AFAs 712

Lee Jun Hyeok (wnsx0000@Qgmail.com)

April 28, 2025

2 Tensor
2.1 Tensoro e e e
2.2 Tensor Manipulation

3 Regression&Classification
3.1 Linear Regression L e e
3.2 Classification e e
3.3 Linear Layer e

II DL

1 DL
1.1 DL . oo e
1.2 A S e
2 DL #d J3A}
2.1 SEE HOoEAT A L
2.2 Learning Rate L
2.3 Optimizer e
2.4 Overfitting o e
2.5 Normalization e
2.6 Weight Initialization L L
2.7 AOF e

3 CNN
3.1 Convolution&Pooling L
3.2 CONN . . e
3.3 Advanced CNN e e e

4 RNN
4.1 RNN . . e e
4.2 RNN A GlA] ..
4.3 Seq2Seq . . .o e e

5 Transformer

5.1
5.2
5.3

Attention Mechanism L
Transformer e e e e e e e
Transformer®] B8 L

I 7]et

1 7
1.1
1.2
1.3
1.4
L5
1.6
1.7
1.8

Z16f pytorch T 2] . . . L L e
torchviSion e e
VISAOI
Docker
oo BH e
ZIEF DL I -8 . . . e
Linear Algebra e
e L =

60
60
62
68

Part I
ML

1. ML

1.1. ML

1.1.1. ML
1. ML
ML (Machine Learning)S Zz2IdHo] AE-L Eof st&olo] Exfo] Yol ma 7% T oua]
Z9.
Yol ZEIGo AGEL § 22T (Baplicit Progrumming o 412) A7)
RE Foo ojgt S22 A ook, o] F-e BE F-eof gt FIL [FeJslI]E olafg,
SR N

MLOJA] 7FE (Hypothesis):& R Eo] Q] elzko] the Zelzke Aktol7] 9l AF&oH 5814 g B
AR z2477-07

MLoJA] Epochi= A glo]E]E g-§a] ol&3et e I+5 Zofil(blo]g A et vl7]), Batch size
oF Hloj] sf5oh= 9, IterationsS batchTFg &6l ey

a
= O
MLOJA] featurel= 2] | Z5}el ZHE HHoHe EHOZ, tensorc]4]9] 2F W-E o]n]gh

MLojA 9] k52 dlo|8E & BEAE /Y W 2 ofohs v Y. olae A =ols, A =ots,

oy Koy e H = A o
BepoE0R BRT 5 UL

2. X LolE

)52 51 (Supervised Learning)e Y50l ZASH= Ho]ElE ALGIHE 314-0 2, MLoJAS] 71 £

Sl GE Q). X 8F5oll= regression, binary classification, multi-label classification 5©] ¢-=.

Regression> g3} &8 glo)] oj?t #AIE ZE Pl 5ok ZAY. regressions Tol= &

I E]&0 2L linear regression 50] =

Classification- H[OJE|7} AR ol E-7E]o] & w(label(YH) =) ofH d]o]E]7} o] BA] E75 o]

oF sl=A]& 14":}0]'1_ ZAY. classifications TFol= il 2]Z 0 2= logical regression 0] Y=

classification == class(label)ZF 27§91 Z1-& binary regression®]2F 13, oJ&] 79l ZS multinomial

classificationo]2F 11 3}

3. H| R L8k

A0} (Unsupervised Leaning)-2 J5lo] ZA45H3] g dlo] el AFgohe ohrel. WA= 0l ge]
L= clustering, dimension reduction 50| <.

clustering:e- o E]7F AP o] -7 E]o] Q17| gf5 o Hlo]H &S E7ol= A Y.

2. Tensor

2.1. Tensor

2.1.1. Tensor

1. Tensor
Tensor(HIA])= thapel W ds dwtafet g 9.

tensor<] 21212 o5t }a}e] W Qo] ARz Z17He] Zg ojnjalit, AH](%)9] Zj4-= Ranka} L §

Q)
Nl

12} tensors= Vector(¥E]), 221 tensor+= Matriz(@d)ell B-&. xFglo] gl slifo] Zraks 7
X = tensor+= Scalar(AZFef) 2l 2.

ML A= tensore] JE| 2 Hjo]E]E 2]}
2. Tensor Shape Convention

tensore] shape2 tensoro] 7 A2lo] tht HojElo] 229} Z7JE Wk tensor t9] shaped [t 2
Hrlgl1, 1 g2 Ao 2 e,

pytorchofA] tensorE t}E W thAl2 x}{lof upal ofgloF 22 convention© 2 shapeS LFEFH.

1) 2214 tensor
22}¢] tensor+= shape= |t| = (batch size, dim) 2 HZ]gF. o]uf] batch sizeZ} A&, dimo] 7FZ .

.

Lot
G2l

\

\ A,nﬂ-
2) 3z} tensor(NLP)

NLPoJJA AF&5H= 321 tensors shaped |t| = (batch size, length, dim)©.2 FE7]3F. olufl batch size
ZF A2, length7} 712, dimo] Zlo] Y.

NLPoJJA= 2} ¢lo] & 2] 2]51a 2, batch sizels SLF0] BRH(EL =]2] t+9)& LFEFL, lengthis £
B3O HFFHL o] (EL EZ)O] HFE, dimE EY HolE YeHd. £, 9]o4] B o] 51Lfe]
Hol sfito] & L.

——

((}\m /

B[,do\'\
S:2¢

N

\ [.«zv\aj’/,/l /

3) 42 tensor(computer vision)
conputer visionOA] AF86l= 4R tensor+= channels firstQl Z-22l channels lastQ] Z-2of u}zf
shapeo] CIE.

Channels First?] -2 shapes |t| = (batch size, width, height, channels) 2 FZ]&F. o]of width7}F A
2, height7} 7F2, channels?F Zlo]Q]. o] -2 ZF channelof gjgl Ho] ZkzF Zaf5l= Ho 2 AJzfsh =
Q2. majQ]ej o] wiaf channels firstE AFESF7]| I SF1l channels lastE AF&SF7] = k=1, pytorch
= channels firstS AFE-gF.

Channles LastQl 7% shapeS |t| = (batch size, channels, width, height) 2 FH7]&F. o]mf channels?}
MZ, width7} 712, height7} Z10] 9.

oJn| Rz ZFE O} 22 9IRE HEHESFEE, batch sizes= ZF o] A]XE LEFY 17, width®} height= o5
o[n|z]e] Z}2 9} A Z2E, channelsi= H|OJE o] X'd >(ex. RGBO]H 3)& LIEFH.

22 50 o]n] 3|9} Zo] channelso] SHL}el §2 33HH tensorE AHEEFE L.

Color channels [

b

Height

Samples

Y
Width

= tensor = —’Fi Hos Eﬂ 04“10}7%1 | B o AT, of7]o| A= Deed] HlolH 9 e AR ol
2t A= o7t o5
tensorg thE W= 1 shapes ;é'l- mtetst= o] Fa et

2.2. Tensor Manipulation

2.2.1. Pytorch

Pytorch= facebookol] A 7HEer @ Z4A Hajy ma]e]e]z9].

2 g7 pytorchs 7]HFO 2 &F.

2.2.2. Tensor Manipulation

pytorchs &-§aofo] ofalel Zro] tensorg e & U5
1. 44 9 JH Fol

ofels} Zo] tensorE A1, Al /shapes SHoITH

P

A
T
tensore= [ol Al E2]3 o] (a1, a2, -+, an) O|BFH a1 94 an, A2 71 HPEE A7 E O

7P L] A7
tensort=: L] AR GG 7D 5 4. oFE A2FY 4 FYIY AFo2 FUPE

AR [¢]
zeros() ol requires_grad=TrueE 522 X5l gradient A{Fof] AFEEF tensorE AJFJE = Y

Oo

= -

= torch.Tensor(2, 3, 5) # (2, 3, 52| tensor MM

= torch.Tensor([[1, 2, 3], [4, 5, 6]]) # Z2Z tensor M4

= torch.FloatTensor([[1, 2, 3], [4, 5, 6]]) # float tensor A4AM
= torch.LongTensor([[1, 2, 3], [4, 5, 6]]) # tensor 444

= torch.BoolTensor([True, False, False]) # tensor M

= torch.zeros(2, 3, 4) # 2x3x4, 022 X tensor AHM

= torch.ones(2, 3, 4) # 2x3x4, 1=& {2 tensor M

= torch.empty(2, 3, 4) # 2x3x4, Z7|SIE|Z| %42 tensor MY

= torch.arange(0, 10) # 0~9. HE| /2= tensor MY

= torch.eye(4) # 4x4, CIQ| HH M

¢ c t t ot o o F o

t.dim() # rank
t.size() # shape
t.shape # shape

ofels} Zo] AlEy Wl SefolYste] 5 S FEY 4 . ol FHH AT tensord).
o © = A
= t =

[l IEAE Hste] Yag FEY 5 UL Eeh UL tensort} -5 A43ho] Zefol g &
a8

=2 tensorS Q|22 A5Pel e 91719] ghol 2ol Hpolut £E% tensore] T GRS
a5 oG tensors] gl W Ak R T ATE {=2lq tensorZ PEISH=T], o]F dlEAE
2R} =

~1 O i

CEEEL %*t %i,u_f—g— 253 4 919 O] E boolean maskingo]2} 1 .
o

OIA(EG}), stop= T2 AGA(H2]), step= &

AR
= start:stop:step Z2 ZFYoh=d], start= AJZF Q1
12 Z]H. start/stop g A efFopH AJ2H/E zlo &

2ol ZHA 9. start.stopai ZFgoIE stepS 12
A7YH. start/stop L2 5] 5 AAJSHH FoJAFE HEgk T H.L. O-based QIHAE A&
opE 2, AFAAGA o] FUIginkg oF T FZ o]gop P47k HEH

TTA
chrl T A C Y G ¥ & A
| | | | | | |
1-based 1 2 3 4 5 6 7
0-based 0 1 2 3 4 5 6 7
1-based 0-based

Indicate a deletion chr1:5-5 T/- chr1:4-5 T/-
Indicate an insertion chr1:3-4 -/TTA chr1:3-3 -/TTA

t = torch.FloatTensor([[1, 2, 3], [4, 5, 61]) # tensor M

t[o] # [1, 2, 3]

t[:, t > 4]
t[:, [0, 2]]
t[1,2]

t[:, 1:3]
t[:, ::2]

3. broadcasting
Broadcasting2 A2 37|17} O}E = tensorE ¢4FeF o tensorl] F7]7F X502 XZYEE 759

54, WY, He FH 52 +AY 0 e Fo] 2 Hoz 277 RHF. ofuf e Fo Ee]
22 BApslel 9E. Aelo] 8] gho vl Aelo] SoJH. 53] scalars F-Ge e Lt
28T+ UL

vector + scalar

ml = torch.tensor([1, 2])
m2 = torch.tensor(3)

rst = ml + m2

vector + vector

ml = torch.tensor([[1, 2]]1) # (1, 2)

m2 = torch.tensor([[2], [3]]1) # (2, 1)

rst = ml + m2 # = Cf (2, 222 SO{L} ALtE

= broadcastingo] A& 22 FPE O] x| gk BITF s = le B2 Fo5l= Flo] F5.

4. &4

9

lensor 7] *2 ALISAL mul() vl 4 EE A5 A7} R EE 2l47]20] e o] 3-9F.
matmul() HIAEE AF§olH dE Fo] = H.
b 98 FHL 2717} DA e A5 broadeastingo] +Y5I5, FF FoA] 2717} B g

eEre] o 27F H.

ml = torch.tensor([[1, 2]]1) # (1, 2)
m2 = torch.tensor([[2], [3]]1) # (2, 1)
ml.mul (m2) # Gt AAE =

ml * m2 # G A =

ml.matmul (m2) # ml * m2 SHE &

5. 7|2 AZF

B, /2=, FA 55 AR 7 A5 QIRF dim& 2] FoFR] GFoH A o] g of His AliFg}.
1) mean()

mean() 2.2 H7-g AT 5 L. o) mean()-2 F tensoro] A& AES] oz} WA
Ueol TfSfAEE AR - U2, T S5k dime 2| §obo] ol A8l o Hat-2 ALTAE
21 = SIS A& 501, (2, 3)¥ o dim=00]H F, dim=10]H &, dim=-10]H(FoJ+FE 4) &
ol ool Hzs ALE FLE D AAEENAE dimS AT o FY P A4t B

t = torch.tensor([[1, 2], [3, 411)
t.mean()
t.mean(dim=1)

2) sum()
()02 GAF AR 7 4L mean()7 U LeI2 dimg A FoIo) ARG 7 4.

t.sum()
t.sum(dim=1)

3) maz()
maz() 2 HAZS, argmaz()2 X HlgE] QIEIAE S = QIS mean()ZF SY Y E dimE]
Hojel Ae 3 gl mas()E ABoHE Hehgkman) 7} HAZE] AL (arymas)7} B AH}
BFSFE] 17, argmaz() H|AEE AFS-SFH o] lEjAnks HhelHks

4>
X
EI

t.max(dim=1)
t.argmax ()

6. +X HE

tensore] EXE BgF &~ 9l e,

1) view()

view() 2 shapeS 275} tensors G shape Q2 WS 5= QI ouff -1:& XY} dlig HEofl=
77} AFEo R Y.

ofuf FHAE Ao 59 Fo] 7]E 5 Fu FLeho . -10] EAeTHA }2 +52]

Fo| 7]& 52| #9) oF0]oF 7

t = torch.tensor([[[1, 2, 2], [3, 4, 211, [[3, 1, 11, [2, 3, 5]11]) # (2, 2, 3)
t.view([-1, 3]1) # (4, 3)22 izt

2) squeeze()

squeeze()2 2149] A2} 149 IS Qo % WET 5 g,] A7) 1folE g 2Helo]
EA5H] Qe AT 727} ChEA] GRS, dimE XFHE g 2Hele] 4] A 1Y) s
AFelerE X?’] A4l

~—
O:
[¢)

t = torch.tensor([[[1, 2, 2], [3, 4, 2111) # (1, 2, 3)
t.squeeze() # (2, 3)

t.squeeze(dim=0) # (2, 3)

t.squeeze(dim=2) # (1, 2, 3)

3) unsqueeze()
unsqueeze(}i= 5 9110 2] A7k 191 AL FHEE F, squeese()] B gL +Ah
ojuff ¢I1x}(dim) 2 A¢lS HFEA] x| g 5o} 3.

t = torch.temsor([[1, 2, 2], [3, 4, 2]1) # (2, 3)
t.unsqueeze(1) # (2, 1, 3)

7. Type casting
ofe2} 2] float(). long() 52| HLEE A-§5F0] tensoro] AEFS WHT 5 9IS,

1t = torch.LongTesor([1, 2, 3, 4])
1t = 1t.float() # floatl = HHSt
1t = 1t.long() # longl= HZ3t

8. Concatenate
o] tensors= {4 E (concatenate) 5 U5

1) cat()

cat()C.2 o2 tensors<& HEY
g} dim&] %5l o] HIgGFO 2 o
W3ja] 7] g, 2 2 =

& ¢IzFo] At tensor5S list Hi= tuple2 704 2
I E e = a, ZIEGS 09, o]uf tensor®] ranke

cal ()& AFGHA] SET B3] |2 5 tensor TP, cat() A 2F tensore] g5o] AgFo] Fo]
= Ao] ol e} 54 tensorE2 o] FHZ tensor7} HIElE.

t1 = torch.tensor([[1, 2], [3, 411)
t2 = torch.tensor([[5, 6], [7, 81])
cat([t1, t2]) # & W&ok A
cat((t1, t2)) # & W&ok A
cat([t1, t2], dim=1) # &

2) stack()

stack() 02 of & tensorg S + U5 dimS X|Fofo] o] HIGFo g2 XRG]2 z]FS & Qi

ZI2FRE 09 stack() €] %fo tensorE etz YIS Eb’ o agje g= Aoz olgig

s 5, FY A= Rpgo] Y&, o= ZF tensorE unsqueezeet F cat()ol= A2 & HeF
torch.stack([tl, t2, t3], dim=1) # & RSOz 42,
torch.cat([tl.unsqueeze(n), t2.unsqueeze(n), t3.unsqueeze(n)], dim=n)

9. Ones/Zeros

ofglo} Zro] £ tensor2} & Ul shapes ZIRHA] HE Zro] 00|} 191 tensorE g 4 9.

x = torch.tensor([[1, 2, 3], [4, 5, 6]1])
torch.ones_like(x) # 2= Zt0| 1
torch.zeros_like(x) # 2= 30| 0

10. In-place operation

In-place operation o}gf|9F Zro] WA= AlHzlo] i Zof 2 Bo] Al st mAEE Al-gs}H
HARF 25 71 HFSIZES offg tensoro] O = HEE HiQlok.

t1.mul (t2) # Gk AHA
tl.mul (t2) # @A & 7 BIEZES 10| HEZ e

ZF112 in-place operationS AF&slojals 7] & diFo] H]e)] 925t 452 o] o] 9Iz]
11. scatter()
o1} 219] scatter()5 AHa1o] tensore] g A1 HT A2 HUY + 8. R WA Sl ol

WFOE F UG AR, WA AR 71 AT FXG LR tensorE, A WA SAbol
ST 32 714 tensor & A3 of] = WS}] WA tensor] 2717} Flof 7

rr
§2,
mo

src = torch.tensor([[1, 2, 3], [4, 5, 6]1]1) # Y2

49
k=2 [=)
index = torch.tensor([[0, 1, 2], [2, 0, 1]1]1) # = YS L2

torch.zeros(2, 3).scatter_(1, index, src) # [[1., 2., 3.1, [5., 6., 4.1]

3. Regression& Classification

3.1. Linear Regression

3.1.1. Linear Regression

Linear Regression® 54 9} Shif o449 Zguis Apolo] ZAJohe 49 BAE 3= T,
simple/multivariate linear regression © 2 LF&E 4 Y=

1. Simple Linear Regression

Simple Linear Regression (5~ 8 2] 7)) = 9J2l(5 Wi+,)7} Z2l(E402, y) Aol o] T 713
2 gl Ao A Hd y=Wx+bE 2= regresswn‘”

simple linear regressionS multivariate linear regression®] EoF F-L2 Azlsk 4~ glonz FQ
-8 multivariate linear regression©] %2/ gk.

2. Multivariate Linear Regression
Multivariate Linear Regression(TFs{dE 5])= of 2] 79 & (W) 22 (FLH) 9] 7HA

713 & st 4] A y=Wizy + -+ Wz, + bE ZH= regression.

< ofefjet L5 wi= QO] batchE LEFU L Fo] ZF 15 LEYl= tensord. W(Weight)= o]
TE UYL Ho] 28 AFelS UEYl= tensor®. b(Bias) Hd] Tlof A= & tensord. y
o] Z} batchE eI Fo] Z8 PSS YEIHE tensord.

E

NN
e,

H(z)=zW+b

5. 74l

pytorcho A= o o] B © 2 single/multivariate linear regressions THE = =

1) Hele ge]

z, y ZFzFof oigl tensorE 3ol

OEERT

E%]ﬂh W—‘o’]' b ZJ'Z,"O]’] EH?_]' tensor% %I_Q]?Z" O]lI]] W_g']. b_]% gmdient% 75]]/,(_}'5]-0-‘] }:]Z—_,’_ﬁ]“_);_} Z{IO]EE
go] Al requires _grad="True 585 X4 &.

3) Cost Function A&}

cost functionS g2l ALFSF.

