o] 7HHs] AR (autoregressive) modelo]2F1l F.

96

transformer model:2 OF 2} Zro] discriminative(H8) modelT} generative model 2 U= 5 9= ojof
generative model2 autoregressived}7] token= Al oAl discriminative model 9] V2T~ F=2
oHEIRgE, imageE AJAol= AR modell 724G 5 Q& =, o]uf]o] AR model2]2 © 2 language
tokens HlopA] &8/ 0 & image tokenS LZ9F A

R odelT_‘Z AA 2 multimodalo 4] J5o] £17,
diffusion model 2T} W27 Z&gr 4~ QJckal &

Discriminative Models Generative Models

Vision Transformer (ViT)

ass

gxrﬁ O 2 9 e 5

= Head N

3 Autoregressive Transformer

Transformer Encoder

=N

Lme.:r ijeumn uf Hal(::ned the

...F il il next token prediction
ma:%lilﬂ#%!iﬁﬂ] e 1 e o b b

loss loss loss loss loss loss

Visual Tokens

ViT: visual tokens — class labels Autoregressive Models: class labels — visual tokens

AR modelo]A] image tokenS Aol= HIHL ofgfol Zro] gr7fx]2 EREeF 4~ Qle. = 4]
F= Yolo] BE FE tokeng HZXolAL, 5 FE29] tokens H =5 A0 o2 tokensS
T °7 2. o] BE oFE tokenS B ZZ5I= AL memory bounded?ld], £ HE S X5}
HAZ FEoHe AR memoryE © AT

(a) AR, raster order Related to LLMs

,rrj.—;:,;}\

(b) AR, random order

(c) Masked AR Related to masked
e %i\mage modeling / MAE

known/predicted to predict at this step unknown

2. Vector Quantization

Vector Quantization(VQ)& k-means-based quantizationZ} FAFeH], o] &
o]. AR modelo] A= image tokeno] gl A4 o] VQE A-&%F.

lanugageof A=]2 H]o]E] O] F-F (vocabulary)7F o] {4 0 &2 117 o] QT imageo A= 2 pizel
9] ZFo] A==l o]of et languageoi] H] 5] image”Z} supervised learmngO] o] & vector quantiza-
tzon— AF-g5FH image tokens discretes}A] H2l5Fo] language2} imageS ZF 411 generative model

SF A&] ©
= 7 T Us

We] w2 Z gk Y

VQOoJ A= k-means-based quantizationI} J-AFeF BFA] © 2 codebook-S Al-gsfFo] HIE] THY 2 quanti-
zation®. =, HE[o] tfgt ¢lIA go]ElZ FE9) o] mlat image tokenE AYol= Y2 of
olE2E Y= Zglo] .

97

Continuous image patches / visual tokens

. codebook
=] Bt 1 s
- €€ v
encoder v e decoder !
z Ze encoder decoder g q ecode z
z

Discrete visual tokens
(elements in the VQ codebook)

Closest vector index

N

Closest centroid index

centroids

custer | 1| 1 | 0 [3 n
> o3 |1 |0 n
3 1 2 2 E
weights cluster index .
(32-bit float) (2-bit int) Continuous tokens Codebook Vectors
Scalar (K means) quantization in Deep Compression Vector (K means) quantization in AR generation

3. VAR
VAR(Visual Autoregressive Modeling)2 image A4S 9]¢ AR model Y.

VAROJ A= VQE &-§5l1l, ofeflof Zro] 5pLtO] token © =R E] A|Zlof mff ¢]Zeg/nfct 71 2715 &
71 tokeng e =, GGt tokensS Y o2 YOH o EE J)49] tokeno] &8 H. o] mpef
attention masko]] 2[eF attention mapo] £12Fg o] ofr]ef ALZFe 5o ook HQFo] H. FA[of of 2] 7j2]
tokens AGSLE2 2 memory boundedo] 4] Blo]H.

Stage 1: Training multi-scale VQVAE on images
(to provide the ground truth for training Stage 2)

VAE encoding Multi-scale quantization & Embedding Decoding

Stage 2: Training VAR transformer on tokens
(/5] means a start token with condition information)

VAR Transformer (causal)

-—

L= L b,
151 ie1(1)(2)(3) ()} e2 (1) ~ (8) (9]
word embedding and up-interpolation

3 ! o i I b
n O OO0 eizez-1

98

AP UAE imagels 4H0] B2 GASHAE o]e discrete tokenizeris FAZF g, YA image
£ 1l YeE7}] 2. HARTE of8 ekt 7.