Cost(Loss)= R Eo] ez} Huprf 77k)& HE = 102, cost?} 0o 7P7he5 HE o] JHt
ZI7FE-. cost/lossE FEFYl= gF~& Cost/Loss Functiono]2}1l &F. linear regression2 cost function
o] & Fa3pohs FA(Wel b)& Ze FY Y.

linear regressionoj Al ofeflof Al AEer MSEE cost function© 2 A8t = 9l2.

e

gradient descentS YFE =5l cost7} X427 B2 WoF bE sh4 (X258l

import torch
import torch.optim as optim

x_train = torch.FloatTensor([[1, 2, 3], [3, 5, 6], [8, 9, 10]1)
y_train = torch.FloatTensor([[2], [4], [6]])

W
b

torch.zeros((3, 1), requires_grad=True)
torch.zeros(1, requires_grad=True)

optimizer = optim.SGD([W, b], 1r=0.01)

iter_epoch = 100

for epoch in range(l, iter_epoch + 1)
hypothesis = x_train.matmul(W) + b # HH F
cost = torch.mean((hypothesis - y_train) ** 2) # MSE

* [

optimizer.zero_grad()
cost.backward ()
optimizer.step()

3.1.2. MSE

linear regressiono A= MSE(Mean Squared Error, W A& 222 costE AR = QS o]&= e
o] ASFH(H (x;))2} AA] 7y)] Xl E Al&et Aol gieh B2, mije] ¢ /Z ezl disl oFz <]
sl 02 ARV 4= QIS =, ofg 9] =4]5 cost function 2 AFESF.

10

1 m
cost(W, b) E;

pytorchO AJ= torch.nn.functionalof] QI= mse_loss()E AFgeF + Q& =2, 224 tensordZak of

Yal 8z}l o] &k tensorof HaiAl = X_n,Lg_o] 713},
import torch.nn.functional as F

cost = F.mse_loss(predection, y_train) # O|&Zit AX| HZF 2

3.1.3. Gradient Descent

1. Gradient Descent

Gradient Descent(GD, Ao)L gFr2] 7] & 7] (HSS, gradient)E o] FHrF oz F A0l
A= AFE B . ofu] Bole SEHnE Ag]E ohe} Zo] EIF.

Oy

PG =VW

gradient descentofJAJ= cost functions]2k ZkzFo]l ool Sl Q2] (7]& W, b tfQ])oAo] H
98-8 7oh, AHE O Y 0t FE 2e ZES] Al W. wep 59 gel] BF g0l
oy Wk, Fojold 39 WHo2 ofEelA HE, W} bo thof - Sitap Hael Ay
©2 e, ol ak 3 W] UEHE of5E AUAE AL o] 5 (SolE S
FolA] =.), Step Size T Learning Rate(LR)2}17 F.

m

2
VW = > (Wai+b) = yi)ai, Waew : W = aVW

Vb= m Z((sz + b) - yi)’ brew : b—aVb

gradient descenti= X421 X FE Zh= Zlo] o[X[l AR o5 AJRFF 0 2 HE] ZF7RE =4 (local
minimum)& 5 &, FY HoF Fe= F2 oFH. EE cost function] ZF ol ajef gy F<
A7E FolE Ao| 5T = U
Hol23} chain rules {%’* ol o] & A2 ZrekspA] Ajket = QIS Sk Ao Hieh 415 2 of
(53] ZF S YE 2 082 P oF HEl.), chain rules AFS-S] B9t HyEof Hiof nEsHA
=,
2. ZE
o] FEZ LYY obeo} 22

W_gradient = 2 * torch.mean((W * x_train + b - y_train) * x_train)

b_gradient = 2 * torch.mean(W * x_train + b - y_train)

1r = 0.1

W -= 1r * W_gradient

b -= 1r * b_gradient
pytorchi= o] YL FANFE B5L AT ol o] G et WA LRE A H51]
optimizers YT 5, PEL T ge

3l gradient descentE 5= “”Q P

11

import torch.optim as optim
optimizer = optim.SGD([W, bl, 1r=0.15) # St&eh H40 1r R|H

cost = F.mse_loss(hypothesis, y_train) # cost function &9
optimizer.zero_grad() # ZI 40| TSt gradient Z/2 022 Z7|35}

cost.backward() # cost 7HZ1|°| dEE 2510 2t H" 01| CHSt gradientES A4t
optimizer.step() # optimizerQ| OE*_T‘_Eléoﬂ EE}E.} B 2|45 EHS)

AAANA Y cost fanction® A2 Bayaka 4@l 297} OB nlEstel 40l AHE 2]
©1g. olof wel AASLA AL v A4 Bel A4 AL AR 23, epoch7t ALASE

Aok ghe 2L 4 98

o]
_’1

3.2. Classification

3.2.1. One-hot Encoding

One-hot Vector= sFL}o] f40F 10]17, = 9] HE Q. ZF o] one-hot vectorQ] matrizS
one-hot matriz2F1l &F. One-hot EncodingS TJO]E]-E one-hot 02 HEISF= A Q. o] 2 HEY
blo]EE yErd o ALE-3)

pytorchol A= oFefe} o] B 2}z HHE ¥E HIo]EIS one-hot e Wghe £ 912, B4 2
z}¢l o] AFo] 4 tensord] EHOHH_]—E’— = one hot(),é,_) AFgS5F= Aol Halgf. O]EEH num__classes
2 B30 T (one hot W E] 9] 2}2l)E 2] ek

= -

torch.Tensor([3, 1, 2, 4, 5])
eye_matrix = torch.eye(len(y))
y_one_hot = eye_matrix[y.long() - 1]

g AESH|
import torch.nn.functional as F

y = torch.Tensor([[1, 2], [0, 111)
y_one_hot = F.one_hot(y, num_classes=3)

3.2.2. Logistic Regression

1. Logistic Regression

Logistic Regression2 binary classificationS 5~305l7] 95 linear regresswn_/] HFA] S %4?—537 gjo] E
(classification)of] Z-goF de]&9]. &g Y 271X HFE2 EEE 1, O] = BHEL o9f 12
7

A a]sFH, logistic regressionS T3] ZF batch® &8 x-o] 19 linear regression9] ZIFE sigmoid
2 A1g5l 03F 1 Aol WIEE A¢

2. 7F4

JHEL ofgflo} ZHS. Z]E linear regression] A HEIO] AHE sigmoid G0l Y& AHY.
Z(x)=aW +b, H(zx)= L
(v) =2W +0b, H(z)= 11 eZ@

sigmoid G-£ ofels} 2 NFE 7. Z, linear regression 749 GG 03} 1 Afo]e] FroE 1
£

12

Diminishing Gradient Zone

1

1+e™>

sigmoid e+ 2
oAl Al FH o] 0¥ FEE 7T SIS

3. 4% 34
A7 7 A (Decision Boundary)+ classificationo 4] 2} class®] ¥ 9 == FAQ. binary classifi-
catwnoﬂ/‘f" Z} classo]] tier gF&0] &5 ofttH H(x)=00] 57— 2ol B FAY.

logistic regression®] Ail= 2} fJo]E]E IFEFH YEPHS of 2 FA 7} H= oo HHAS
gre Aoz B £ s EJ'a7’5]'7775 W +b =09 XFE 7]FC2 fglo|g7F BE7E. o]uj logistic
regression-< lmear regression= 7|HF0 2 5}7] gjRof floJEl7F A o2 BELx] gfom] 235F

Pase Kel
T s

1
o e —— 7} gl EM
ho(x) 1 + e~ t0x+0:x) 0.5 7t

29| DAL H
X,

4. Cost Function
ofefo] Z+e 218 cost function @ 22 A-§ ¢} o]-F BCE(Binary Cross Entropy)2til 9]

O]
Rl

cost(W, b) ZC

C(H(z),y) = —ylog(H (x)) — (1 — y)(log(1 — H(x)))

é, Zt glo]el o] Tjja ol CO] gk& o] Fu-s |. olm] ot C= ofefj o] 415 ZHdstA Lerd

0], y=1¢ wf= —log(x)E AF&dlo] 7FH2] gFo] 19 7/177%54—% 00 717k #& Prelol =
oh y=0% = —log(l — x) & AFE-SLo] ZFH 9] Zlo] 09 7p7Fs5 09 772 #b& vrelole =
st A9,

| —log(H(x)) if y=1
C(H(x),y) = {log(l — H(x)) if y=0

13

Log Loss Function for Logistic Regression

— Loss when y=1
— Loss wheny 0

0.‘0 0.‘2 04 0 6 0.‘8 1:0

& 7R gj{l MSEE cost function© 2 AE-SLH sigmoido] ©Js 1 7]g-S w3to] H=2 7}
=, gradient descent 58 X]of] ZZSIX] AL local minimum O 2 XXl 4 ¢l-2.

A& & ok YA torcholl A AlEol= & AFEE Qs

cost = (-1) * torch.mean(y_data * torch.log(hypothesis) +
(1 - y_train) * torch.log(l - hypothesis))

import torch.nn.functional as F
cost = F.binary_cross_entropy(hypothesis, y_train)

5. &9 34

ofgflo] 7} © 2 |ogistic regressions U er

1) Hoje] 2]
2@} y ZFZ}oj] gjol tensorE gl yrF 03} 18RS gho 2 J7}RIct= A2 A 2]5HH linear regressionif

L
e

2) md o]

2&7

4
To

B, W} b 247po] ot tensor ol ofu] WeF bE X Holg < AT nn Module2

ARgsto] BElg AMASH= Ao] ZFHSE sigmoid $F FESF torch.exp() 55 AFgsto] 2 ZYsh=

Z1H T} torch.sigmoid() F+ nn.Sigmoid classE AF5dl= Z o] J,l—_ = kT

3) Cost Function A&}

cost functions o5k ALFgl.

nES

linear regressioni} = 5}A] gradient descentE HHE 5~80510] cost7} R A7F E I E SFL5SF. optimizer
Ho

b o] At DR o7]olA AFFE e Al o

14

import torch

import torch.nn as nn

import torch.optim as optim
import torch.nn.functional as F

class MyLogisticModel (nn.Module)
def __init__(self)
super() .__init__Q)
self.linear = nn.Linear(2, 1)
self.sigmoid = nn.Sigmoid()
def forward(self, x)
return self.sigmoid(self.linear(x))

x_data = [[1, 21, [2, 31, [3, 11, [4, 31, [5, 3], [6, 211 # (6, 2)
x_train = torch.FloatTensor (x_data)

y_data = [[0], [0], [0], [11, [1], [11]1 # (6, 1)

y_train = torch.FloatTensor (y_data)

model = MyLogisticModel()

optimizer = optim.SGD(model.parameters(), lr=1)

nb_epochs 1000

for epoch in range(l, nb_epochs + 1)
hypothesis
hypothesis = model(x_train)

cost
cost = F.binary_cross_entropy(hypothesis, y_train)

learning
optimizer.zero_grad()
cost.backward()
optimizer.step()

3.2.3. Softmax Classification

1. Softmax Classiﬁcation
Softmaz Classification F= Multinomial Logistic Regression-— lagzstzc rf’gresswn Zolo] multi-
mmmhﬁwﬁmMm§4W%h;”7ﬂ§°7f,zﬁﬁooﬁfWJ 7.

softmaz classiﬁcationQJ ZIE f2l= of 2] ¥.9 binary classification= 4—5”0}—:_: A ofe] 7] B
ZF &4 g, 2F g 2 glfe Blgrof] £5}=x] £o}x] gl=X] ol sl binary classification< —’Fﬁog
2,7} wro] gt 29 BAS HERIL g Foke A9, ofe] mef W 2} Yo] e Hjgt

TFEAIE HE= mamﬂf .

15

C T

PKD‘F n’JC

A 2]5}H, softmax classificationS 6] ZF batch z}glo] o 2] 7 ¢l linear regressiono] HilE
softmarg AF§3 go] 10]37, 07} 1 Afol7} 55 HEeh A
2. Softmazx g

softmax classificationo A= sigmoid &= H] 4] softmaz gF
g5kl &2 sigmoid ITE /‘FQOHE 02} 1 AFo]o] 4~

o A1 [e]
?:]E T OJU

softmaz F olelS} 22 FAZ AV, ol 2} yak(H
21219] o] 03} 1 Afo¢l G2 ERT. = 7} yitel AT

m&
C
JSE

eYi
Si) =
J

(2.0 - —noi

w

e
\.o 4 So) = — -0.2
>/ Ze‘“ T
o - 2 o

S PROBABILITIES

SCoORES
E Yol A ol& HH A £ QIXITL pytorchol A Hlgk= Fsoftmax()2 ZHs] 7+ = 915
import torch.nn.functional as F

z = torch.FloatTensor([1, 2, 3])
hypothesis = F.softmax(z, dim=1)

3. 714
degrs zF 2 GA digt gl Y1, SOftmax %‘ée Al-gefo] Z} HEo] st gES dS.
=, softmax classifications2 Z} 077 oot oj}ketEE Tol= Zgolal, 7L ofefiof S

Z(x) =aW +0b, H(z)=S(Z(x))
4. Cost Function
cross-entropyS cost function O =2 A-§3F.

Cross-Entropy= = O]RFFEE I AXFo]o] QAMYS Alileto] costE HFalsl= HFA] o 2 oo} Zhe
412 717, AN = one-hot WEZ PHH FEY. i ofEgEo2, 7 gho] Y] tiet oHE

B2 AN WE Y. N T Al okdle] #4e Bl 2 ¥E ¥ ke 29

Y l-0
o.2| D IL):—Z‘;LL ?a%() 0.0

cost function Zgro] GEo IFL7E AL gk, PR 2 gk WoF . $19] Ao
HE HEo 09] B AR A5, 19] 2] thaflA ghg gelgh. ofuf —log(x)=
o W 002, 10] 7712 0 WHWEZ, e Zgke] 2FEo ufet 2 Fe cost7F WHEHE.

=)

=

HAZE o2 batchE AFESIEE yoF §7F matriz®. o] Z-¢ ZF & cross-entropyE AILFeE F
Fats Y costE L& 7 A5 ol= A 745 & 5= JXT ofefjel Zo] torchoA] A&6F=
S8 AFEe = S log_softmax()E softmaz()9f] logE A= g=0] 1L, nll_loss()= softmaz()2]
Ao} yE QIAFRE S costE ARFE) FE= g0l 1, cross_entropy()E AFHEEO] Ao} yE
O} A costS AN i F.

ofgfo] FEOJA] 2= G BIeO] ZE gl (matriz), yi= A5 HFE XFol= IJHE (0FE AJZ}), hy-
pothesis=), y_one_hot:2 y&l. costE A AHRSFH= F-2 y& one-hot matrizz2 HelSoF S},
null_loss()U cross_entropy()& Al&sl= 32 Has] y& 12 A1-§E

import torch.nn.functional as F

y = torch.tensor([3, 0, 2]) # 07| y= Ghes| HE Z2fS A gt.
hypothesis = F.softmax(y, dim=1)

y= one-hot matrix= B3l
y_one_hot = torch.zeros_like(hypothesis)
y_one_hot.scatter_(1, y.unsqueeze(1l), 1)

JEO| Wet YU2 LYYU2R costE ALSHR}

costl = (y_one_hot * -torch.log(hypothesis)).sum(dim=1) .mean()
cost2 = (y_one_hot * -F.log_softmax(z, dim=1)).sum(dim=1) .mean()
cost3 = F.nll _loss(F.log_softmax(z, dim=1), y)

cost4 = F.cross_entropy(z, y)

Aol oief ofE 4~ QIR gf 20 F-2 modelo] nfx]uFo) linear layerE AR x5 5},
cross__entropy() & A8 costE A4Fgh o]mf cross__entropy() o= A YA QIXFZ (batch__size, num__cl
...) GHC| A5 glo]El &, = HH QIRFZ (num__classes) FEHC] F+ FH tlo]ElE B oJoF g ten-
sorZ} 22}glo| i} 3212l o]u]] tj|o]E] (channelsZF num.__classes¥.) ¢l 7F-P= AFHAAGA ARg2
URITE, 32F@ o] &Fo] Ho]E] 9] ZF-2 tensoro] 2XE Bl lof & 4= Uss. A& £°1, £8] one hot
encoding® 32F F2FF tjo]E]o] 1, Y o] label:S FLO 2 7[X|= 22l fJo]E]Q] - ofefje} Lol
7 ¢FE Hlo]E]2} Hlo]E o] A E RS A FRE HHE 7 U

17

sses,

output = output.view(-1, num_classes)
y = y.view(-1)

F.cross_entropy(output, y)

K12 cross-entropyl] JJEL o]xFet FEfQl. =, gradient descent® oY HEgkS e 4 2.
logistic regressionofJA] A8l cost function-& cross-entropyS HF7L 27191 AFSFof] Z-goF 7 9.

5. & A%

ofgfo] T O 2 softmax classifications TG 5 =

1) dlojE “g<]
O’E%’(m)# E’%’(y) ﬁZ,PO]] ojgk tensor— 1494?}} %’%’% of 2] 79

SETET

HEvp, Wel b 2pzFo] gk tensorE Foll. olm] Wef vE A Fog £k JUX[E nn.Module
2 AHg3jo] REE A= Aol TR gl e} kA Fel i AT Hel HeolA
AgHglo] Zezlo] D QstuE thas] o] F ARRlIE= B
3) Cost Function AR}

cost function& g OJol1l A{Fel. AFgro) mfaf of-E = YR, o 7]ofl A= cross _entropy()E A9
e

linear regression?}F & Y oHA| gradient descentZ BFHE 5= 5] cost7} |27} B =& oF59). optimizer
T hor i el oo AAAG e e B

Jal

18

import torch

import torch.nn.functional as F
import torch.nn as nn

import torch.optim as optim

class MySoftmaxModel (nn.Module)
def __init__(self)
super() .__init__Q)
self.linear = nn.Linear(4, 3)
def forward(self, x)
return self.linear(x)

3719 HEZ classificationgt.

x_data = [[1, 2, 1, 1],

[2, 1, 3, 21,
[3, 1, 3, 41,
(4, 1, 5, 5],
[1, 7, 5, 5],
[1, 2, 5, 6],
[1, 6, 6, 6],
(1, 7, 7, 711

x_train = torch.FloatTensor(x_data) # (8, 4)
y_data = [2, 2, 2, 1, 1, 1, 0, 0]
y_train = torch.LongTensor(y_data) # (8,)

model = MySoftmaxModel ()
optimizer = optim.SGD(model.parameters(), 1lr=0.1)

nb_epochs = 1000

for epoch in range(1l, nb_epochs + 1)
hypothesis
hypothesis = model (x_train)

cost
cost = F.cross_entropy(hypothesis, y_train)

learning
optimizer.zero_grad()
cost.backward ()
optimizer.step()

2] 55 S o] AGUE Feiglof argmas()E <P B, o}F Fg vlwste]
yaeg 28 - 42,

3.2.4. Cross-entropy©] tgt F£H|Z Q1 A9

1. Cross-entropyo°] gjet ZAZ ol 9]

cross-entropy©] et & o A2l FoJF L HA}.

oj® ALA) tfer 3lFo] P(x)Y of, g AFA L] Informationa — log P(x) 2 7§ 2]E. Entropy= o&]
ARl Tt information®] FHugFS YEL, -3 P(x)log P(x) = Y, P(z)(—log P(x))E <
. = informationo]] tjoF 7F=¢F9].

19

Cross Entropy:= ‘7 Bl&+ 2 AFo]] Xpo|& LERl= gl =z, ool go] 7 & EE AFgolo]
entropyE A<kt 219

Q) =) P(x)(~logQ(x))

F712, Negative Log Likelihood+ —log Q(x) 2 2] E. classificationofA] o1H y2} softmax 5-°f 2]¢F
5 31 9] D3] cross entropyE ARSI 35 FB] o FEE 102 R 0022, 7
Ao} Fgo 2 o =5t Flof] ff$t negative log likelihood2l F G} ofgfl= 1 oA 4.

Example:
Let the target distribution be one-hot encoded:
P(z) =0,0,1]

This means the true class is the third one.
Let the model’s predicted distribution be:

Q(z) =0.1,0.1,0.8
The cross-entropy becomes:
H(P,Q) = —(0-10g(0.1) + 0 - log(0.1) + 1 - log(0.8)) = —1log(0.8)
This is numerically identical to the NLL for the true class:

NLL = —log(Q(z = true class)) = —log(0.8)

2. PytorchoA]e] F+d&

pytorchoAl= cross-entropyE softmazo]] negative log likelihoodS Z-§SF A o2 FoJor = A
labeld]] sfEol= 2F&2] negative log likelihood #15 loss fH o2 gF B2 A2 o7l cf2r]=
SIRJEE, of 7o) Al= 1 A7} goug HOlE s o] gA QA1 of.

3.3. Linear Layer

3.3.1. Linear Layer

1. Linear Layer

Linear Layer = FC(Fully Connected Layer)= FojA] t}F& NN& F245l= F8 layerE, linear
regression®] y = xW + b 94FS ~3lgk

oluf linear layer?] ¢AFS z0] Z} HHEIE WE AFgsf 2o e 2 Helsl= Ao o]sfel =
g8 Z, thed] Wel Webd] Welo] ko 27)7} e Sgro 2 Wk

linear layer& AF8SFH regressions ek &+ Q11, 1 HAIFE sigmoidl} softmaxo] € o] classifica-

tions I + 9=

2. nn.Linear

pytorcho Al-= nn.Linear2 linear layer& A4 e & 2.

nn.Linear+ linear layer& A= classZ, torch.nnof] ZgFE o] Q5. =, 718 (WLl b)S 481
ZHEo mpg Y dAilE +F ek

nn.Linearo Al = @ol= ¢tk ool Zhs. ofgljo} 2 diks 33k FE ofu] W= HA=E o
AFof] ARG EIE weightE T3] transposedlr 40 2, QFoj &) HHSF linear regression] 4217} =&}

y=aWT +b
A A Alof] 2 ElAY QIRFolli= @] € (x) fﬁolE?’J 2FelE, 7 BA QAfoll= &8 (y) Hlo]E o] RS
ZPAJel. Lok B Q3lCHH bias 545 False2 X5 biasE ALY 5= & (Truest Z]EZE). G H
Linear Z|ZJo]l= Wel b &o] Zgl=]o] Qlo]A], A-gel 2 7’]5‘ AR of 37 QIRFZ2 98 (x) Hlo|ElE
z

inear 7
Pyl 4]0 ulg o5 Zggko] Hrald.

linear layerZF 7} We] ZF Gl FofR]= A2, & tensorof Al 7FgF o1& 21-¢lo] Q). 9] tensor

20

7} 224919 49 B3
FYEE AOR o]3fE 7 S T B
27]9] groz hAFE Ao olE 7 e

1 FEE oo 2.
import torch.nn as nn

m = nn.Linear(4, 2)
m(x) # y=xW'T + b B3t

Part 11
DL

1. DL

1.1. DL

1.1.1. NN
1. ¢
77 & (Neuron):& 0Fp0] Q8s Fof shfo] 8& YHYE= NNo| 7@ g 249 ol ¢I7k
GG (H)ol Felez o] et FoAl 2hekel Jarg]Eel. 782 kK, feature, activation
oz &
e JEFrE H&EE IS (W)E Fol BF fet Ayl brl Hek F, By sheof &g
#l& gol 1 E75 E8ol= 4or 43
2ol ol xli= W(Weight)5 2} layer Alo] 17259] AE = o]efg 5 911, o]:= Synapse, Param-
etergf 1 P5. ol AE A ovjsprvt 212fe] JjE AEE o]ngk

= parameterE NNOJA] HX2p7F 3 E= gl o= (Welb) osfig = QIS o]eF 7725}9] learn-
ing rate, minibatch size 5 DLE 9ol XAl 5L hyper parametergl1l g}

Inputs
<(Synapses / Weights / Parameters J
Layer 0
i Neurons / Features / Activations)
Hidden \ p— N
Layer 1 X W
.%‘Xu .V/=f<zwm+h)
Hidden) i
Layer 2 x| wiX| —
. Output Axon
Outputs N y \ P!
- | Activation
Dendrite Cell Body Function

-

2. NN
NN(Neural Network) T+ ANN(Artifical Neural Netowrk, Q1-F{F)L 72lS of 8] =(Layer) 0 &2
ol izte] 4G 728 FHT ML LY.

21

NNoJJ= 2YZ0] ZX5]2] ¢Ji= NN¢I SLP(Single Layer Perceptron)2}, 2Y50] Exf6}l= MLP(Multi
Layer Perceptron)?} $1-&. NN & BEe Feldl 28 AFg5l= 78 £35] DNN(Deep Neural Network)
ojafil of.

NNO| B2 YEE, B8% eHEoR FEE. YHE(Inpul Lue)e HolHE YHwE Foz
t~5] HJoJE]- & NNoJ A9er &8 (Output Layer)2 ZIE &85l 59 & regression©|Lf clas-

5. SYZ(Hidden Layer)& 9827} Z8Z Apojof Zafsto] W}
s}gro] +AHE 29 cYzo] 2ol ghor HHFHel T

NN:& 2} F Apoje] ¢tto] mieh W, be} g ekrE oty F@H. q& 5°f, o9 NN
oA ESH SHS1 Alo]oll= 27T (784,128)¢1 WeF (128,)91' b, ReLUZ} 8 ol2 ALS-H.
4 b, &Y o] BIF kA2 EEEO]OF 9.

Input Layer Hidden Layer 1 Hidden Layer 2 Qutput Layer
784 128 64 10
(relu) (relu) (softmax)

ol Alofl NNO| Z} Wt bE 2|2 3]5]+ H|olli= backpropagations AF&SF.
3. Backpropagation

Progagation(d0})= NNoJA djoJEl7F 2} & &
propagation®} backpropagation©] -

Qlr

i o] Est= AL ghel. propagationof= forward

F

Forward Propagation(+=31})= Y g5ol4 &85 2FaFo propagation© 2, &8 7l-S A{Fol= prop-
agation. Backpropagation(Hm}) = &&50] Aupel A g AFo]o] Q)5 &-§olo] «7ulo]

gl WaEo &2 o) sln] Wel bE FH3I5Hs propagationd). NN-E B-g-ate]ul s}go] et Wep bE
2] 2]5}8 < 9lofof SH=H], o]F backpropagation 0.2 +g 5+ 1S

Chain Rule-g 8§10 backpropagation& 5-HF 5= Y-&. w9} y A}o]o] M LoF53F PAAT, yo} -
Jo] o] Bl A4 0] ZAFICIE ofdlel 2] chain ruleo]] o]afl a2} = AFo]o] BAIAE At

A o]0

o _ox oy
0z Oy 0z
Z} oA ARG WeF bo] tf$F cost function®] HS]& (gradient)S #|4F5FH gradient descentZ
sfad 7 5. cost functiong L(J7]o A& A& 212 ZFgel.), idlA ool W, b, =84l
ey e E W, b, i, fi, & ZYFT FHE Ypreds Yerue B S T, o122 4]0] HH G

1
L= i(ypred - ytrue)2

yi = filyima Wi + b;)

ofefie} go] ul2 Flof 9l 29| ghel 0L g ok g u, 2} PANC] BE EASIn2 7 Fo] W
of tht Lo gradientS F4 ALG 4 91S. B 95 vl2 9% Ly o BANE 7S
78+ Qong 514 Aol o) BE gradientE §4 78 7 AS. b E

e 4 9.

22

57L7 oL 3yz‘+1
Oy; Oyiyr Oy

oL _ oL oy

B2 pytorcholl 4 o] BF:L ofefe] Lk YslEl Lops <Y F.

optimizer.zero_grad() # gradient =7
cost.backward() # backpropagation 3. Zb Z0f CHSt gradient H|AF
optimizer.step() # AHAISH gradientE 2t 29| wel bof BtH

SLPUE AT 2L UG Sgon ANDIOR G YL RAE UE L ALY
YARAY B0l AT BAE E 18 U Marin Minskyel of] SLP
e o2 SYHGE Agol MLPAlA 2 7154
SAeIEA MLP) 1540] ThA] 23

EMEI'

>
rE
401'
o
o
o
5
il
=
@]
i)
2
o)}
o
S
@]
B
S|

a
H 7|52 5y 5h= NNoJ shallowsf 2] H, Z15HF & B2 hidden unit3 E-8-5fjoF

1.1.2. NN 29 #9]

pytorchol| Al A-&Sl= torch.nn(neural network) T+ nn.Sequential 25 53 AF§ofo] HE-S 3 ojgt
= 9.

1. nn.Module

Module2 neural network 225 g ool= class2, torch.nnof ZE&FE o] QIS

2o 24 o= nn. ModuleE Apabll classE ZoJslxl, init ()T} forward()E @ Hj2Fo] =g}
o]GA FOJE classol] et AAE F-gope] 1 AR TE6PH YR o= fO?”ward(Vf oEH1,
ZHg o w2 ¢ Aok drelE. =, HES Aol o BElo] 7‘4—1’%7 AikS 3 nn. Linear,
nn.Conv2d, nn.RNN = nn. Moduleg AF=Hl class5-2 = UolA] A HIE i%o;]-'— Al 0 2 AF-gSF,

N = — 71—
) o
FEE ofeel 5.
import torch.nn as nn

class MyModel (nn.Module)
def __init__(self)
super () .__init__Q)
self.fcl = nn.Linear(10, 50) # ®& 10, &3 50
self.relu = nn.ReLU()
self.fc2 = nn.Linear(50, 1) # =3 1

def forward(self, x)
x = self.fcl(x)

x = self.relu(x)
x = self.fc2(x)
return x

model = MyModel ()

hypothesis = model(x_train)

2. nn.Sequential

23

nn.Sequential:L oj 8] AZL 7l RY-L 7ITths,

Chels] 0] Be) AE ATl A efel L ALY . v Module 28T a15] 2]
forward()E ZHE a7} glo], thed] AAar As1H H.

-

model = nn.Sequential(
nn.Linear (10, 20), #
nn.ReLUQ), #
nn.Linear (20, 1) #

IO ik g0
% ox ¥
g'l_

>

hypothesis = model (x_train)

1.1.3. DL

DL(Deep Learning)& NN(DNN)L A}-g5fo] st&ale MLO] o Hoke]. DLoJA= NN, RNN, CNN
T):_% NNo = /(]‘—(%?—5‘]-01 g}-gg 4—5(%7]6;7-

DL e ol o} 2.

1) NN ofAEl3] 4

2) ot&5S 5111, overfitting©] 07077L,L7] 7(‘77/]-X] model size(Zlo], Ho])& =4

3) overﬁttmgo] QJoJL}H reqularization 5= 535l s 45}, ClA] 2H{ o2 O]' 2t

IESL, underfittingo] BHYFH M NN& o ¥ A 742

JlEHo2 DL HolH W] ufal o] WE Fof F8< Yok, FEI lossE Akobe]
Z o] WE = 71F-L vRE) ol/‘—g— éoﬂﬁk

FE goAje] Tge ofdfs} 2.

1) 2lo]B &l 2] import

2) GPU AL 8%

3) o5& #& parameter(lr, epochs, batch_size &) 7§29
4) gJo]E]Al & DataLoader & -4

5) NN =8 He]

6) loss function, optimizer #1€]

7) 51 8 St 53

$) 51

1.2, 24 %%

1.2.1. 84 g

ey gl (Activation Function)= 7F#9] Ag &F
sigmoid e, softmax @, ReLU 3t 50| SI5. &4 g Yeat E8 o gjet v]dY A<l gAZ
Hu sl -~ ol 2 o}

UO

2y oo Zggt B 54 layerd] &8 715 Activationo]2fal oF. o]l ¢F layer®] &2 H layer
o] 9]gjo]O 2, 52’4 layerof] gjsf ¢J8 02 Eol7l= activationS Input Activation, %ﬂﬁi o=
activationg Output ActivationO]E]'_Z af.

activation functiono] EXJIX] YE=rCHH, network?} Tra>5] of 2] PHS FH5l= H4ro] H.

1.2.2. ReLU

1. Vanishing Gradient Problem
oI dmt Ko gy & n]Eofo] gmdzent— s17 5. 224 sigmoid gl e
7HdT5 F8glo] 540 Zof] Bz, Hnt Al %’E??Oi/ 7P7Re S7FA] ghol

24

Deep Neural Network

i hidden layer hidden layer hidden layer hidden layer bidden layer hidden layer hidden layer hidden layer
nput layee

—_—
Backpropagation

Vanishing Gradient

2. ReLU
ReLU gt glo] 02t 27v Z& mj= daf9] gls, 02t 25 e 05 =95l= gdd. =
A2 offjel EE-
if y >
T ify=0 = max(0,x)
0 ify<0

B2 o] Ao 9gzlo] 0ECF &L uf gradient’} 4= 7]= PR, AAZ A}gof HE & F2F
otota 2k

ReLUs= gradient”} 0 F= 128F A% fEV] ool eiro] FgFs] THeel EF 094 mlEo] §7f—
o HA= Flo] g=Fo] 091 F-9+= & 8lil, 0°]t/Ete gradientE Ho] 0 = 12 ZYf F
=]

=],
pytorchol= relu(), leaky relu() 52| 3F+2 ReLUZE AFgS == QlS. B+ ghr2E sigmoid A}
ReLUS 52 AMSHL, sigmoidic 53]2+9] clussification o] A&

torch.nn.relu(x)
torch.nn.leaky_relu(x, 0.01)

1.2.3. 7|et &4 g4

f[r

oFeiet 2ol TR Y GEo] A
1) sigmoid : dynamic range”} AJetx]o] Qlo] quantizeZ} €)X} gradient vanishingo] BrAYg}.
1_

sigmoid e o = 1+€ 1 HlESHA o(1 —0) 7 H.

2) ReLU : gto] S0l gradient”} glo] 2| =gk, o]of wpef Spamfyo}ﬂ 7. 2l gradient”} @&
0FEE 10]B 2 7JY gradientgd-S 3ol HR7F glo], bit maskE ’70]-01 gradientZF 0°0]H 0=
=851, 10]H o]Z featrue map FFS =8¢l 04l dynamic rangeo] Xi]b‘f_]'ol glo] quantizeZ} o 22
3) ReLU6 : 6& Jol7l= 98S 602 TFEE ReLU. dynamic rangeE A6Fs) quantized}F7] €17 ¢F.
4) leaky ReLU : 591 ¢ &of 5] ZR2 gradient& T+ ReLU. &5 ¢ gof sl gradient7} §lo1
2| A= G|, Sparslty 4”077/“7—77 o] Holy. Ofﬂh'ﬁ?} ol 8 EPS z"?’] a(er. 0.01)& &3}, b2
Aol &0l digt gradientZF a7} &.

5) swish : ReLUS} 7] 8o] SA15H2] 5k, 4520l o]do] 9g. rhat shEglo] el 7#o] ol2g.

25

6) hard swish : swish®} FAFSFX]EF FZ&do] 7HAsl = oF A1
7) tanh : sigmoid2F QFAFSFAGF -1 E] 1 AFo]o] gHES TFR. 418 ool ZHe.

et — e 7%
et +e®
tanh g f& nJEs1H 1 — f2o] H.
Sigmoid RelLU RelLU6
1 f 10 10
0 0 0
-1 -10 -10
10 0 10 10 0 10 10 0 10
y=1/(1+e™ y=max(0,x) y=min(max(0,x),6)
Leaky RelLU Swish Hard Swish
5 5 5
0 — 0 0
5 5 5
5 0 5 5 0 5 5 0 5
0, x<-3
y= max (ax, x) y =x/(1+e™) y= X, x>3
x-(x+3)/6, otherwise

Other Activation Functions: Tanh, GELU, ELU, Mish...

2. DL T 18 A}3}

2.1. st dlo|gAl 44
2.1.1. dolelAl £

1. I71

s} o] T o= 9ot Ay} EEE Q=] Bl Evalutation) EE EHAES O}
ofgjo} Z+o] k4 o] T W 9] {raining setO 2 8 zFS A, g S FH) v w5l glo]Ej Al
ol HaL L,l]ui Bdo] Hste (Accuracy)E AXFe 4 2.

ojufl torch.no_grad()E& 2&E5F] autograd®] F2FS vlg-g3lofe] HIAE Ao (it £ E =Y

o] o
AR

]-o

ok

26

8ot
X_test
y_test

torch.FloatTensor([[1, 2], [2, 31, [3, 111)
torch.FloatTensor ([[0], [0], [0]1)

with torch.no_grad() :
hypothesis = model (x_test)
prediction = hypothesis >= torch.FloatTensor([0.5])
rst = torch.mean((prediction == y_test).float())

2. gloJE Z2]
EH|AE R|o]] AFg5H= Hlo]EAE training setC 2 12 2§51 -2-ofn]
overfittingo] BFAIEr 4~ 912,

<

HAE

il

op7] ol E 1,

a4 glo]EAlE HaJsto] YHEE training set Q. 2, L] test set O 2 ZHEGF FEol t

of. o training set
2 A training setZ} validation(development) set© 2 2 2]gl. validation set:2 epoch F+= E£7% F

Zjafet ARgSte] ir, X G 52 FYY 0 Sofl BEIH=H), test set AHE o] o] el §o 2 AEIHE
CREEE)

Dataset

AN
- N\

train test

train validation test

2.1.2. 353 dlojgAl 4

pytorchof 4] A[&8lE torch.utils.data 2E-S AFEol] o5 Hlo]EAlS 2498 - SIS
1. Dataset

Dataset-2 pytorchof]A] gJo]EJAL FASF= 7] & classE, torch.utils.datao]] EaFE o] ¢S

go]EJ Al 14 Alofl= Dataset:S g<HH= classE g 9Jofal, FA] glo]ElE BEZ 2%}l
_len__ ()# __ getitem() ()& e#vlEto]Egl. _ len ()2 flo]EJAIS] F fJo]E 7i4x(batch
size)E HIeFol & FFHolL, getitem() 2= ol QiAo gish ¢Jg] rjo]Ele} &8 mlo]g
£ tuple2 BFElSIE= 2@ gl

27

from torch.utils.data import Dataset

class MyDataset(Dataset)

def __init__(self)
self.x_data = [[73, 80, 75], [93, 88, 9311 # list=2 At JI=
self.y_data = [[152], [185]]

def __len__(self)
return len(self.x_data)

def __getitem__(self, index)
x = torch.FloatTensor(x_data[index])
y = torch.FloatTensor(y_datal[index])
return x, y

dataset = MyDataset ()

2. DataLoader
DataLoader= HJo]El-E E3 sizeQ] batch(minibatch) @92 7FX-& 5 Q&2 5} class2,
torch.utils.datao]] ILEFEO] =

oleflol Z+¥o] Dataset ZHFQ}, batch size(Z} minibatch 7)), shuffle(t]o]E] & oAl 4=.) of 2

from torch.utils.data import Dataloader

dataloader = Dataloader(dataset, batch_size=2, shuffle=True)

DataLoader ZIA&= A4 Alof]] eE Dataset ZHAJ2] __ getitem()___ BFelglS &-§3Fo] batch size
TWEFEe] o] E HF2te}. epoch YHELT ¢Fojl DataLoader Z4A] O] 15 W= HHEE-S ZHJo1AL,
enumerate()& A& eF BFE RS ZFA510] minibatch ¥ sl5S e = 15 Dataset& DataLoader

o YA Gt vhE enumernte()o] §E = YR, o] F G Hol 5L Hjo]eluro] HghE.

for epoch in range(nb_epochs + 1):
for batch_index, batch_data in enumerate(dataloader)
x_train, y_train = batch_data

hypothesis = model(x_train)
cost = F.mse_loss(hypothesis, y_train)

optimizer.zero_grad()
cost.backward ()
optimizer.step()

3. Minibatch Gradient Descent
Minibatch Gradient Descent= FZ]] tJo]E]E minibatchel= T2 HA5FA U H ZF minibatchE
Al-g5lo] eF50F= gradient descent Q.

oS & #a%t A5 HaH H2 o] tlo]elE g-gojof sf=t, HA tlo]E o) il oF #
A P RS U BL Azlol Helu el Hel Aofo] AT + 92 o] e} 3
H10] epoch(FA]] tlo]E]) HlojA] dlo]E[E of2] minibatchZ =0 ofFA|Z. FE3F o]ZA] of5olH
A 22 glo]E] & F7l57] o Halgl o] F-2 theo] A flo]ElE AFS-E m & & epocho] m}E} cost
7oz E A EolE& tiil, AZA(HEo] A Eols T Us-

ol minibatch sizei= ThA|Z 29] AG5AFOE Xl o]i= memory oAl o]Fo] Irfal g
IESF batch sizeE X|FoFD YL HEL batchingstd Y= HEL wa|7|E sld, JHZ0 F&2]7]

Qli
S

r

0l

28

= ghhi g s Apk 7 Bo] A1, ol randomatA] HolA EalE FerF genz & gyl
AL g

ool FAFSHA| o] E]7} 2F A o &2 Fol F uj ZF 24 HAI7EO 2 3l Al 7] BHA]E Online Learn-
ingo|2f1 2.

pytorchol 4] A|&Sl= Dataseta} DataLoader classE A3l o] & 7Hs] e 4~ Q2.