5.4.2. HART

HART(Hybrid Autoregressive Transformer). diffusion model-S oF&¢l o] % a]gFct.

6. GAN, Video, Point Cloud

domain specific 7|HEo] dishA A HHEHA} o]H domainEL computation H]-8©] 311, redundancy”}
oo 0 2 efficiency ZHo|A Q] /fAdo] Q3T

6.1. Efficient GAN
6.1.1. GAN

1. GAN

GAN(Generative Adversarial Network)S t]o]E]E AAS= generator?], XA fjo]El2} A E o]
o]l & FHlE discriminator?F ZFYSFH SFEEl= generative model]. 2 image generationof A
Bo] AFEELT 3

FAHH o2 GANL ofgjo} e A ZE 71F]. o]a discriminator= SF& AJoJO9F A& E] 11, inference
Rlofl= generator®F AF§gF. o]of mraf GANO| ol compressionS generatoro] Z-&-3FA] H.

Real images Sample L.
Nor training only
Discriminator
/ :
Sample
G
For inference

(what we need to speed up)

sso|
Jojeuwiosiq

Random input
ss0|
Jojesauan

GANL gFo]z]al, o]& generative model:2 model size, computation 52 ZHoJA] H]-go] F.
ofell Tef compressiong 3 A-gsH= Aol FAE

2. Loss Function

GANZE] loss function:S o2} 5. of7]oJA] 2= random input(noise)©]1l, xi= real image . F ot
0= generatorQ] parametero]il, ¢+ discriminatorQ] parameterd]. A flo]E= 1S label2, 7}A}
gloJEl= 08 label 2 $}. =, generatori= D(G(2))7F 19] ZF7FY R =2 (real image 2 THE[E2) oF4
E] 1, discriminators D(x)7F 19]] ZI7FY]2 D(G(2))E 09]] ZF7FYR 22 (P HS grEE 2) 5F455.

mein m(?x E,log(D(z)) + E. log(1 — D(G(2)))

olmf discriminator2} generator= HZo} 7} z}z} uf=2 2] Z]51E.
3. Conditional vs. Unconditional

GANL conditional GANZI unconditional GANC 2 FLEE £ Q]2

Unconditional GAN-E generatoro]] ¢Jg o2 Y= ZFo] random noise?]l GANQ. BFH Conditional
GAN-2 generator2} discriminator ZFZFoll 92 gjo]g] 2l A sjgt Hjo] el of tigF condition(label 5)
= Aok= GANY.

99

olof] HHEE AL unconditional GAN©O] 1, conditional GANS ool 2+ FZZE 715
H

INPUT OUTPUT

Yreal

L Discriminator }‘—b ¥

|
Generator Xfake

Yfake

6.1.2. GAN Compression

GAN CompressionS oFgl|eF Zro] 37FZ] lossE ARl e 4~ Q2. o]& E3J generatore] Z}
channelS Z43] prunegh.

reconstruction loss— TJo]E]7} paz'Tedol e Hgulo] vl WE, unpairedQ] 7F-E teacher modelzl9]
H] W& pizel-wiseS}FA] A4FSFE loss Q. distillation loss= teacher2} student AFo]ofl tjoF distillation-S
OISF loss2, o]mff student= pruningS -G o H 2 7 xFglo] Gaf Hl i A]of linear projection(fy)
£ A& S ¢cGAN(conditional GAN) loss+= studento] tfjeF GAN loss ¥l

2} layerg Hupt}l pruning@x|= NASO] 7]H& -2 generatoro] 2} layero] o3t prunings 212}
ez & vdEE of 2] 7 FH]et 7, FE o] vdE Ao} fine-tuningehtal gt

@ﬁ@@@jg,
B

Y? EZU V?L,-u

Super Studer
With Channel Configus
Reconstruction Loss Distillation Loss cGAN Loss
G(x) -y paired ¢cGANs
:{HU(:;~‘(/IH’(P)H :mpuixul ¢GANs Laisin = Z”‘A“ — (G @) Leaan = Eq yllog D(x,)] + Eq[log(1 — D(x, G(x)))]

Training Objective
L(x) = LGAN(T) + AreconLrecon () + Adistin Laistin ()

6.1.3. AnyCost GAN

1. AnyCost GAN

AnyCost GANE image A4 Aloj] $4 O 74L& GANES &-§3df
= previews 4-gofal, o]¢ FALE GANS 8o T #%%
editing model 9.

clofst esolutz’onﬂ]- channel 7]
o1 JAAISEE interactive image

GANE image editingo]] AF§2 = U5 o2} 77"3] input imageZS latent space2l= &7F] projection
5}1l, 0] o] HIE]-E generatoro]] Y olA] imageS A Sl o]uf latent spacefA] 2] HIE] Z1-& XA 6o
images editd 5 U= 24 o]& model interactives}r] X 7)o Y2 aJcfil gf

100

w* = argming /(G(W),x)

generative model latent space =

input image

latent editing
with user input

AnyCost GANOIJAl= © F2 resolutions3} channel 55 X]Yol= 7}H2 GAN(light-cost GAN)
O 2 previewE AFoF1L, o] F edito] HEH HE GAN(full-cost GAN)E HZE A5 T&¢

low-cost fast, interactive preview G’(w’)
G’ preview
W= WoprAW % L

during editing

> consistent

idle time
latent editing
with user input A
full-cost slow, high-quality final G(w’)
G output

2. Training Light-cost GAN

AnyCost GANOJA] GG E]= light-cost GANE TFOFSF resolutiond} channel 745 A2l 4~ Q=
Shr . SIS resolution3} channelo] 245t W Ao TR

1) Different Resolutions

AnyCost GANOJ A= ZF resolutiono]] HeF image&
oJuj] B-E resolutionS-9f gjsf discriminatorE <
resolution= Doj] Al

2] o g2 AASIe] D(discriminator)o] AEgl

L=
o) - glofof 5k, B} Aol 95t dele

StyleGAN20JJ A= RO resolutionBFS Doj] AYsl22 of&] resolutionof Tl A5o] £X]

MSG-GANOJA = 9RF EZo]] ZZEE]= ZF resolutionS 2= Doj] AEsl=1], ZF resolutions0] A] =
FLx o2 ARIE DR Hso] WA GolF]. AnyCost GANS] BF]2 ZF resolutionof tfel &%

o2 FASISFE 2 computation H]-§o] W1l Hso] £2.

« StyleGAN2: feed only highest resolution * Ours: sampling-based multi-res

better FID! compared to single-resolution models

Resolution 1024 512 256 128 64 32

Single-resolution 3.25 4.17 376 4.04 332 241
MSG-GAN [41] - - 479 634 27 3.04

Ours (low res) - - 349 326 252 218
Ours (high res) 299 308 335 398 - -

ol 7]oflA] FID= AA] imageol 474 image AFo] €] #]2] ¢l

2) Different Channel Numbers

AnyCost GANOJ A= channel =& Z-&G o2 AZslo] gf&5¢l o]nf tha3] 5FLFO] D7F B-E subset
& Aglofe5 opH YR subseto A Y5 op7F BAYslE=T], ofgflef Zro] Doj generator configu-
ration(resolution, channel 5~ 5)& ZFY3sfo] o]5 Jj#er 4 Q2. oje} Z-e 25 Z-&3F DE
G-conditioned Discriminator2f1l F.

101

G-conditioned
discriminator
5 W FC

modulate v
be]
Pl &
w2
(]

—|8C1x8CI

RSN
R

[Gw) =]

6.1.4. Data-efficient GAN : Differentiable Augmentation

Differentiable Augmentation2 GANO| thall 4] D/G R =2} real/fake image HF9 data augmentation
2 .83k= 7)Y,

GAN2 5 Ho]E7} 220 39 overfittingo] BASHo] 0] 325 HolF. Hlo]el 7} REalw
data augmentations 2§35l overfittingS BRI = Q=0 GANOJAI= real image2} fake image”}
grgrjng n=2 zF 735l augmentations AFE-SHOF &F.

real image@} fake image 5= real image9l|2F data augmentation(7]o) A= g T)E Z-g51H o] A
H real image& EFAS) generated image”}F A A 2= EA7F AHATSF E6F D_Q]- G= DO]] s A2 (D
oF G= Hlghop 71 w2 F A3 B 2.) augmentations 2§l Sf5A|7]H GojAl+= &0 ol
g AFo] BRAJGE

o]ofl wla} differentiable augmentationof A= real/fake image =), 128]37 D2} G EFof augmenta-
tions g8l o]uf data augmentation © 2= 7]E imagel] S HZ o], shifto]1l, YEE A AslE=
=o] 7L L3}