S ol E

1

Minibatch 1 Minibatch 2 Minibatch 3 Minibatch 4 Minibatch 5

SGD(Stochastic Gradient Descent)= 217 t]o]E]Alo] o}, batchE 2 a]E & mfolt} gradient
descentE =85l HFA] Q).

2.2. Learning Rate

2.2.1. Learning Rate AA

gradient descentO A= &Gl learning rateE H7Yo= Ao] =3
learning rates} 7 T8 overshootingo] SR o] o S14F AJofl HA2RE o Holx= wgro =
olgolA = S el epoch ¥ costE 31707’ H cost7] FF AZA.

5 = step size
5 @ : - -

-2 -1 0 1 2
X

learning rateZ} R ZFrom A slo]] 12 Bke X|7lo] HQsEA EJALE local minimum= ZHA] H.
costE o] Hul costof’] Bl U AE

learning rate= T3] FYH o2 HPYoF gf. F2 0.01YE 2 A5l cost] HslE 8ol

A5l

fine-tuning A|oJl= pre-trainof] 95} o]n] loss7| &o]&50] Y OB ZE learning rateEs A7 o= Zlo]
Foh gk B2 A2 ofd Flo] XA FHH o2 G g

2.2.2. Learning Rate Scheduler

Learning Rate Schedular— & 9] Ir

o
of
fu
N
o
9
e
H1
4
o,
ki
o,
kaf
=
o
2,
oo
-}
e
P
kr
I

29

Ao ¥E Fi= Ao] B9 o] A= FI} ek 7

o =

StepLR ()& Z]7gF 49| epoch(step__size)BFCl lrof] gamma 75 &8

= H B&-

pytorchoJ A= torch. optim Ir_schedulero]] ZZGFHE] Ir schedularE& -89 4 2. ofgfje} gro] XA-&3F

epochBFCF learning rateE F 712 02 ZFo] 7]H-E Learning Rate Decay2F1 g}. 0.95¢Poh S F51A

L, \/;;W—EO_ ol AL}, discretestA] |7goFALF, manualdbA]]7gol= & 07377 712] %}%qo]a_f_ A5},

1r_sche = optim.lr_scheduler.StepLR(optimizer, step_size=5, gamma=0.9)

for epoch in range(l, epochs + 1)
1r_sche.step()

2.3. Optimizer

2.3.1. Optimizer

pytorcho| Al A|-EdFE Optimizer— cost functions E-§slo] HE-S o5 (X[Z3])et. torch.optz'moﬂé
pytorchOll A A &ak= TFeFek optimizers0] {ls5. 2 optimizer E2 1}52] gz]ZE AFg).

[=]

*H—HEI L2te §Q§§7I(Optlmlzer)°l””:a*ﬁli

Nt ey Acc e

~Nadam
Adamoi| Momentum

4 _Momentum-— CHAl NAGS #0(2t.

AEHARIA 2201 2,
Ot Lij2] 6 BHY uKsE E I} N
Adam

RMSProp + Momentum
HHSEE ABIAJO| 2T X HSHH|!

RMSProp
BEgFOI=UF2Y
O|ziuliz} g7 1o izt

.:«K_iug usta| WCHSHC)
)2»|74L1U0\7L

AdaDelta
F3248 LR 20 A

R[SN=24 QtopE A},

optimizer'd 2 “goJol= gl Zro] =49 parameter?} learning ratesS Ag
doF ob= AS Y9 Tk & Jak = Y2

optimizer = torch.optim.SGD(model.parameters(), lr=0.01)

CI2 optimizerE A[E35IEH2IE Of2fe] REZ &8 &
optimizer.zero_grad()

loss.backward()

optimizer.step()

loss functiono] oj 2] FAE 7[R FHQ7F 2t 4~ 9o 2 Adam optzmzzer SoJJAlE gradiento]
st momentum-= /3?77%’-0}— 7S AFgel =, o]d stepJ gradientE5S 2gs) =12, A A|F9]
gradientro] oftja} o] gradientEolk 7FaXE HA &g o gmd%ent #ol #3s] FpH
HAE7] gho] &Folxl= X ZE& vloly 4= SIA] .

2.4. Overfitting

2.4.1. Overfitting

30

1. Overfitting

OverfittingS- o}f&o] AR Ho]El o] disf Zfo}A] F 3= o] YHrz]ol -0 gigt Hgejo] d
A= dds gk =, ofg flojE ot & Solwil ofE gloJE o= & &2l o= F-E Wk
oji= 2z ez H o]f QYU Ql 245 ZHe Ao] oft]a}, flo]E] Fizo o th= 3415 RS A0
Q7T 2 oS,

o] High Variance Problemo]2lilx gF. BFH modelo] Y2 thSF -2 underfittingo] dold 4= 9l
=g, o]= High Bias Problem©]2F1l GF. high bias problem-S T SF&5A]Z]| AL, modelS © -ZEZF51A]
Sga @ 5 9.

O]

Underfit Optimal Overfit

. * | R

% ® .".. % 9_.-. ',“. % :“._‘...‘ '

« * Lo] ® o0 O] R E Y 2 ®

5[o0 et §| Lef o0 F| iYW

e, P] . ‘@ g

‘g . .“. L] ‘g . ’," ® ‘g. -..: -
5 ,,‘ g5 o 5 ?.i"

Ol » o Ol »
Predictor variable Predictor variable Predictor variable

epochZF AATE training seto]] gl costi= & 0] ST}, test/validation seto] Hel cost= Eol &<
o7k ofAl Eojub Al H. o]ZA costZ} OFA] Eoltfi= X F o] overfittingo] BAYSE= X Q. test set
= AF§3F7] Fof validation set 22 overfittingo] o= F T HASIEXE 20l5] &2 + S &=
validation seto] test seti} gjo]e] BEI} YR|GIR]|= oF7] w2of overfitting BHAY X HZ gF4F =]
SHe 212 of .

Overfitting

Test loss

Validation loss

Measured loss

Training loss

Training time
2. Overfitting P3|
overfittingS HFx|oF= HFH © 2= ofafof Z-e AEo] L.
1) o g2 Ho]eE A& 3k
2) LB featureS | gF.
features} @31 FA|H o]z o] Hlo]El & v 2 AFsiA 2
3) Regularization
Regularization-2 overfitting< HFx]5}7] 9Js)] RS Aotsl= 7]He]. L1 reqularization, L2 reqular-
ization, dropout 50| 9l<.

)
X9,
mo

3. Regularization

Regularization (7173}, g 23}) FEE= Weight Decay= modelol 9 E]E oI5 overfitting= BFX]5}
= 719 9. regularation® 2= L1 regularizationZ} L2 regularizationo] $l-&. o] = vF&] HE= 2] 5]
Aol WZE 00 Z}7FJ A =5 o FEFo] 2] featureE XA 3.

L1/L2 reqularization& Z}Z} ol o] A1} ZFo] cost functionof] \|W|2F N|W||2E gjdE]E ¢l
=, 2H2F L1 norm2] Al#ol ME & gl L2 norm2] Ao \& &3¢ gl teh o/m A= g E 2]
71 & R YoH= oF9] 2, hyper parameterd.

31

L' = L(z; W) + AW

L' = L(z; W) + M|[W|?

o]of] g5l gradient descentE Z-§ol= A2 Azl HH, WoF kY o= cost function?] 7]27]7}
o ZA ARFE L, WZF 57 o= cost function®] Z]&2|7} U] 2HA] AIXHE. &, 7 dH4AE HE
Y E]E Tl5f| cost function®] Z]&7]E W7} 09 ZI7FYA =5 2k dapd oz Wrp Hukzoz
00]] 717k A FEFo] AL features= | H.

ojuff L1:2 N7} F+425] Zofx|H W= 022 X Zo}=| 11, L2= N\7F 5+425] ZopX L 022 XX o}=]]
L 018 7 lossE BT AL AZFal 1 LIS graient7F A(sign(W)) oLz, L2oJA1= gradient
ZF2XWolB 2 A o]siel 4= QI5. EoF L2= wo] A 7] upe} B9 ¥ Flo] o x]7] mfZo] W gko]
REA 0o ZHo1A H.

ol = L1, of¥ mj= L27} 1] LpopA], Hel=] o2 FEoF gt

0k

2.4.2. Dropout

1. Dropout

Dropout:2- ol Alo] NNoj EXol= 2} w2 (k&) & H3H 2o wef d7
oAl YA 2 ARSI Pl Y. &, HA9] epocholl A= FoHZ wEHE
backpropagation W3}, 1 1S epocholAE AHESHA] BHE FAEE A5
dropout2 oje] Feo] NN2 483t HIE & 4 9

FAH 0 2= activationd} EATF 7 7] 9] tensorE A
o] activation©f element-wises}A] FoF. =, 0°f 3l5t

o

=

(a) Standard Neural Net

2. At
pytorchofJ A= olg|2] ZFo] nn.Dropout class2] ZHZ]]
A 72 7)ol oot AFg-oFR] s FEle] HlES

> Mt

dropout = torch.nn.Dropout (p=drop_prob)

model = torch.nn.Sequential(linearl, relu, dropout,
linear2, relu, dropout,
linear3, relu, dropout,
linear4)

BE o]l 514 Ao AMEIHE FHOR, HAE Ao A8 ghS. o= mhe] thal train()T}
cval() A EE Agot] AEo 2 A LE. A el S4/HAE REE A gals A,

32

learning (dropout X&)
model .train()

test (dropout A& x)
model .eval()

2.5. Normalization

2.5.1. Normalization

1. Preprocessing
gt5 Alofl= dlo] el o] tfiafl 2 &S Preprocessing(A12])7F e = S
oJuF

2 HFA] O f‘]]O]Efoﬂ A= preprocessingS sl O] 22 Aale AL == Qlxjal, W 59] z} zlo]
&5 oIA 92 F-F 1 ago] AY. We] x5 ol 74—1’ ’*72}53 Ao g Ao #MalEL 19
H]5f 152 EE]-U:L S IrS ALk gradient descent AX]of gFo] overshooting®] 7L Aif7}
A2 =25 gs T AS

preprocessing © 2+ zero centering, normalization, standardization 55 5= 2l

A
T AR

ol
&
o

2. Normalization

Normalization(7g 172+ dlo]E]9] gt 54 WA= BF= 79 Y. ol 5% feature®] FgFo] 7t
oAl A= A& FAek ZF o EHOH Ofﬂb’J TS Z-gofo] 03F 1 Alo] 2 normallzatwn?? T
As. 53] "*7’/21/4 gjo] Ef + ZJ&3] scalingsh= Z1°] T8k

Ti — Tmin
Tmaz — Tmin
3. Standardization
Standardization(F=9})+& H|o]E 9] Ha-S 022, HTHAE 12 Z% ol= 7|8 Y. o]= Hl&o] &
feature @] 0151:0] I} A] AR AL "iz]gr zF Y4 O;’] tjjsf] ofglo] ~2]-S 2]-g35}a] standarization

SF £~ Qe mE T, o= _u__,_ﬂ:ix].ol

r—m

g

standarizationS z-score normalization, 22 T normalizationo]2f 1 E &

—

7}

Az

normalization, standarization, regularization =¥ U5t "AHs 2 HYst= A7 I AT L
?l' 7HL% 01.

2.6. Weight Initialization

2.6.1. Weight Initialization

or

1. Weight Initialization
2 ASF weight initialization 7]HS Z-§51H
gradient problem-S H]e = Q2.

2. RBM
RBM(Restricted Boltzmann Machine)2 27]2] Zof tjjsfA], ofgo] = 712 ¢I4RS 7IRE= HE ¢
ol F Uiz dAdo] EAol=] g, ¥ H Fof tiofjAl= & ddo] EAg

1

R AeFsl T W2 S-S a5k 5~ Q1. vanishing

—

33

1) forward(encoding) : forward BeFo 2 7}S=X]E g-gofo] gkS ARFs Grl= ARk
2) backward(decoding) : backward YeFO 2 7FGX|E E-golo] g5 ARFel YrlE L)
RBMOJA= forwardE ++@3 backwardE 35101, 7 Anigka} Lefo] Jeizre] ol & Al
o] 2fo[7} F] 47} HE & F F Alo]] kRS A3}l (gradient descent 55 E-E-9F).

.....)
Hidden H
h” Layer hi

Visible _ ¥
._ #i8 8 @ Layer V E
% v, ;

3 4 n »

3. DBN

DBN(Deep Belief Network)2 oj&] 7J9] RBM-S #oF BFE NNO &2 Hinton©] AJoFeF HFE Q] =
NNS] F1H] 3 Fol4 o2 5 o] 52 RBMOZ Y2l YA 2% Wekew 7 WE
SHpY 27] 5%

o]ZA] DBNE gok= A& pre-tuningo]efil olal, F+4%E DBNS g-§5fo] ol5oh= A& fine-
tuningo|2l1 g}

T2 gAl= Z219F DBN tjj#] Xavier/He initialization 55 A-&¢F o] O SaslHAIE 14 9.
4. Xavier/He initialization

Xavier/He initialization2 g2 3 (Normal Distribution) F= w523 (Uniform Distribution)ofJA]
FE¢ 5 75RO fIo2 o= B Q. o]ufl Xavier initializationsS 7}gX] 9] &1} &8 2] Fj4=o]
olef SFEHRE7 A E 1, He initialization= ¢ 2 2] 750 ujel EH 7] 27 H.

T 4.2 O} 2L i U meuron] A, nou-& 5 neuron®] A4, 242} SHEFE = normal
distributionof Al Qo]0 ZFS AU initialization valuez BF.

e Xavier Normal initialization e He Normal initialization

W ~ N(0,Var(W)) W ~ N(0,Var(W))
Var(W) = nmfnm Var(W) = 73"
e Xavier Uniform initialization e He Uniform initialization

W~ U(_\/ninanL:’_F\/nz,lfn,m:) W ~ U(—‘/ %, +4/ n(-in)

pytorcho Al= ol ZFo] nn.init.xavier _uniform_ () AF§slo] Z7]5kel & QIS
import torch

linearl = torch.nn.Linear (100, 90, bias=True)
linear2 = torch.nn.Linear (90, 110, bias=True)
torch.nn.init.xavier_uniform_(linearl.weight)
torch.nn.init.xavier_uniform_(linear2.weight)

iz WE BF 022 27|85k A2 2 H56HA] . gradient= 7% 59| gradient& Hdhs WA o2

M #

Iz F2E.

34

2.6.2. Normalization Layer

1. Vanishing/Exploding Gradient Problem

vanishing gradient problem-2 QFoJA] ChE Aa} ZHo] gradient’} 24 EE EAo]11, Exploding Gra-
dient Problem-2 HMj|2 gradient”} IZ}51A] A R]= EA <.

o] A& o] Z[H ez sfFde - U

1) A7 B4 o AR (ReLU 85 5),

2) ZAsF initialization 7]H AFE.

3) exploding gradient problem9] 7F-> ZF2 learning rateS A-§&¢l.

4) batch normalization A

5) residual connection AF-§-.

2. Normalization Layer
NNoJJA] normalizationS 58 SF= layer& Normalization Layer2lil gF. NN Z7Fo]l A1 9] normaliza-
toin® T2 o M2 Yok SFYH0 2 2T 2 oA T

internal covariate shift—= vanishing/exploding gradient problem<S -7-9F5) P&

—ﬂ: ?_ - ?_ - | =
Covariate Shift= o E] 7] 2] 9] (training setZ} test set) feature ZIE7F CFE dAfog Hdo] 2

sl o]=& ~allslr] o FHA] gF. Internal Covariate Shifti= NNojJA] Z} Zofc} BRAHSHE= covariate shift
. =, oFg Al 2} layero]] tjel flo]E] ZRZ7F YefR]= £A0] 1, o]i= NNo] Zojd+= 2o
% layer®] o] 37} B3l= "1 U5 layero]] it ¢ fjo]g] EiL B3jo]B 2 L7 ofset 4
Q2. normalization layerS 7 A to]E] HEIZE TF= internal covariate shiftE sjEe 4 =

normalization Tjj-8Fo]] w2} Batch/Layer/Instance/Group Normalizationo] 2]l

Batch Norm Layer Norm Instance Norm Group Norm
£ Different normalizations
=2 use different definitions
©
L of the set &
@ (colored in blue)
0/7 w .
&, \
e \\
@/O/. a\c\(\ Qv

Group Normalization [Wu et al.. ECCV 20181

3. Batch Normalization
Batch Normalization2 NN9| layerof]A] ZF batchoj] sl normalizationS 53 sF= 7] H 2.

batch normalizationS ofgfJo} Z-& TG0 2 ARHE.

1) 2} minibatch'd 2 gLo] Fat v} b AlkFopo] EZ3Fek. ojuf ol AJoj vff mindbatchoy ool Ak

o,
e

S 7R B2 inference A]o= o]F &-£3519] batch normalizationS 53lgl.

ol Hat-S AH4Fet 218 learning mean/variance2f1l ¢F. oF&-o] ZLFA] EH learning mean/variance
=
) 94 7 e SEo] £UFI9e 5 lon e, TEse gro) £AUY whe]E (G U] 27) 18

batch normalizationS 2]-§F F-2 BIF biasA] & FASFE 2, o] linear layerof A& biasE AFE5FR]

35

Input: Values of z over a mini-batch: B = {z;._,};
Parameters to be learned: v, 3
Output: {y; = BN, g(z;)}

1
== i // mini-batch mean
pe = — Z z
1 .. .
0% — ~ Z(:cl - ug)z // mini-batch variance
T; o B // normalize
Vog+ e

yi < 7Z; + 8 = BN, g(z;) /1 scale and shift

Algorithm 1: Batch Normalizing Transform, applied to
activation x over a mini-batch.

4. FE

pytorcho Al ofefl2} Zro] nn.BatchNormld classZ normalization layer(batch normalization)& -
58} =~ olo.

dropout] g k5 Ao train() HIAEE S&6F1, HAE Ao evdl() HIAEE & HEE
2|8l FoF &F. sample mean/variances= BH feature W2 AHXFof R 2 Aok Ho]El2F e minibatch
o] o] gelxH of-E glo] &g = =, HAE Aol ofdl ofE Zlo] vpepAl= ¢F H. o]
atef H|AE A= learning mean/varianceE AF§6}0] batch normalizationS ¢F. train()S S&51H
sample mean/varianceE A-§-5F1l 1 leaning mean/variances ARG}, eval();_, O =5 A LR o]
Q= leaning mean/variances A58l

batch normalizationS 41& H3} AXF o] & BFRAGI ARG 2] o] L5}

DOh

linearl = torch.nn.Linear (784, 32, bias=True)

linear2 = torch.nn.Linear (32, 32, bias=True)

linear3 torch.nn.Linear (32, 10, bias=True)

relu = torch.nn.ReLU()

bnl = torch.nn.BatchNorm1d(32) # A3t Q49| JH4 R|H
bn2 = torch.nn.BatchNorm1d(32)

model = torch.nn.Sequential(linearl, bnl, relu,
linear2, bn2, relu
linear3)

learning
model.train()
test

model .eval ()

batch normalization layer—= CNN S|4 2 AF&5.