Augment reals + fakes for both D and G fakes reals

dat
s TN D) ﬁ
______________ M AP B Color Color
- —I(GE) D(T(G(2)))
: |Translation Translation
update

— D(T(G(2))) E
z= -’. _T:(_C_; (z_)_);,-r H iCutout Cutout

6.2. Efficient Video Understanding

video understanding-2 cloud9} edge 2 5ol 4] % Q3$F domain®. video understanding?] E%-2 temporal
modelingo] Ea3tth= A Y. 5, AIZFA Q] contextZ} HrGE|ojof ou] m}eto] 71538t E3 redundancy”}
wo 2 efficiencys /AT 4 IS

6.2.1. CNN for Video Understanding

CNN-E &-g35F video understanding= roFH L.

1. 2D CNN
video understandingo]] 2D CNNE o 2] 7}z] gf] o 2 grgst 4~ 9l2 oju] 2D CNN-E computation
Mol ML Heke GHo] AT, Aol WA HHE & Weeld 2ol 59 B0 UL

= 1

102

1) ©< aggregation
ZF frameo]] CNNS &

oo
&
dn
I
B
S
o
)
Qlr
=
R
£
A
]
~
FI r
%
E

temporal information< HrYs}z] 2ol 50| H2.

Parallel Bars

Aggregate scores

2) two stream method

spatial streamI} temporal stream-S E-g3) ZF frame@ 2 = 2|ol= HFH].

spatial streamO A= Gt AJFO] I frameS AFE3] CNNOzZ FI7FF 9ol za]& 5}, temporal
stream O A]= g A o)l OfsF optical flowE A3 CNNOo 2 X 7HH <l X2l & &F. Optical Flow=
2} pielol] s H12 RS frameol 4] o WO 2 o FIH=xIo] et HEIY. 212Fe] streame])

HRAFS g5t F] o] streamS> Z9}FaF.

optical flows FZ5F= Hof] computation H]-§o] Ho] Eolzickal &

“

Frame t Frame t+1 dense optical flow horizontal vertical
component component

Spatial stream ConvNet

convi || conv2 || conv3 || conv4 || conv5 || fullé fullz
TxTx96 ||5x5x256 || 3x3x512 | 3x3x512 | 3x3x512 || 4096 2048
stride 2 || stride 2 || stride 1 || stride 1 || stride 1 || dropout || dropout
norm. norm. pool 2x2
pool 2x2 | | pool 2x2

Temporal stream ConvNet

convi || conv2 || conv3 || conv4 || conv5 || fullé full? fti
Tx7x96 [|5x5x256 || 3x3x512 || 3x3x512 || 3x3x512 || 4096 2048
| stride 2 || stride 2 || stride 1 || stride 1 || stride 1 || dropout || dropout
| norm. || pool 2x2 pool 2x2
video | multiframe | ;00000
| optical flow

3) CNN and Post-fusion
2z} frameo]] CNN-& 2]-§-31 5] post-fusion(LSTM 5) 7]H-S AM&3 JEHE Fgel

CNNE gl H 7 288 £952 2 high level?t JYE T low level informationS FA]H.

103

Activity Recognition
Sequences in the Input

2. 83D CNN
frame Hof 3D tjoJE] (JYF o 2= 4D HlojE)& gt F 3D CNN& ZEdl= A2 video
o] o

understandingS 5HE 5 U2

O : =
e f’ E & -
H 3 L H d<L
output tput K
w

L t output

H

w
(a) 20 convolution (b) 20 convolution on multiple frames. (€) 3D convolution

oluf 3D CNN-& t©] HEE parameterZ} E Q9+, 18D(Inflated 3D ConvNet)oJ A= pre-trained 2D
CNN(ez. ImageNet)2] weightE 7} 9} thad] HHE(EAL)GFo] 3D CNNOJ kernels Z7]3}g}. o]&
inflationo]2f17 &F.

3D CNN-& spatiotemporal informations oF Hloj] 2]2]5F1, low/middle/high informationS 2= 2
25 = QXI5 model size, computation =HojJA] H]-go] 2 Z,

6.2.2. TSM

1. TSM

TSM(Temporal Shift Module)-& X|ZF 31€19]1419] frameZ} channel H]o] €] shift £ 2D CNNgHZ-
Hl-g0 &2 3D CNNBFE9] accuracy 452 e 714 Y.