2.7. Q°F

2.7.1. Q9F

soll A A& 7S5 B 2-85te] MNIST Ho|gAls sh&dhe T+ offiet &

o

import torch

36

import torchvision.datasets as dsets

import torchvision.transforms as transform
from torch.utils.data import Dataloader, Subset
import torch.nn as nn

import torch.nn.functional as F

import torch.optim as optim

import time

parameter
learning_rate = 0.001
batch_size = 128
epochs = 10
subset_size = 20000
test_size = 2000

dataset

mnist_train = dsets.MNIST(root="MNIST data/", train=True,
transform=transform.ToTensor (), download=True)

mnist_train = Subset(mnist_train, list(range(subset_size)))

dataloader_train = DatalLoader(mnist_train, batch_size=batch_size, shuffle=True)

dsets.MNIST (root="MNIST data/", train=False,
transform=transform.ToTensor (), download=True)

mnist_test Subset (mnist_test, list(range(test_size)))

dataloader_test = DatalLoader(mnist_test, batch_size=len(mnist_test), shuffle=True)

mnist_test

model
class MnistModel (nn.Module)
def __init__(self)
super () . __init__Q)
self.layerl = nn.Sequential(
nn.Conv2d (1, 32, kernel size=3, stride=1, padding=1),
|x| = (batch_size, 32, 28, 28)
nn.RelLU(),
nn.MaxPool2d(2) # |x| = (batch_size, 32, 14, 14)

self.layer2 = nn.Sequential(
nn.Conv2d (32, 64, kernel_size=3, stride=1, padding=1),
|x| = (batch_size, 64, 14, 14)
nn.RelLU(),
nn.MaxPool2d(2) # |x| = (batch_size, 64, 7, 7)

self.linear = nn.Linear(64 * 7 * 7, 10)
nn.init.xavier_uniform_(self.linear.weight)

def forward(self, x) : # |x| = (batch_size, 1, 28, 28)
x = self.layerl(x)

x = self.layer2(x)

x = x.view(x.size(0), -1)
x = self.linear(x)

return x

37

model = MnistModel ()

optimizer
optimizer = optim.Adam(model.parameters(), lr=learning_rate)

train
model.train()
train_start_time = time.time()
for epoch in range(l, epochs + 1)
for batch_index, batch_data in enumerate(dataloader_train)
x_train, y_train = batch_data
x_train = x_train.view(-1, 1, 28, 28)

hypothesis
hypothesis = model(x_train)

cost
cost = F.cross_entropy(hypothesis, y_train)

train
optimizer.zero_grad()
cost.backward ()
optimizer.step()

print (’Epoch {:4d}/{}, Cost: {:.6f}’.format(epoch, epochs, cost.item()))
train_end_time = time.time()
print("train time :" , (train_end_time - train_start_time), "s")

test
model .eval()
with torch.no_grad()
for batch_index, batch_data in enumerate(dataloader_test)
x_test, y_test = batch_data
x_test = x_test.view(-1, 1, 28, 28)

hypothesis
hypothesis = model (x_test)
prediction = hypothesis.argmax(dim=1) .long()

accuracy = (y_test == prediction).float() .mean()

cost
cost = F.cross_entropy(hypothesis, y_test)

print (’test accuracy: {}, Cost: {:.6f}’.format(accuracy, cost.item()))

3. CNN

3.1. Convolution&Pooling

3.1.1. Convolution

1. Convolution
Convolution& GJo]E]of] gj&]l filterE stridePFa o] FA]Z|HA], TI-&&L 9fx]of Q= Y27l

38

14
S

S BE gor AuE £8 08 ol H4FY. o]af Filter(Kernel)&= H4Fo] AFEEE HIH9] tensor
ol convolution2 TJO]E] 9] featureE F&E5= 7]s= &

convolution2] ALz A E Zg fjo]E-E Feature Mapo]eFil g}

o2 wjo]e]o] upef filter oje] 2] channekS 7. filter<] channel 5= ¢J&] Ho]E]2] channel
o} g5, E3 filtero] A 28 jo]e]9] channel 529} T2

2
K
n
<)
Y
(9
l'{l‘
e
N
=
il
£,
ol
R
Al
rre
)
i)
o

Filter 1

2! 2 Feature Map

P O N N P = % Feature Map
[

O P P P P |
4|9|2|s5|8 |3 \ E=S="]
s|e|2|af[0]|3 rrryT 4x4 \
2 (a|s5|a|5]|2 %k
Filter 2

s|e|s|af7]|8
s|7|7[e|[2]1 y

— 4x4x2
s|8|s|[3|[s]|a =

6x6x3

2. Receptive Field

convolution A]of] E% r2lo] & o]n]z|ojA] FeFS BF= oI H-S Receptive Field2lal & o]= o5t
Trelo] ZoF layero] Tjet filter ¥ SjEro] ofr]at, o] 7 E= o] gejgt HA] F S 2fn]gk
2z} convolutionof 4] & Lot 27] k9] filterE A&}, L9 layerE A |+ -7 receptive field©]
Z27le L (k—1)+1¢. dl& 50, layer 137} 2 HF0JA] 3 x 3 filterE stride 12 SIHH, layer 29]
L& o] ZE]E receptive field] 7] 5 x 5.

of o]l HJEF receptive field7} S48 AT L] gre WA 7o) ATEE MG F. o]o] uff
£ receptive fieldE FsFE]H 212 NN A8 = =g, o]of ul2} gradient vanishing problem
o] RS o~ QS T strideE F+= WL =0, o] F-2oE accuracyZF o], o] tradeoff
= & 1ejsto] BYS HAs)oF g

Y12 CNNoJAl= 5 R F9°] ZHE0] receptive fieldol] ZFE|R]TE, transformers= o5 o]
Bl o] R E M-S 1738 =, global receptive field7} &,

3. Padding

convolution LF Aol ¢J&] to]E]o] Paddings F7F2 4+ $I& padding glo] nojef# ¢J& fo]E
== n7) 9] padE F7Fe A Y.

oluf pad2] -2 FH 002 5F7 L (zero-padding), 7]&2] 7 7]HFo 2 AAIGFo] W 7] &= S} (replication-
padding 5.

convolution GLFo A=]2 do]E]o] HIS 2] tJo]E] o] Z7]7} FolEA] ¥ B = paddingS F7F5}
of £2 2715 24T + 912, Fat e tolelelA] FFAee] Y BES o] BB v &
A 4 QEH, padding #7Fopel 015 AL 5 U

'~

111213 0]f1

Ojf1fI5(111](0 1(0]1 81198

11101(2(2]1 0|10 5119

11111(2[0][0 1(0]1 61[5] 5

1 Off1 1 1 filter output
input

4. Output Size
convolutiono]]]S} output size= ofgfJ2} Zro] AH4FeF 4~ Ql-2. o] sizei= oF B9 Zo]

M
g
e
|
Q

39

of AFE-g linear layer 7] Ao WOl 7|5 X°gSHoF SFEZ output sizeF AiFek = 1o]oF 9.

Input size - Filter size + (2 * Paddmg)
Stride

Output size =

FF312 covolution layerof A1 2] parameter2] 7= H{FEF)= filter2] HA| 7] 2} input channels, output
channelsZE FlJA] AXFeF 5= Q1L

5. 1D Conwvolution vs. 2D Convolution
1D ConvolutionS filterZ SFLFO] Z(4gF)of gisA]at o] E5}H 35l convolutiono] Y. @]9,
F71 glo]g] 5o thofA F-Ege 5 5. o] F-# Hlo]E 9] shapesS (batch_size, channels, width)¥].

2D Convolution2 ﬁlter§ = 7]7’_4 :-7(007:)0]] EHOH/(‘] O]—'J—‘—_]-YI] -3 o]—— convolution ¢ O]U]X] E]]O]E—]
5o tiolflA] A& = QlS. o] F-2 Hlo]E] 9] shape2 (batch_size, channels, height, width) 1],

3.1.2. Grouped Convolution

1. Grouped Convolution
Grouped Convolution:& o] channel:& 7}XJi= 912 Ho]E1E channele] H& <I2] group© 2 1}i=o]
zFzrofl tf8l] convolutionS s=dlst= 7] 5 ¢l

filtero] 7] K, input channelsE Cyy,, output channelsE Coyuy, output width/heightE Woue, Hout
olgfal 51 convolution®] XIS ofef e} 25

(K K- Cm) . (Hout : Wout : Cout)

group®] 75§ G2} . channelo] w2} o] groupO.2 Ll clglete] olefeh g, Hjo]ElS
ofe] group.0 2 LF glabgro] A Fo tt FH0 Ak cf), 2F Fo] gt HA0z
A DR gl Folk. ok WE Ao Aslng gy et o 2&Ad 9.

Cin Cou
G)'(Hout'Wout' Gt)

G (K- K-

groupt convolution 3§-51¥ %2 feature®] H7+= X F=d] parameter7} o) 5. %, £ HArhs
Zrot] o] A& thuk 2} groupell el SEH 02 @ito] +HHER G channelS Ao]9]
JPHAE PG 23,

channel dimension ¢ G

T | [.

g=1‘ .‘/ N \ g=2

2. Depthwise Convolution
Depthwise ConvolutionS grouped conovolution®] SH2 Z-g o2 & channel ZFZFo] Tt group
=S Aol 718 Q. =, input channels@l group 7iF7F 22

o] 2ol &g featureQ] 4= FREX T parameterZF &0l 4] channel7]2]] A=
bpalslx] 2k

40

3.1.3. Convolution Layer

1. Convolution Layer

convolution FRRS &2 B oA HHH filtero] ZF glo] 7522 ARgE[o] #3511, 1 o]F bias
7F oAl A Y. DNNojA et & dokA] filter®] Z7Fs2]9F biasi= 3t Al] backpropagationo] ©]5]
| X opE. ol o 7} 2]7F Hlo]g o] ZF BEo] FEi o HgEHE o]F F7 7}5X](Shared
Weight)2F1l oFal, o] & BF4]-& Parameter Sharing©]2F1l €F.

POl 2F 4relo] 27 layere] 77} 25 Aol YIIEL, convolution layero A= 2} 4Eo]
A layero] 22149l AR A7 dF o] 9.

linear layerof] v G4 2L 5~9] parameterE 7FF.

bias

2. At

pytorchofJ A= ofgfje}F ZFHo] nn. Conv2d class®2 convolution layer& A = 2. o]of in_ channels
+= 98 glo]E] 9] channels(filterQ] channels), out_channelss= &8 HJo]E] 2] channels(filter2] 7]),
kernel _sizew= filter2] Z7](ex. 3 T (2,3) &)Y. stride= 1, padding:S 0, biase= TrueZ} defaultd].
SHEA]9} biase YRANA FHF.0 2 2751,

oJuf 9] fJo]E] 2= channels first9] JXFl tensor(batch__size, channels, height, width)E Y5 &
g gloJEl= &Y channels firstQl JAE tensorZF EE&EET], o]ufQ] channels= layer(filter)o]
| et gto] 11, height/width+ filter size, padding, strideo] ¢t gko] H.

Conv2doflAl= output sizeZF H=91 3 24 ofdf] = Hl2l=(UE) 4oz 213,

import torch.nn as nn

conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride=1,
padding=0, bias=True)

conv = nn.Conv2d(3, 1, 5, stride=2, padding=0, bias=True)

x = conv(x) # x2| shape (batch_size, channel, height, width)

ofgfjo} Zro] filterE manualstA 245l features FEch= AX 7He2 T
1/0(-1 0|00
1/0(-1 -10-1(-1
Vertical Horizontal

3.1.4. Pooling

41

1. Pooling

Pooling& featrueE Q9Fs}HA] 7|5 o] ALY, o]= glo]g]|o] F 7|5 Zo]AL AR JHE
AAsk= Zle& o

pooling®fl<= maz pooling, average poolmg 59] Q2. Max Pooling filter L 2oJJA] FBiZF-S F&3}17,
Average Pooling2 filter W29 WA Zl-S F&=g}

poolingo]l A= filtere] 7]} stride”} €+ Z1o] LR Y.

poolingof] OJoF output sizel= convolutionI} = oF HFA] 0 2 AlRFo] 7F=6}. filterQ] T 7] 2F stride’} ZF
I paddingo] 0o]H poolmg— glo]ejo] 27| & ﬁlter_J 2712 e ARS8 poolingXE convolution
I} npREZER]| 2 output sizeE HAFE 4= 2. covolutionS channelsE ZFE 5~ A HUX]TE, pooling2
Z]EZ 0 2 channelsE 3R]} height2F width-S & 9.

poolingE parameter& 7FX]X] .0 H 2 backpropagationof O]t XX SI7F S~ E] 2] Ok,

2. At
pytorchol| A= ofefloF ZFo] nn.MazPool2d classZ (max) pooling layer& -G = Y= kernel size
= g ool 7], strider= F GO o]F FFH Q. stride= kernel_size 4}, padding2 00] default®].

oju] 9]g fjo]E|Z= channels first?] 4RI tensor(batch_size, channels, height, wzdth}a Ho
=8 glo]eH 2= TY5HA] channels firstQ] JXFY tensor7F EEEZ g, O]IIH channelst= X =11
height/width= filter size, padding, strideo] 9J¢F gro] H.

import torch.nn as nn

pool = nn.MaxPool2d(kernel_size, stride=None, padding=0)
pool = nn.MaxPool2d(3)
= pool(x)

3.2. CNN

3.2.1. CNN

1. CNN
CNN(Convolution Neural Network)2 HJo]E]-E convolution YRS E-83l= NNQ. CNN& F&£ o]
o] zx]e} go] FIHE F2E5 ZFR]= H|o]E o A&k

CNNE] 855 7| 22] NNZ} Lol 2942 + 8. nde 724oio] 22 2L g2 5 cost
functiong S&5l1, gZxafo] 23] NNoj —E—Xf]o;]-f(convolutzon layer, FC —) wel b7} & 5.

CNN-& & layerofA] HZE layerZ Z<E resolutiono] ZFOFX] 17 width(channels)7F AR &= FEfZ
2 o]o]] ojef FAA 9] W52 HE ZAFR 9] H]o]E (high-level representation)E ZZ5}A] H.

2. CNN9] o]F

CNNE #-§ol+= fJo]El o] gjet 7}32 ofefof Zhs.

1) Locality of Pizel Dependencies

Locality of Pizel Dependencies«— ZF g]o]E](Ed]) 2] FL=40] locality(X] 94)S 7FIth= 7Y . =,
Z} glo]El+= AlZFouf L]=]of disf <15 et Hlo]El& 07’17?/,_ TEYE .

2) Stationarity of Statistics
Stationarity(§5-4) 2 of Statisticsi= Z2 A|ZFo]LF 9o uFE tJo]El o] BHE HEF U slrhe
K99, =, Holejo] Al Az THE Aol SAjA FelEt HlolEst S5

= 591, ARloA] dae RLEZ 9o & 7k i, YE ofFo] s +
3) Compositionality

compositionality= featureS©] G2 A SFLEO] high-level representations LEFY 4~ QIok= 714 ¢l
2742, Manifold hypothesise 13-21] Hlo]E7} HA2 AA3HIS] manifold $)o] ZAFE.0.2 23]

}.ﬂ o
i&
Elo

42

GerE A1e. o] F A1y BE Aol YR Ho]EE Welehe 4o FXHs CNNY
Z]8kQ].

Oioi] mref 919 22 7S BEoks HloJE o tia] DNNZF Hlwslo] CNNOJ Z}A]= o] &< ofa2F
Faxey

1) F7H 72 "9 (Spatial Locality 2-§)

FIES] NNOJAE F125.0 1348 o] Q2 HelElE A-§otnE ofulx] 59 Ho]Hs (A4
0 flattern(HEN)G. o] 5 HOIEIS] 2} Eo] HE localityS F§E%] L], CNNOJAE
filier AFg] A3 Hlo]el7]2le] BAE FEE

2) Translation Invariance

Translation Invariance(o]5s &)L EF HEo] X7lo|if QJz[7] Gl r FU51A shEE=
& 2l ONNojIA] 5jLt9] filter= A djo]E]of] tjoff &85 B2 goJEl7} A= tf= A7kt 9]
2]of] QlejatE g oA FEH. Eol I FEj7F Y tr2EEkE poolingo] o] &Lt ALSHA]

3) A 7FSA A

DNNoJ A 2F gro] x4l o] El& o] flatternsfo] olgol B Jfjoof ul2 7FsX|7F -7+ g
ofx tro] @& de]il overfittingo] BYE7] #l&. convolutionof A& I+ 7FEAE /‘FQOFDE
ZFsR] A ZF A A 31, convolutionT} pooling®f] O]l Hjo]ElE F&olH H4E &9 & 9.

3. CNN 74

CNN-2 oo} gro] 5+-gH. olml 2 layernfcte] GloJ¥] shapes & a2jsfiof of. szt 28
Hoj iz

1) convolutions o= B2
convolution layer, 8-y &=, pooling layero] =A12 ZF layerg 799
2) FCE Z3lol= 72

convolution®] Ar}E 2 tpalglo] B FCo| AL-g5F7] 93] flattern layerS A 13}¢]0 2 yglhel
= FC 3 84 g E?é?—j

flattern layer= ofgfl2} Zro] view() WA ERE 7Fks] FdeF 4 §l2.

x.view(x.size(0), -1)

3) A 724 & cost functionS Aol BB

=
oAl ohE AXY S 4511l (ex. softmaz) cost functions AH{Fgl o] backpropagationS
b
CNN Cross Entropy
Loss
Layer 1 Layer 2 Layer 3 Layer 4,5

ssol TIN

(il

43

Output

Input

Pooling Pooling Pooling

e
/
Q

SoftMax
Activation

Convolution Convolution Convolution Funetion
Kernel RelU RelU RelU Flatten\,
Layer ™\
- Feature Maps —————————————> COC:yeecrted

——1

Feature Extraction Classification E"’bab"'s“‘

istribution

o] 2] Hlo]E AL torchvision®] ImageFolderS AH&3] 73] 2o 4 918

3.2.2. CNNY9] &g

& 7oAl o]n]Z] H|o]E 9] classificationo] X-&5f= CNNE T2 Zelsl=t], o]2Jox o]n]Z]
Ho]e] 52 B-EoHe Aeirha] 5} Lokl ONN-G HET + 912,

ofefe} L& Hofso] EAg.

1) Classification : 50]Zl o]o]z] fgjo]E] & EF class(label) 2 E-F3}= Zl. DenseNet, SqueezeNet,
AutoML(NAS, NASNet) 59] Hdlo] Zxj}.

2) Detetion - 16111} #1612 Slelefols] A1) 319} casss 24

3) Tracking : B2 HJo|E] Fof|A] o] 9Iz]& X]&2 02 F2ol= Z. AA|F detectiond] 1, Z}
zZE) Y 7k AyEAIE F&%. MDNet, ROLO 59] Hgo] &3 Hﬁ‘

4) Seqmentation : oJu]] B0l ol Aol HFSH= WEL HeJsls A. FON, U-Net 52|
o] ZAjat.

5) Image Captioning : o]=]] Hlo]ele] ot HAE B A= 7

6) Super Resolution : s o]n]3] Hlo]ElE TasHs ofn]x]2 Wgkshe A

7) Generative Model : A 2-2 o]n] XL} H]L] Q Ho]E]-E& A45l= Z.

§) OpenPose - o]u]] HJo]e] SolA] AFeke] A} B3 HIAE FEoHE A,

2} Zopol|l Al Ab-gshE B2 pytorch Rgolut ol] 2 = 9l

3.3. Advanced CNN

3.3.1. Advanced CNIN

bt CNNS| FHAES dopRA. VGG ResNet2 ol 02 H2lgh 7A14¢l 729f 22
2o Hopp.

1. LeNet

LeNet:2 1980¥t] CNN xz3}7]of] 7j8tE] CNN EY 2, MNIST 5= Zu8f &34 o]u]z] & Sl456l=
glo] F£2 AFEE S

LeNet] o JE|3= glolA] Huli 7|2 Ael ONNO| 225} 2:&. ole] 79 convolution layers)
pooling layerE AHA 71 ZAIFE FCO E-& ¥ classificationg}.

2. AlexNet

AlexNet-2 20121 ILSVRC(ImageNet tjo]E]Al)of A 53Fet CNN RE 2 DLO| 7}s4S H YIS
AlexNet9] ofZ|EI 2] = ofg|o} ZHe, of 2] ZH 9] convolution layer2} pooling layer& A 1 d3F& FC
of 92 T classification®}. =22 ReLUE &Y e+ AFgolHl, 7719 7 2ol CNNE 7246t
& 7 AuE R EE (ensemble) =

44

Case Study: AlexNet

[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:
[227x227x3] INPUT

[55x55x96] CONVA: 96 11x11 filters at stride 4, pad 0 . o
[27x27x96] MAX POOL1: 3x3 filters at stride 2 Details/ Re‘é}gﬁ""es'

o - first use of}
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2 - ﬁ:‘;ﬂ N(%g/aﬁfe(n”tgtﬁgzmm” anymore)
[13x13x256] MAX POOL2: 3x3 filters at stride 2 i dmpgut 08 9
[13x13x256] NORM2: Normalization layer - batch siz?128
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1 T aGD Momentum 0.9
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1 - Learning rate 1e—2. reduced by 10
[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1 manually when val acouracy plateaus
[6x6x256] MAX POOLS3: 3x3 filters at stride 2 - 12 weig 5.
0% oo newons -7 AN ersembles (.2~ (5.4%)

[1000] FC8&: 1000 neurons (class scores)

3. GoogLeNet

GoogLeNet-2 20144 googleo] ILSVRC(ImageNet Hjo]E]Al)of 4] F71eH CNN HE ¢

GoogLeNet o} Z]E] = ofaf o] Z-5. H1 7.2 CNNE AF§-31X] 2 inception moduleS A-&3f 45
TAGAE. Inception Module-2 A2 CFE F7]9] filter& AF&Sl= convolutionZ}F poolingS ¥ & 2] 02
A8¢ H 1 F7E AL 22,

Inception module

ILSVRC 2014 winner (6.7% top 5 error)

3.3.2. VGG

1. VGG
VGGE 20149 2~ X E fj5fo] ILSVRCOJA] F7) CNN 229 oJaf 73 VGGE VGG162 2,
Fol & A= e A 7HAE layer(conv, FC) 9] Zjw5 HEY. VGG1L, VGG 55 ZA%F

VGGO] ol Z|El A = ol o} ZHE. conv3-2562F ZH2 H7]= 3 convolution layerofl A<= filterQ] sizeZ}
30|11, channels(depth)7F 2560]2F= A Y. HojjA] 4w E CNN 253} go] of2] H9] convolution
layer2} pooling layer& AA 1 AilE FCo] Y& H classificationgF. Tlal o & & o] 7FESF -
ZE JIXE=g], ZF filter sizeZ} 8, strideZ} 1, paddingo] 102 convolution ¢4RE TJo]E] Q] sizeZ
B0l 5. t]o] 9] size:= pooling} FCOJ O] ATk HZ .

45

Table 1: ConvNet configurations (shown in columns). The depth of the configurations increases
from the left (A) to the right (E), as more layers are added (the added layers are shown in bold). The
convolutional layer parameters are denoted as “conv({receptive field size)-(number of channels)”.
The ReLU activation function is not shown for brevity.

ConvNet Configuration

A A-LRN B C D E
11 weight | 11 weight | 13 weight | 16 weight | 16 weight [19 weight
layers layers layers layers layers layers
input (224 x 224 RGB image)
conv3-64 conv3-64 conv3-64 conv3-64 conv3-64 conv3-64
| LRN conv3-64 conv3-64 conv3-64 | conv3-64
maxpool
conv3-128 | conv3-128 | conv3-128 | conv3-128 | conv3-128 | conv3-128
| conv3-128 | conv3-128 | conv3-128 | conv3-128
maxpool

conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256
conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256
convl-256 | conv3-256 | conv3-256
conv3-256

maxpool
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
convl-512 | conv3-512 | conv3-512
conv3-512

maxpool
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
convl-512 | conv3-512 | conv3-512
conv3-512

maxpool
FC-4096
FC-4096
FC-1000
soft-max

Table 2: Number of parameters (in millions).
[Network [AATRN] B [C | D | E
| Number of parameters | 133 [133 [134 [138 | 144 |

2. At
pytorcho Al-= torchvision.models.vgg 2 VGG11EE] VGG197}X]E 7FHSHA] FAE 4~ Q== &,

ZlEA oz Qe 3 x 224 x 22491 o] gl

ofefel Zro] ZF conv(channels X]7)2l pooling $JX] 2 dzctzonaryE P45 make layer()of] EoH
conv H5.0] layerS WY - 918, o] VGG()o] o] mEL 4. o] AYE mE] 2} filter
= Z7|7F 30]31, Byl Y& 4~ Q= ZF)8 fJo]E= (3 x 224 x 224) 9. num.__classesofl= classifi-

cationo] 7}A1~E x| 3]s},

cfgs: Dict[str, List[Union[str, int]]] = {
"myconvil": [64, "M", 128, "M", 256, 256, "M", 512, 512,
"MM, 512, 512, "M"],
"myconv16": [64, 64, "M", 128, 128, "M", 256, 256, 256,
"M", 512, 512, 512, "M", 512, 512, 512, "M"]

conv_layers = make_layers(cfgs["myconv16"], batch_norm=False)
model = VGG(conv_layers, num_classes=1000)

torchvision.models.vggoll Al FQleh 5= Qli= FA & Q] T E= ofefof Z-5. B aolct o] ZEF gk
oA =7 51o] AFE-5LAF.

46

class VGG(nn.Module) :
def __init__ (
self, features: nn.Module, num_classes: int = 1000,
init_weights: bool = True, dropout: float = 0.5
) —> None:
super () .__init__Q)
_log_api_usage_once(self)
self.features = features
self.avgpool = nn.AdaptiveAvgPool2d((7, 7))
self.classifier = nn.Sequential(
nn.Linear(512 * 7 * 7, 4096),
nn.ReLU(True),
nn.Dropout (p=dropout) ,
nn.Linear (4096, 4096),
nn.ReLU(True),
nn.Dropout (p=dropout) ,
nn.Linear (4096, num_classes),
)
if init_weights:
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming normal_ (m.weight, mode="fan_out",
nonlinearity="relu")
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d) :
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, 0, 0.01)
nn.init.constant_(m.bias, 0)

def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.features(x)
x = self.avgpool(x)
x = torch.flatten(x, 1)
x = self.classifier(x)
return x

47

def make_layers(cfg: List[Union[str, int]l],
batch_norm: bool = False) -> nn.Sequential:
layers: List[nn.Module] = []
in_channels = 3
for v in cfg:
if v == "M":
layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
else:
v = cast(int, v)
conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1)
if batch_norm:
layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)]
else:
layers += [conv2d, nn.ReLU(inplace=True)]
in_channels = v
return nn.Sequential (*layers)

3.3.3. ResNet

1. ResNet
ResNet-2 2015 nfo] 7 2 4 T E oA F7heF CNN R E Q). 7525 7FX]E layer(conv, FC)2] 7§49
o}2} ResNet18, ResNet50, ResNet152 So] <.

ResNeto] of7|EI AL olafjo} ZHS. ResNet-2 & 4709] layerS 7}x]11, Z} layer= o] 2] 7§29 residual
blockE=Z 4 Eo] A&. Residual Block2 weight layerE 216l ZFa} BEFFs|x] 912 zFo] oFS =9
Fro 2 Sl= layer 229, G o]#] HZF-L Residual Connectiono]2F1 &},

VGG 59] v ResNet-2 &4 Zl-2t], o]= ResNeto] residual blockS AF&5L7] wjZof 7F=gF. 7]
£9] ONN-2 U7 77 4o gradient’} £ E+= 2 A7} EXIR], residual blocksS AF§-
ol featureZ} 7 A= Z] grof BEo] Zlojx & dget ofFo] 715k ojujje] o]gl HFE Skip
Conncectiono]2F17 &F.

* Plaint net * Residual net

X X

weight layer

weight layer

anytwo . .
stacked layers F(X) identity
. .
weight layer
Hx)=F(x)+x @
HE) () = F(x)
X3 X4 X 23 X3

Conv2_x identity ' Conv3_x identity Conv4_x identity ' Conv5_x identity
| Y

)) b
L L L4

14

| 1 %
| 1 =1 =+ «©
- @ © © o™] -
o ! PN 2 b 4 SIS ~ T N - - s |[5
= X & © «]~ i L =) = = g 2
RN L R Yy Y T o> s S| B
o - -
IEI i o % '; | x X x ‘; x x ‘; >
| : § = © -] © © - e « - =
| I 1
1 1 o 1
-c-
N ™ -
® = 8 & b % %
E] X o = = ~ -
o~
=% - =] ™~ =
5 s
5

2. Basic block vs. Bottleneck block

residual blockol= basic blockI} bottleneck block 50] <. ResNet-2 basic blockE F bottleneck
blockE= F4H.

48

Basic blockZ 3 x 3 filterE 7}X]& 27]9] convolution layer2 A= ©<3F residual block®]. o]
padding2 1, strides= 191 Zo] 7J[E o2 o]zH [o]E] 9] sizeZ} 7-X]H.

Bottleneck block(Bottleneck)2 1 x 1 filter& 7[X]= 27]2] convolution layer2l, 71 AFo]9] 3 x 3 filter
£ 7] 5L9] convolution layer=2 2% residual block®]. 1 x 1 filter= padding®] 0, stride”} 1
o]1, 3 x 3 filter= padding©] 1, stride”} 191 AHo] 7]E o2 o]z]H GJo]E]9] sizeZ} -3-X]H.

bottlenecko A= nx1x1 filter& A-&8F= convolution layer& AFE-ol=0], o] & E34] gjo]glo] 7] E
Q- X]SFHA] channels(depth)E nO 2]HeF 5 Q12 E3] channelsg &9 ¥ E]—E convolution layer

2 97 O] channelsE S oHl, B3] SPFS] convolution layer 22 AF88 LT} parameter(¢12t
2F)o] = Z14 5}
= T1a-

I
I
I

BasicBlock bottleneck
(for ResNet-18/34) (for ResNet-50/101/152)

3. A&
pytorchoAl= torchvision.models.resnet © &2 ResNetE2 HHESHA] e &= QI =

ZIEZ o2 Q8.2 3 x 224 x 224 9] gjo]E F g}

ofefle} ZFo] ResNet= F£4geF o~ Q2. A Hix] OIX]-E ResNet2] ZF block-S basic block© 2 &
OIZ], bottleneck© 2 & ZHQIZ] 2]F s}, = gl oixl2 = 7k layer7]- H 7H9] blockS 7}& Aol
2|g5fal, Al BA] QIRFZ= classification®] ZFAE, Y] HJZ‘II OIXIEL Z7|31 7% & 07—?1

SF A o
<G 7 9.

=

My ﬁ oY

import torchvision.models.resnet as resnet

resnet50 = ResNet(resnet.Bottleneck, [3, 4, 6, 3], 10, True)

Zaof

auj

Wl o] ZEE gl

o
Qli

X9,

torchvision.models.resnetoA] A& o] 7o FEE S1Q]SF 4~
9] 5510 AMEHI. 27} olA] 7)ol HREAE 218

FEOJA] expansions input channelsof] &4 ouput channelsES dY5F= gLQ. basic block-2 chan-
nels7} BIsFx] @ro o2 jo]il, bottleneckS channelsZF 4BJ7}F E]B2 49]. EoF 12, planes *
block.ezpansion= 3 blockQ] output channels$.

strideZ} 10]H block-S A& -FoF input size2l output size= o;]-77’] SRIEIZ]gF 2, 8, JHA layer
o] A YA blockofJAlE= stride’} 22 X ZE B2 output 32267]-

basic block-S AF-&5F= bottleneckS AFESE convolution layer& EXFF HJo] E]9F skip connection O &2
Yol L gjo]g] 9] shapeo] TFE F-L, FE A= downsampleO]E]'— layerE skip connectionof] F£7F2
A]-—Q-o]] o]& mF=, E3], stride’} 10] ofL] ALY, bottleneckQ] F-2 channels”| G222 2 downsample

= AFggllof gt FEE HH Z} layerof 4] A A blockofl= downsampleo] X-EEE= 718 oF = QS

A old 71 iedlo] Agts] off o HoldA] &3] ofsfstAlE RSt Qs

49

4. RNN

4.1. RNN

4.1.1. Recurrent Layer

1. &

A (Cell, Memory Cell, RNN Cell)& ofeflel Zro] ¢t a2 Z& HIeHEyl oftel, AAZ oA
Hdbo] Thg ikl AHESHE RNNS] 712 74 249

HofAl= o]l et Al Aalg AFEOIRE g £AI7) Ao BrgH. HojA] ohs d2 HY
FL ZIe 2g=02 tofx] ofo B2 Hidden Stategfr 51, 71 3 7]E Hidden Sized}1 o}

outputs
shape=(-,-,2)

P
- L d

I
A

i

v
> —>

\4

®)
1
A

sequence length shape=(-,-,4)

AL tpF2o] Wl b, inputd} hidden stateﬁ AFgl ARS gk HoA @ EE diE A=
“770}[3“7 oFeliot 25 xy= YE, hi_1:S hidden state, hy+= A 22 FEH(Z), fw+ oA +FoF=
oA} glo).

= fW(ht—l,ft)
Vanilla RNN-& 7} 7] 2.2 o] &efo] A& AF-g5l= RNNY. vanilla RNN2] &loj 4] <=3 % iR e

olafol ZHL. h= sfigr /(]x-lo]]/(-]_,] hzdden state, Y= 212 A o] ZglzFo]. /Uo]]/q o] T 9l
AAE, & 37X 7FSA]7F A8-H. hyperbolic tangentZ} *fﬁﬂ%ﬂl, OI &) A} szgmozdﬂf 719
SAIE FE, W 2] AAAE hy 1 9] G F2 002 T

he = tanh(Whphe—1 + Wanae), ye = Whyhe

(a) Vanilla RNN layer

E-2Z vanille RNN 2]oj = LSTM, GRU 5 t}ofst o] RNNo] EXG}. vanilla RNNE exploding
2 vanishing gradient problemo] EXsF=0], LSTMZ} GRUZ o]& o] F- glder 4+ QL.

2. Recurrent Layer

Recurrent Layeri= RNNOJA] A2 ZAE layerd.

50

recurrent layerol A= FoIgt A2 ol HiE BHolnE Agkeoz EoeE ofe o] FolE
52| {7lo UEY 4=], AAZE hidden state 7S B-Eo]o] Alo] HE TEEE A9l A
A o 2= olfo] Ho] AR E]= F10] B2, oF A E 9] parameter(7}gX])eFo] A9l =, {1 sequence
7F Eo19tE A& 59| parameter®z oF50] 753k

3. AL

pytorchofA] recurrent layer—= ofgf|2} Zro] nn. RNNS A-&35f] Al 4= Q12 nn. RNNojJA]= batch_first
7} defaulto] R]gF, o 7] o)Al TrueQl A2 7Fgsla g a]et.

ojuf 9]g fjo]E| 2= 3¢ tensor(batch_size, Sequence_length, Inpul_size)E E-= (2219l TFY
batch HloJE X AFE ZFs8F.). o] squence length= AJZFe] ulef Hoj] Fo]7l= ¢ge] F 70|11,
input sizei= 2} ol Soj7he ¢Jeie] Zo]el.

=8 glo]El= 324 tensor(batch__size, Sequence_length, Hidden _size)9]. ©]ufl hidden sizes= hidden
state0] ZoJl. vanilla RNNO| -2 &g 2] glo] 7] [E &, hidden sizex= output sized} &%
& gelsbd, shbel batchellA] Ho]HE ZF AlZicjbcE @ Wi o] EEA] hidden size W0
HolE 2 225 A

hidden states= 3XF¢l tensor(Num__layers, Batch__size, Hiddens _size) . num layers+= sl recurrent
layere] |+~2]. o= RNN 23] 44 AJo] X155} batch_firstohe AE-glo] shapeo] Z4E.

arsizl = A WA (outputs) = FH ZYZHE BL tensoro] L, = WA (status)= BF]EF HojA]o]
hidden state(=&2 7).

oIzFof] num_layersES 2] 5Fe] k= OFE9] recurrent layersE 82 4~ ¢!

Ojo

import torch.nn as nn

rnnl = nn.RNN(input_size, hidden_size, batch_first=True)
rnn2 = nn.RNN(input_size, hidden_size, num_layers=2, batch_first=True)
outputs, status = rnnl(input_data)

=False

.1.2. RNN

1. RNN

RNN(Recurrent Neural Network, s=8F 217322 X 7] =8 225 7= Al(recurrent layer) 52
T&E NNQJ.

RNN:2 sequential H|o]E]E 2] 2]sle A& 1 2202 ¢} sequential HoJEl= A7} 523F Hlo]E
2, REel 24 dolH] YRel AY. HEFz el 4 € B e o]t So] U2
RNNS| S 7)&0) NNo} £ 49T + 8. RAg 74510 28 S e H cost
functions S&of1l, g mto] Qg NNoj EAol=(recurrent layer, FC &) W2 b7} 251
ESH RNN, transfomer solAl= @8 dloJEE 2] 7Fset @912 WA = 2[ol=g], ojufe] zf
RA4E Token(EZ)o]2k1l ¢f.

2. RNN 74

RNNE A}g5He Bajo]] jeh §el2 7 728 74T 5 e

o]l =8 9] Jl~o o2l one to many, many to one, many to many 529 FZXE 7H &+ =
& Eof, ofgo] 18 oJA] one to many<= image captioning 5, many to one2 classification-59,
many to many~= translationZ} video 2] Sof] AF-g&H.

AR

51

one t_o one cie to many many to oie many t_o many mj\y t_o mTy
TR
] [HH [HHEHHD [HH
t + bttt bttt AL

J 0 [DOD CDO UL

ot Q Ao recurrent layerE of 2] 7] ZrALL FOS}F softmar 52 AF&SFH 5~ 912

recurrent layerof| A= 7|22 0 2 Z2zF] hidden state2] shape©] EotH], Y5l= shapeo] ZE
2 9J5]] hidden stateZ}X] ¢F=/3FFsl= AL AL 9k 5~ 9IS, o]of wraF recurrent layerS-<
A%l o] FC layerg AMg-a] 2715 EJ—’F,’: Aog mds E N arAr

3. RNN &g
RNN-L oJ#fo} 2] sequential Hlo]E}E H&]shs Hof Fof Hgo] 7F5e.

1) Language Modeling : 50]%] HAE fJo]EloA] Toli} 3] 25 ofgolo] HAEE Ao}
Arf 22 ofsfets A.

2) Machine Translation : RNNS 2-§¢F ¢1o] B,

3) Conwversation Modeling : =2 of 8= S-S A-JoF

4) Image Captioning : ©]m]7] Ho]gle] th3t BAE 41

=& NNoJME &A JHE featureZ S|4 sequential HIOJHE St5d S+ A
O|EA]E YEfoF 5111, W2 parameterE AFES[of SFEE g1t o|z] L.