7]&2] pre-trained CNN& -89 5 911, W3] shifishe Ao]BE HI9] computationo]t} pa-
rameter2] AR §lo] temporal modeling©] 7} gF.

ojuf dufL} shiftst A Q1R hyperparameterz A el 12 A A shiftolH FJH 27} ZF o] F =] 3]
ok v, 1R mro] shiftst & AlGof tiet HJHIF EEsF.

TSM-& & o] T3}, online/offline task HFof tsf 7]&9Q] I3D 55 &-gol= A HLF =2
accuracy, T2 latency, 352 throughput, 2:- power, 2 1/0 B GPU communication B 2.

2. Bidirectional vs. Unidirectional
TSME bidirectional TSMI} unidirectional TSM O 2 L},

1) Bidirectional TSM
Bidirectional TSME offline tasko]] Tl TSM O 2, ¥} A9 njgjo] HH HE-2 &2}

ofuf shift ¢1&te]l o) W o} mpx|ok o} 4 5 G, bypass layero] <5 BAFE.

104

Feature Map

2) Unidirecitonal TSM
unidirecitonal TSM-2 online(real-time) taskof] tjer TSM O 2, ¥A 9] FH kS grgok

o] AlF 2] glo]E]E memoryol =1 -8k

)i 4 e
Cached in :

Feature Wy
Replnﬂ oul.. iE Repl:

L

6.3. Efficient Point Cloud Understanding

3D Point cloud 3D sensor 522 235t 321 pointE2] HAFO 2, ZF point= EF AL feature
2 714, o]u] 3D E1+2 EASKE 72 IS Voxelo]ehal FH2DAIS] pixelzh H-gH.). point cloudi=
B745] 1. sparsestil(EA417F fle A2 point7h GleB =), 2. irregular?H(GPU A4to| A= &2 o)1

regulartA] 145 Po]E 7} §2I3k). Ea ol VR/AR 7]7|U A58 52 5 ela2rt AR edgo
deviceol] %2 AH8. olo] uhet efficiency} & 32 ® Z]4o] Wa g

6.3.1. PVCNN/SPVCNN

1. PVCNN
PVCNN(Point-vorel CNN)2 vozel branch?} point branch& X-F &3 point cloud understanding
o 2= model?)].

PVCNN£ computation overhead”} 211, O W2 HA =L accuracyS HQIck1l &

PVCNNOJA]E= vozel branch2l point branchS AF&8F. vozel brancholAl= BAo] H-L HEo] 7k2x]
7, point branchof A= & F2o] ZRErh g

1) Vozxel Branch

Voxel BranchoA&= pointZof tieF vozelization(3d F7FS o] gradeQ] vozel2 g&.)S e F
3D convolutiong Z]-§5]1, CFA] devozelizationS 53¢l ofg] T o)X= 2D2 EEEYX]eF A4
2= 3D¢.

vozel branchi= point-wisedt FRFO H]&l reqularity”}F =of O efficients}1l, Q14 3F point7]e] HHE
SrotES 9k

2) Point Branch

Point BranchollA]& point-wise$F MLPE AF-§-%F.

point branchol A= 2 Hlo]E]7F 7k pointo] gt resolutionS 2]}, vowelizationo] oJg B

pa
A o o] &
&85 %

105

Voxel-Based Feature Aggregation (Coarse-Grained)

b Voxelize Convolve Devoxelize
—_— —_— —_—

I Normalize l Fuse

Point-Based Feature Transformation (Fine-Grained)

2. SPVCNN

SPVCNN(Sparse PVCNN)-Z sparsityE 11 2]s)] 7]&2] PVCNNoJA] efficiencyE 7J413F model$).
7]&8] PVCNNOJ A= vozelizationo] 2Jeh Y1 &go] g ~ Qli=g], SPVONNZ vozelizationof
ik resolutions 2 43s] =of o]Z eFofar —/F Akl ot

A 0]
= =
SAL NASE 549 qA e At e o A P LB el

=

. Sparse Sparse Sparse
. Voxelize Convolve Devoxelize
_— _—

—_— Multi-Layer Perceptron

6.3.2. BEVFusion

Camera Feat. Task-Specitic Heads
(in BEV)

T
———
> > > @ > —_—
Dense M ——-—-M.I
Camera ~ Camera Camera-to-BEV ~,
Encoder Features View Transform e [> 22
Multi-View RGB Images il

_BEV Fused BEV

7 Encoder Features
sourse [NER- - =)

LIDAR LD, Flat LIDAR Feat.
Ercotsr Fontorss (along z-ais) (in BEV)

3D Obiect Detection

LIiDAR Point Cloud

106