=

, =40 mHE HlolE 9

4.2. RNN 74 dA]
Apgol whel of@ Ao RNNS T4 4 x| dobrat,

4.2.1. 244 dolg Az
—Exf%ﬂ(aléé) Ho]E& Ae]sks RNN Zae ofeleh Zo] 14T+ 91

1. g2 2A Hold
#e B Holeie] A baichd shibe] BADE AR o, 2} £} SpHE Ao
YeBto] 1 e o T Uge] & £XE A|SHEE RNNG 245

olglA HIAE fJo]g] 5& Ja]ar of ¢J& o gt HLZ]S 1S oj&sl= dFAS Auto-regressive
237 3

i = 5117 one-hot HE] 2 H3]l5}o] o]g] oz Al-gol.

zF
7]
HEE& of et 175*8 Hlo|ElE F¥ohs s AleJolils 7] NNO| ZE9F otz Jefgt

52

sample = "wow it’s amazing!"

data
data_list = list(set(sample)) # dataOlA] RSt EX=29| 1list =
data_dic = {d:i for i, d in enumerate(data_list)} # =A}

data_dic_rev = {i:d for i, d in enumerate(data_list)}

input_size = len(data_dic)
hidden_size = len(data_dic)

data = [data_dic[c] for c in sample] # data_srcs A= B3t
X_train = torch.FloatTensor(datal[:-1])
y_train = torch.LongTensor(datal[1:])

eye_matrix = torch.eye(len(data_list))
x_one_hot = eye_matrix[x_train.long() - 1]

model
rnn = nn.RNN(input_size, hidden_size)

learning
for epoch in range(1l, epochs + 1)

rst_str = sample[0] + ’’.join([data_list[n] for n in prediction])

1 224 dlo]g

w At tlo]Elo] HiofAl= batch FE #AE ShE A 2lol=& of. ojuf] FE FAFHL HA|]
apelo] chef A1 get o]o] windowo] e Y. 2, 7} FE AL ipe] batch2 A
RS Ao A el & oA of5gl ojuf FE FAFES Hoj gl 11 8 o2 HiE 5 0=
windowo] oS E= P FAES dSolEE RNNS 79

2} B0 £A1E Hololi one-hot HE|Z W] YEOR AREF. ouf B 534 tensor,
22 2212l tensoro| 22 cross_entorpy() AFSole F-2 1 FXE WA 5)oF g

22
EL olgfof Z+2. 27]9] recurrent layer2} linear layerE& A5 2E-S FZA4 L

N Moy,

o
gt

T

Ky

53

sentence = ("if you want to build a ship, don’t drum up people together to

"collect wood and don’t assign them tasks and work, but rather "
"teach them to long for the endless immensity of the sea.")

sequence_length = 10

char_list = list(set(sentence))

char_dic = {d:i for i, d in enumerate(char_list)}
dic_size = len(char_dic)

data setting

x_data = []

y_data = []

for i in range(0, len(sentence) - sequence_length)
x_str = sentence[i : i + sequence_length]
y_str = sentence[i + 1 : i + sequence_length + 1]
x_data.append([char_dic[c] for c in x_str]) # x_data listOj
y_data.append([char_dic[c] for c in y_str]) # y_data listOj

o
Ny

x_train = torch.LongTensor(x_data)
y_train = torch.LongTensor (y_data)

eye_matrix = torch.eye(dic_size)
x_one_hot = F.one_hot(x_train, num_classes=dic_size) .float ()

model
class LongCharModel (nn.Module)
def __init__(self, input_size, hidden_size, num_layers)
super() .__init__()

self.rnn = nn.RNN(input_size, hidden_size, num_layers=num_layers)

self.fc = nn.Linear (hidden_size, hidden_size)

def forward(self, x)
x, status = self.rnn(x)
x = self.fc(x)
return x

model = LongCharModel(dic_size, dic_size, 2)
optimizer = optim.SGD(model.parameters(), lr=learning_rate)

54

for epoch in range(1l, epochs + 1)
hypothesis
hypothesis = model(x_one_hot)

cost
cost = F.cross_entropy(hypothesis.view(-1, dic_size), y_train.view(-1))

train
optimizer.zero_grad()
cost.backward ()
optimizer.step()

rst
prediction = hypothesis.argmax(dim=2)
rst_str = "" + sentence[0]
for index, str in enumerate(prediction)
if index == 0 :
rst_str += ’’.join([char_list[n] for n in str])
else :
rst_str += ’’.join([char_list[n] for n in str]) [-1]

if epoch % 10 == 0 :
print (’Epoch {:4d}/{}, Cost: {:.6f}\nExpected string: {}’
.format (epoch, epochs, cost.item(), rst_str))

4.2.2. Time Series ©|o]g A7

Time Series HJoJE] X E]
times series HJO]E]E *]2]5]== RNN R Y-S 74 = Q5. Times Series(X|AE) Hlo]El= 44
AlZH ZHA 0 2 bRl glo]ElE 2ol

o 7]ofl A= many to one ME 2 time series GJOJE]E Z]2]gF. o]mf many to oneS T3] HEX]
Z8gtE AFgole & 29 = QAT o] @A 2GS hidden stateQ] shapeo] ZEZF2] shape
: E

a2l AJotE. o]of uFz} recurrent layerQ] BE Z8ZFS AFESLL, recurrent layer
A= 2

2. 7t
ofgfiel go] g 5 5. o7]oA+= HIoJEE o 2] batchz ZIA] &)

55

5t

)

ol
=t

of

| FC layer&

data

x_train, y_train = set_xy_from_data(train_set)
2t2t (batch, 10, 5), (batch, 10, 1)

model
class StockDataModule (nn.Module)
def __init__(self, input_size, hidden_size, output_size, num_layers)
super () .__init__()
self.rnn = nn.RNN(input_size, hidden_size, num_layers=num_layers)
self.fc = nn.Linear (hidden_size, output_size, bias=True)

nn.init.xavier_uniform_(self.fc.weight)

def forward(self, x)
x, status = self.rnn(x)
x = self.fc(x)
return x
model = StockDataModule(data_dim, hidden_dim, output_dim, num_layers=1)
optimizer = optim.Adam(model.parameters(), lr=learning_rate)

train

model.train()

for epoch in range(l, epochs + 1)
hypothesis
hypothesis = model(x_train)

cost
cost = F.mse_loss(hypothesis, y_train)

train
optimizer.zero_grad()
cost.backward ()
optimizer.step()

if epoch ¥ (epochs / 10) ==
print (’Epoch {:4d}/{}, Cost: {:.6£f}’
.format (epoch, epochs, cost.item()))

4.3. Seq2Seq

4.3.1. Word Embedding

1. Embedding

Embedding gjo]E] & HWE]SISF= 7|8 T= 7 AulE 9sl =, gjo]E-E digitalizeSl. embedding O 2=

one-hot encoding, word embedding, BERT 5°] $l-=.

2. Word Embedding
Word Embedding2 g5 labelZ 4= HEE dens

- T

9. F& NLPo|A] 23] 2} tol g wejstg} af 41§

obojlAl = =g label HIE]E one hot encodingS Z]-§73]
23 02 sparce$t AIFE TESFEE HGESXY £ 2. HMHO word embedding2 xFglo] X1l
densePt A9 S ==t

a
r&“
>
I
oflt

T,
I,
Hu

vl gtol

718 E

r{r
rr

56

7 47}

W E]SIYZ]TF, one hot encoding2 ZF0]

wgl]
Embeddmg Table:2 92 label HE]ZF 712 & Q= label9] 71Al+E PO &2 embedding(&2) HE] Q]
FZ71E g2 5= P Y. embedding tableoz’]—"— 7 labelZ} 19] O]-&E embedding HIE]Z} Z2|%]o]
Q2. embedding table- embedding layer2] parameterz, backpropagation X]o]] &% sl=].

Word — Integer = lookup Table = Embedding vector

0 05 |21 |19 |15
1 08 |12 |28 |18
01 |08 [12 |09 ,
i . YR ETRET ., ©H0{ ‘great’2]
= . (Uulg HH
great 1,918 [12Ta7 T1s J15] 12 [07 18] 15|

word embeddingS embedding tableofA] ¢ label HE] O] ZF labelo]] 3G F= embedding Y E]-E ZFof
vt} = 402 E2l.

4. ZE

pytorcho A= olgflof Zro] nn. Embedding 2 2 word embedding layerE A = ¢l A &) oIz}
(num__embedding) 2= embedding table2] ()8 HEI Q] F7]. ex. HE7%l]]K-] trolo]) S, =
OIZ}(embedding_table) 2= embedding tableQ] ¥ (embedding HIE]S] F7])& |2}

import torch.nn as nn

embed = nn.Embedding(vocab_size, embedding_dim)

212 pytorcho A= Word2Vece, GloVe 5 AFd S & =] embedding table2 7FX]2F AF§SF £~ ¢l

To

4.3.2. Padding/Packing

padding@} packing2 A2 C}E Zdo]E 7IX]E sequential HJo]E]E A 2]5l= 7|HE Q. sequential T
o] e Zol7t AZzlol A FPAHS FeF gz HAg e Aa g

Padding2 717 7] sequenceE 7]F 0 2 L} Z] sequenced] Pad(F2 0)& F7Fol= BH] Y. padding
< FEo] ZFASER]GF padZ} ol Atk Harl gl RS AjISHA #. Packing:S padZE
Fo1oke il 7F sequence] 2108 Aol B-EIl= HHY. packing® FHo] HEH HH .

H E L L © === W o R L D <pad> <pad> S H o R] <zpece> fHLG) R c u ! T
M D N | | G H T i<pad> <pad> <pad> <pad> <pad> H E L L O <o = W O R L D
Ci A L C U L A T ® | o kol el AL fclultlalnm o N

pytorchof A= ofg| o] 78} Zro] J 7] 9] SF& A-E-35] 7] tensor, packed sequence, padded sequence
AFolof Al e E welel = QS FFil=Z, pytorchoi]/(-] packing= oF2{ ™ TJo]E|7] sequencel] Zo]o]
web WA o2 YE 5ol Yolof 3

57

List of Tensors

[Tensor]

pack_sequence pad_sequence

pad_packed_sequence

PaddedSequence
Tensor of shape

PackedSequence

[T x Batch x *] or
k.
pack_padded_sequence [Batch x T x *]

T is maximum sequence length

4.3.3. Seq2Seq

1. Seq2Seq

Seq2Seq= sequences ¢ BHIO} sequencedS Z8ol= RNN 2dQ]. F2 WY X
AFE-H.

5 many-to-many RNN-S 9] & sequence2} &8 sequencel] Zo]7F c}E F-LE =] 2]5}7]
E5 o] 7 29 sequencer} Y sequence FHF objf G LTS Ao
seq2seqolAl= YE o] FRE o]% Z&olEZ 9 sequence HAof tier 8 sequenc

o] o
AR

r
3
o
o
o,
re,
I
o[r[
<

iy
e

Seq2Seq

seq2seq= encoder2} decoderz 4. o] == REL thro] A5 AFeF A Q. EncoderdflAl+ Y&
o} xjejotal, Hg Hrrg 2gH oo HWE R decodero] hidden state® Gl Decoderof A=
85 YHY. oJu] F£2 decodero] HHA Hofli= Start FlagE g o2 Y11, 7 o]$9] Hoj= 2
o Beg geon uE Hoz nd

2 Y

ENCODER Reply

Yes, what's up? <END>

AN T P S

165 165 IEY

s e s B

|

{ I f

Are you free tomorrow?

thought vector

<START>

Incoming Email DECODER

2. AL
pytorcholI A= oFaf2} 20] seq2seqE FHE 5 Q8. FET} ol mETF

58

of 7] o] A] E]o]E] g Alofli= ZF Trol & labeling3] 17, 3 B2 batchE 35 FEF Z}F batch7]2] 9]
sequence™ Zo]E 97 9 paddingS F71#-S. 2} FA= embeddingS -8 35
ofeflo] oA} Tre] sequencel] Hol7F nle] Fofz Qli= 7F-F7F ofH e, ZF sequence] HFEX]
alof] end tokenS EojA] SF53F 0]F decodero A= end tokeno] L& m7lx] Z8 sl E oF. FEof
mazimum Zo]E FoJs] =11, 71 Zo]7}1Z] end tokeno] ZEE] gron BLILZ = gf.

decoder®] @8 HJo]ElE= teacher focringS Z-83dl P2, Teacher Forcing2 seq2seqf] encoder
oAl 2t EElgl ditl HA] JHE oS AlF Q] Yg oz ARgot= 7|8 Y. teacher forcingS AF&SFH
THo] Zhdely, ofg 2] fFH Z8S Qg o2 ALgof= RS ot = QIS olnf A A
olgf o 2= SOS(Start Of Sentence) EZ(F2 002 45 tensor)S 2.

o] 7oA=& WA FF tensorEs A2 REo] Y= Aoz FHAY =], batch'H 2 Z} 22}¢]
tensoro] tfol] HHEZS &8 upg2 zajgd Ik QLS.

Oll

model
class MyEncoder (nn.Module)
def __init__(self, num_embedding, hidden_size)
super() .__init__()
self.embed = nn.Embedding(num_embedding, hidden_size)
self.gru = nn.GRU(hidden_size, hidden_size, batch_first=True)

def forward(self, x)
x = self.embed(x) # (batch(=2& 7§4), input_size, hidden_size)
_, hidden = self.gru(x)
return hidden

class MyDecoder (nn.Module)
def __init__(self, num_embedding, hidden_size, output_label_size)
super () .__init__Q)
self.embed = nn.Embedding(num_embedding, hidden_size)
self.gru = nn.GRU(hidden_size, hidden_size, batch_first=True)
self.linear = nn.Linear(hidden_size, output_label_size)

self.output_label_size = output_label_size

def forward(self, y, hidden_state)
y = self.embed(y)

sos = torch.zeros(y.size(0), 1, y.size(2))
y =yl:, -1, :]

y = torch.cat((sos, y), dim=1)
x, _ = self.gru(y, hidden_state)
x = self.linear(x)

x = x.view(-1, x.size(2))
return x

59

class Seq2Seq(nn.Module)
def __init__ (
self,
encoder_embedding,
decoder_embedding,
hidden_size,
input_size
)
super () .__init__()
self.input_size = input_size
self.output_size = output_size
self.encoder
self.decoder

def forward(self, x, y)
hidden = self.encoder(x)
x = self.decoder(y, hidden)

return x

= MyEncoder (encoder_embedding, hidden_size)
= MyDecoder (decoder_embedding, hidden_size,
decoder_embedding)

5. Transformer

5.1. Attention Mechanism

5.1.1. Attention Mechanism

1. Attention Mechanism

9] B= hidden states B1E 20 2 AFg-Sh= 7|8 ¢]. o1 7] A=
]l
’:E”%O 61_2 T

3=

ths RNNojJA] = ¢4bo] mia} gradient vanishing problem©]
iz, o] sequential H|OE] 9] T 1}:2 X 25 PI°l seq2seq”}

o] Sof 93] 7]& RNNO;’] attention<

ot attention< #-§oFH 9

S A et N Sl

2. Attention Function
attention-2 attention function© 2 7_’-;
AFol Key, attention value 274 AJof] 412

2 ol gl

Q. K, V& fFHo vl3518, Qi FH3lo] 243 gAEoe
9F Ko] HlWE Eaj ZH H]T] 9]

. Attention Function& &Xj|
og /{]._Q_ol- §Po] Value §

]2, Ki=

e 47 o]efgt
ot AR AL G

QK"
e

Attention(Q, K, V') = softmaa(

60

& ==7F] ZF hidden stateof] tjjol &H& gt =8 &

Attention Mechanism(Attention) decoderoflA] encoder 22 E] Jol.L WE[E L olL]2], encoderof 4]
seq2seq2ol] A-§ol= S 7[Hre 2

9lonz LSTM/GRUE AME
5Hx]9F LSTM/GRUE A}-g-oF
=518 2, gradient vanishing problemo] 23] f

seq2seq EEWO]IA-]E o]gl S A% Zlo]o] HIEZ 9
HEH = 25 =, long-range dependencyE 7}x]L gjo]El2 2 a]sl djoj] stAI7} ZA L. o] 2

2251 attention modelo] =3SF.

A7k - Qlom g,

i (7L) 9] Query, =g of
¢lg o &2 ol Attention Value

_h.
.

H[t] 2 o] A& &o]i, V.

attention functiono] ofer 4212 ofefje} ZHS. off o]#l A]o= ?0457’—:— = seq2seqof 49] &2
Q= olofl \/dr+= normalization(scaling)S ¢JeF Ao 2, &

p

ALkl <5 gle]

)V = attention value

ol query@} key= A2 H] il (similarity AXF) 7}5-3loF s} 2 F£&2 F Aot shapeS 7FF]. EGF query
_1: o]

9F attention value= FY G shapeS 7}F. OlREL] 7F-L query, key, value, attention value= =S
shape= 714,
3. AttentionS Z-£9l seq2seq
seq2seqo]] attentionS Z-&ol= F-2, query= decoder?} 7FR]= E7 X 9] hidden state, key2} value
= encoder?} 7FX]= A hidden state Z}ZFQ]. B2 ofH R oA L keyll valueZ} A2 CFE o=
94 + 92

AR
decoderol|] £ A]H 9] hidden stateo] gjs)] ofgloF Zro] attention functionS Z-§3]] attention value
= AlkFfa, o]F HHYek
1) decoder?] a5k A]d hidden state(query)2}F encoder®] ZF hidden state(key) AFo] 9] similarity(Attention
Score)& AJ{Fgl o= F2 dot productZ AE-f AXlel &8 o2 A{F g = EXfsFR]E, dot prod-
uct7} 73 DS i L] ok o
2) encoder?] hidden stated}c} E£A5]= attention score FXof] tisf softmazx F& Z-&3f ZF hidden
stateo] tier EFEEE P55 o] ZHE2 similarityo] Hieh g5 ¢
3) encoderQ] hidden state(value)2} Z}Z}oj] &&= &S HoFd [HE C©J5f attention valueE &
=8
4) attention value2} decoderQ] g A& hidden stateE HAS[3L(Z 7|7} 28f7F H.), o] & FCoj] o]
22 hidden state<] Zo]2 ThA] YET H Y B2 52 AH o3 A2 H

Attention value (a)

Weighted sum

Attention coefficients (a)

Attention score (e,)

............. ao

Decoder hidden state
Query

[end]

|

¥

[todavia l\ [estanl I en l\ I casa }

-

Attention value @

Attention
coefficient

Attention score €

Hidden state h

Input token X I are II you II still II at

61

5.2. Transformer

5.2.1. Transfomer layer

1. Transformer layer
Transformer Layeri= self-attentions E3F token2] contextualizeE T l= layerd.

2. Self-attention
transformer layerof A= 8-S token O 2 E5F11, ZF tokens AFo]9] HAIE self-attention © 2 Hl
o]-o:] = E’=7 07-

Self-attentionS Z} token=-, X418 L SF5H H A tokenS-of Ok attention O = X]y’?H‘]——— Zldel. =
EXY AH84 Xf/}_] 9 Holsh it E AFg5] EEH. self-attentionS ofgjol 2L IS
7‘]7‘:] .

1) 2] Z} token x;]| EHOH 7FaA] Wao, Wk, WyvE & Q;, K;, V; & A%

ol ol F+5E 7RSI 2, backpropagation] 25| 5‘1’497%’. ot G Qi K, Vio] 27

S15219] 27]0] njeh AEd, ol gEle] Zojs} o}

2) £ token z; 9] ol attentionS Z-§g}
AIRFSEL, softmarE AHA FE2 HiElgl ZF 2

attention valueg Ak

3) A= attention valued] 71EX] Wo S Fall Ygo] Z7]9} wE token x;o tieh AaFol 27}

=4

rln
Ry
o, 19|
ho
l~>

‘HO

ol

Z} token2 7] 1A} 35 similarityE 7FR] 7] TE0) zj+= x;2F FAFSE gk 7FH. o] @ S AlZF
3lopH ofafel s o]uff ZF tokenofli= XFL19] gholl ZA] sequenceo] Tl context(Wef)o] HFY E B &2
o] 73S ContertualizeZ}1l &F.

62

Transformer
i Block

HE tokeno] ffgf] o]F s=Fof] EZor il g &Y shapeS 7}F]. o]2t ZHo] transformer
layero Ali= tokeno] 772} do]g B-Eo}HA] HEE QBFE7] o] 3 o] transformerd].

3. Transformer layer9] St&

RNN-E Al-g35Fx] @bl transformer layer@h 0 2 8F5S ~al51.11, regression, classification 55 5
Fo - 9.

okenS -3l lossE AAFol1,
backpropagtation© 2 Wq, Wi, Wy, WoS FZHsololo] et5d = U5

=9 tokenS Z8FoF FA]] sequenceof] et Zgo] Exf5]o (sequence-level) sequenced HJHE] token
2 GgaoF o= B9, clefe] Yo R st - .

1) ZF 29 tokeno]] gigF Hut tokens AXFol qES7 o2 g8 o] F- FHut tokeno] A sequence
of gt RE YHE WAL Roln2, Lo} G} 7 tokenEo] GAT ol F FAE.
2) CLS tokens 8 sequenced] ZESFAIA transformer layer& AHX]EZ 5F1l, CLS tokenof Hiet &
S o=gto 2 ggel. CLS(classification) tokenS ojwgl oJu] & 7[x]z] = dummy token© =2,
transformer layerS AHX]H] sequenceo] gjer FJHE ZL HgFo 2 HIYst 4~ 912,

e
W,
Ry
>~
9]
3
o
~—
Rl
Lo
o,
ol
29,
iy
=)
Ol
~
rr
o,
4o
=
S
=3
D
3
R
S
,
N—
=2
rr
R
i
K
oy

Sequence-level Token-level
prediction prediction
y Y,
Classifier f Classifier f
/ A
=]]) 7]]

(s | | B B
g PHS Ff EA Ao HEsE AARS Projectiono]2tal §F. o] of whgt DLof A= ©@e3] 7152
FBL ForL BHL oJulabE ¢

5.2.2. Transformer

1. Transformer

63

Transformer= self-attention 7] 8-S A3l sequential TJo]E]-E SF53dF= NN R E Q). o 7]ofl= 2017
1 =1 Attention Is All You Needo]A]2] 199 7] transformerE 7]HFO 2 2|02

transformer o] ojli= RNNC 2 NLPE *]2]§]S. 5}X]9F RNN-L tj]o]E| & $-X]5}7] o] F 11 zF A] & o]

o] Aol F&5EBE W X]e]l7} 57}l efficiency SFE O SHAIZ} QIS EF CNNE %%Of%

e - ol z]of ':7'0‘70]-7-]]5 7('7XJ] contextE YrYsIx] 23} transformer-= RNN, CNNS &-§35}%] &7

sequential TJO]E]7} 7[R = 412 A2 S PEQ} attention O = HFYgF.

transformers= ofgf|o] Zro] of 2] 7J9] transformer layerz o] Fo]Z]=t], Z}F layer= 1 <eko] ozt

encoder2}l decoderz2 FZEE. encoder-decoder FXE 7}ZIch= HL seq?seqﬁ]— =gl

TAA QL g ofefjof mrZ el gt

2. Positional Encoding

Positional Encoding(PE)2 embedding® tokenol Al HHE Z7J5}F
Jg =l

2 952 Y Bd] Bk Hoz 2@E. oo ufef 4
5}

Z1 Q. o] & tokenH 2 L] x]of
El= tokeni} & JeF F7]ofof

attention¥h$ o1l content Fi= FIHEA G 4] B oA HiE #1517 S w4 2 9]
A YRE Z7}olx) ghovl, FUsh £7] token 02 74 H] AXT T £} BHE E sequence?}
Felol] AT 48 o] WAT 5

=

HAE HloJElE Aglof= -, PEE off 9] 2712 £HS WEol YEE tokend 2 T +
QlojoF gt && HAE fJoJE7} ofte} thE HIo[EHE A2[ol= F-ol= o Hlo]E ol Fetehs

HFA] S /(]-_9_07-_

1) 2 913je) ek 5-UE Fololo} B
2) RIXI7F 7f7f7°~’17 #ho] fFAFHoF ¢f. o= 2 EE flo]El & & =] 2]ol7] Pk £ ez, ¢lojoAl=
53 §ae] gt AlE fAe A 2.
sin/costl- S o DI 22 BT 3 . 2 F4 O} L. dyar T vk
9] JJ4=0]11, pos+= sequenceol 4129 7—]X] = BE 9] ZF 42 LERJE olglA Q). jof o]&l] F7]7}
B E= 2E Yo, iz} &2 Zojl A= posol WRE gl BSprF 241 i7f 2 Eof A= HSEF ALS.
ol wiet WEs} Y AL olhE S U2
sin(wg.t), ifi =2k e 1
"= P {cos(w’; £), ifi=2k+1 = 10000%/4

i (feature dim)

Elo

t (token index)

o

3. Residual Connection/Normalization

transformero Al= ZF layer& AHZl & residual connectiono] T-E & H4F} layer normalizationS
T

o]Fof tFE ZAX]E residual connectionS Z-&8FH oJ& layer7} Zo]HAE =S HIESF -
2. o]mjgrASIAI = residual connectionofA] Y8} Z8-S fslr] ojZo, Z} layer—'z o] & 9] shape3
HEote & GAE o] Qs

Layer Normalization-2 o;]-L]-_J tokenof] gjal] ZF featureZd 52 normalized= Q). =, tokeno] 7}X] &=
#E7]8] normalizationS $5l= Z1. 0] batch normalizationF & Yot =A&] (Hot, B parameter
/<]-—9-) O &2 AI{FE. Z]Sol= normalization layer& 2} layer F Ol @ =& (Post-norm) A A HX]aF, & xf
= 515 oFg A 529 =HJA] normalization layerE ZF layer 9Hof] @ =& (Pre-norm) HA5l= 7 2 o7

oF 77 O

9l

o %9,

5!
ol

64

Sentence Length

4. Stacked Transformer Layers

tokeno] L1 mfj7}3] 4.

oJoj] uFE transformer2] A2l

Layer Normalization

s

transformeroflAl= of 2] 79| encoder2} decoderZ} ZFZ} A2 =2
encoder/decodero] E+= TS of 2] ¥ HHESle] npx]alo g A E

-~ 'H’..
gy
.
W '\'Q.\‘-"‘tL
-

Ao

oAl nfz|ofo] &8 AVFE decoderd] HAYdlil, HE decoder= G 7=
2 88 YHY o oZZ1S hy Frlste] A o9& dalg =& d

TEE ot 2

—
m
]
a
o
o
&

_J

Add & Norm

{ Decoder]

i

)

{ Decoder]

i

ding]

Embedding
& Positional Encoding

[Encoder
Feed Forward T

[Encoder
Add & Norm
Multi-Head T

Attention Embedding

& Positional Enco

Encoder T

Transformer T

RF

(<]

ZI5l =
- a-

Multi-Head
Attention

Add & Norm

Masked
Multi-Head
Attention

Decoder

5.2.3. Transformer 4

transformers= ofgjof ZHe A4S 713

9713] BAE A S

65

=, ==
oz AFgSF encoder
e

ecoder= Z8°o2 EOS

Add & Narm
Feed
Farward
[J
I Add & Narm I-'l—q
~+| Add & Norm | Muii-Head
Feed Aftention
Forward MNx
N Add & MNarm
Add & Morm Mazked
Multi-Head Multi-Head
Attention Attention
1t L -

) O\ P—
Positicnal @—‘53 d Paositional
Encoding Encoding

Input Output
Embedding Embedding

1. Step1 : Input Embedding

TokenizerE AFgolo] ¢80l ZF sequenceE]2 token© 2 E3J5l1, word embedding© 2 ZFZFE
embedding@l. o] PEE Cjg}l.

decodero] 5] EOS(End Of Sentence) tokeno] U2 wj7}z] &ejsfE 2, Z} 9J8 sequencel] £9] EOS
tokens &£ oFFA|#F g

2. Step2 : Multi-head Attention

tokenE-9] tfoF multi-head self-attentionS Y SF.

Multihead2 FHEEFe 22 A2 AFA(Wole FEAOZ AET)E A o1 attention
= Yoz ool F I AE QA= AS ek 5o giFARet & G- conteato] mfef of 2
71| ojn| & ZF 4= Ql=t], P9 attentionThs Ao ~d5FH SpLpe] ooJeks of5olA
= 9l o B & multi-headE 2]-ggF.
token 02 o] Y E sequence FYE-S Y o2 HFOH ZF attentionf A= TSR 2 Q, K, VE ARF
ol AypH oz 7 PJHE =Z3 m
delola, 7 Ao W2 27]5 W £9%

X

3. Step3 : Feed Forward Layer
feed forward layer& A Z.

Feed Forward Layer ¥+ FFN(Feed Forward Network)E linear layer, &4 ¥~(ReLU), linear layer

66

2 FYHE layerd. =, feed forward layer,_ Heo] FC2 Azkel = 9l "57’] attentzon~ zF tokenO]]
contertE HFrY o]—X]UI- Z§E tokenof el Helrlr] 2 £l EsFE
AeFslH Aapz) ZF oF Lo Al Elo} 1 of.

FFN(z) = maz(0, Wy + b1)Wa + by

Z]EZ] 0 2= ofglof ZFo] inverted bottleneck FEfZ & H

)
0]

=
S
()
o]

8
c

4. Step4 : Decoder Input Embedding
encoder?l F=YUsLA] 989 ZF sequenceE ¢]&] token O 2 Eol5l11, ZFZFS embedding$f. ©]& PEE
e

ojm seq2seqof A2l & Yo autoregressiveZ F2FeF. gl ffer 282 HLE TS tokeno] gl
AZgloli, o] d=gl& %78:’°f/_lr£°“77’fl’ CHAl 9]g] o= go] & T tf58S 9 5gt onf RNNO]V?L
Ctheo] 21 Z8& Y8 oz ARSI transformers= o] d 8 AAE2 7o 4] tokens

ot Hlof OIE#EE ‘f‘g"ol"

]2 sequencel] A HA token2 SOS(Start Of Sentence) tokeno]1l, T C}S tokenEl oJZZto
245,

5. Step5 : Masked Multi-head Attention

encoder®l =35}l multi-head attentionS Z-gsF=rg], £71] Qg ojJ4] o} oJZE]x] ore HHoJ
sl masked A 2]E &F

transformer9] layer&& Y1} &89 Z7]& E—J—é,;, 284 decoderof A= XZ 02 dvfZ Ol
tokenS o] =512 2, th<3] multi-head attentionS Z]-§5FH gk A ZojJA] of A o] Z5}F2] oF2 token
of thel g5 AFESHA .

o]o]] u}2} masked multi-head attentionOf A= softmazrE Z-&5F7] R o] of=5lx] g HE
9] gb& -inf2 ¥¥H(masking)@l. o] F softmaxrg &} -info] d'FoH= S 00] EFEZ ALk
%‘7‘5’“57?] 2=

o]} Zro] maskingS Z-§%F Z1S Casual Self Attention(O]Hf2] maskE Casual Maskel1l §F.), Z-&
oFx] &2 A& Global Self Attentiono]2t1lx &}

67

4

[MatMul]

[Snf:“] Attention Score

[
[MatMul

Gll.Iry KIy Value softmax (Q\/d_k)

6. Step6 : Encoder-Decoder Attention

encoder®] &8 1} decoder?] S &85} multi-head attention= 3} ojuf Ko} V= encoderl] &
gL ARl YL, Qi decoder] gH5 AFE-all A3 =, encodero 4] ¥ @] g9 oju]E 1t
AF& o= Q.

7. Step7 : Feed Forward Layer
encoderol A 2F Z+& feed forward layer& A Z.

8. Step8 : Linear Layer
=& linear layero] €o] ZF tokenS FJHa} g2 F7]|=2 gk

9. Step9 : Softmax Layer
classification= {3l softmax layerE AFESF.

O]% cross entropy = A&l lossE A4FgF.

decodere] FAAo A, 74 Ao A2 grol 22 %
ke 1 Rie) BT 5 4 g, ole] uje} Eejol
Y3 At 8T 4 Al AlESHA A o7l = =
Z8 ¢ o] & Beam Searchetil 9F. ¥H vl 71 =& 2H&90] gk ofvfo] tisfAvt

o

H1
o,
R
rﬂ
i
o)
g
S,
>
H1
39
o
o]N
N,
=
|
T,

oli ;;O

d

5.3. Transformer?] &
5.3.1. BERT

1. BERT

BERT(Bidirectional Encoder Representations form Transformers)s= 24 7Hdsr ALd &
NLP modelZ, transformer2] encoderS &gl F2 HIAE embeddingS Aol 520 ZejS
P

BERT] 3140 Aglo] YT Ba glo] HAE dlo]efut J2istd F. ZeA] large scale H]o]E] 2
sér0] 7H5

BERTE= 955 go]o] tfgh embeddingS 44 Z uf 71502 g B3,

2. 9% B

814 Ao 98 sequencel= 27)0] B0z 7. o
embedding2 45l T3 AL Yelo s

1) Token Embedding : ZF ©Fojof] tf gl embedding.
2) Segment Embedding : 27]9] 273 & o]t]o]] &35} tlo]oIz]E UEE embedding.

Mo
o
un

o] 2F goje]l Hial opfe} 22 37HA]

68

3) Poisiton Embedding : F1]] sequenceo| A1 9] Y2]& LEFLIE embedding.
oju] A A tokenL oF5S et CLS tokeno]1l, &= ZZFe SEP tokenO 2 FEE

oo () o) () ()))))) ()

Token

Embeddings Elusl Emy Euw Es || Eae E[sevl Eie || Eikes | | Epiay E..m., E[ssv]
+ + + + + + + + + + +*

Segment

Embeddings EA EA EA EA EA EA EB EB EB EB EB
+ + + + + + + + + + +

Position

Embeddings I £ El Ez E3 E4 ES ‘ Es ‘ E7 E E E

BERTOH= 2717] £7.9] 8148 +@8 5 2. MLMO] NSPe] v]ef o Fgs]chi ¢

1) MLM
MLM(Masked Language Modeling)2 TFo]of] et Fate St4 7] 0 2 token9] 15%E MASK token
B4 02 o

© 2 gk H A tokenS o] 23] = Sherdh W72 Eols1 oft Hol} e BEL
.
2) NSP
NSP(Next Sentnece Prediction)2 Z3F #AO] tier FeFe o5 7]H O &2 sequencel] 7 BEZ3Fo] &
Z£Z2]oIz] 2 mHFslE binary classificationS 5~a5fo] 9?%?;. O]ZI]] o8] sequence] HHRS A2
=0l H F ZFo=, Y] guke 193] gk F Egos 7_“5‘?;-

5.3.2. ViT
1. ViT

ViT(Vision Transformer)= o]n]z] djo]g] z]&]of transformer2] encoderZ &-goF HE Q.

VITAF CNNMTH 454 Fofufeidl wdo] 1 tjo]el 7k §35 Eolol & CNN2 e Ho]
€712l $H48 L. runsformert= 15 LB ohlef RE tokenE717]2] 415
A S vrgel. A FEo dieh BAYS mpofsi-gf st AJ7ko] Qe dejx|gk, flo]EE Hol
A IO e HREEIAS] BANE SE 4 o] Go] FObY. BARE SHEgole]
Th4o 2 olsf CNNO]] H]o}] ViTo] o]Fo] HzlH,

2. 9% 33

o[n|Z] Hlo]E]E tokenO 2= Z Zof5FH transformerd] B& 4 SIS ViToA+= o]n|x] Hlo]EE
16 x 16 Z7]9] tF9]o] Patchz2 E&l5F1, linear layerS AR 13 = Zo]o] HE] 2 flatternggl. o]&
PES dobed], olu] PEE WelsloAghe Se Bee] 922 2S5 o] F sigake WA
Yohg. d

A HA token© 2= CLS tokens Yo] sF5gF.

Transformer Encoder

Transformer Encoder

B - O QOO Q0 o)

odding Linear Projection of Flattened Patches

ﬁ'='=—-lﬁm=liﬁg'
T L

69

Part 111

bz
1. 7] €}

1.1. 7]€} pytorch & A7)
1.1.1. GPU A¢

pytorcho A= device(GPU)E X]ofo] ARRS =&t

A

-
E35] nvidia GPU9] -2 cudal AFE3)] 7Hets] &-gsF 4~ 8. nvidia GPUE &-§8 &= 9l= 8173
A= ZobA] H G

1.1.2. dlo]g A7 % £ 97

1. glo]g A
pytorch®] ZIF= ofajo} Zo] torcholl Al AFoHs save(), load() A =5 A1-§d] AZFoln B2l
o] o

data = torch.Tensor([1, 2, 3, 4, 5])
torch.save(data, "./test.pt")
data = torch.load("./test,pt")

F2 JPEG 52| o]n]x] glo]E= ImageFolderZ £a].9 11, o} g2} Z+o] Image classe] save() HIA]
CZ2 2238 X777<7'07- = QIS o] FHo L torch.save()E AF&E = QIX|TF o] = pytorch7F 4T
2 L ez zJZFst= Aoz, JPEGE,L% D= oS

data.save("./PyTorch/custom_data/train_data/%d_%d. jpeg"%(data_index, label))

2. 29 goE]
ol BEo] ZLS AlfFole A& Hla&Xo[BE, pytorcholl A= HE HoJEE ol Ea e+
g AZE
ofefiep Zro] HEy} H2E X]Fslo] B flo]EHE Xl EelE 5 Us. pth= HE Hlo[E 9]
me] Bgape. ofuf AFslai eE st ZA5k] erow ofzlsF u-

model = ConvModel ()

torch.save (model.state_dict(), "./model/convmodel.pth") # A|2

new_model = ConvModel ()
new_model.load_state_dict(torch.load("./model/convmodel.pth")) # =2{227|

1.2. torchvision

1.2.1. torchvision

1. torchvision
torchvision-2 -3 ¢F HJo|E|AIE, E‘” ofZ|E] =], o|n|z] Bigt 55 EFol= T 7] 2] ¢]. torchvision>
Transforms, MNIST, Imagefolder 55 ZgFgl.

70

e DLE 95 A BEe PG A oo, JAHY HolE e FEE 2 gloob
g}, torchvision 5-9f Fojxo] Ql= flo]EAle] FEE ZF15l9] custom dataset= TFHE 4]

o

2. transforms
transforms+ ©]B]X] go]glo] tjor HxJa] B Boks ~d5l= class. o]+ torchvisiono] ZgFE o]

o] o
AR

transformsofl= ofgfol 22 mAEFo] EEFE o] Q5. toTensor()= 0FRE 2557} 9] 415 7IX]&=
glo]ElE 07 E 17F2] 9] gk& 7[R tensor= B2l

transforms.Resize ((128, 128)), # C|O|E{el 27V|E (128, 128)E R
transforms.ToTensor (), # CJ|O|E{(0~255)= tensor(0~1)= HHSt
transforms.Normalize (mean, std) # GIO|EHE Atst
ofgjo} Zro] Fz]g] W Wl 2| AE 2 ZFA5}] transforms A E £ 5 Q2. o] torchvision
HolE Al 5ol A48 5 UL

import torchvision
import torchvision.transforms as transforms

trans = transforms.Compose ([
transforms.Resize ((128, 128)),
D

train_data = torchvision.datasets.ImageFloder(root="/origin_data",
transform=trans)

Y2 @ FEZDls offof Zo] 7+l = Qs ZF channel HE i’f HZHAE Atbolal, 255
2 o] 07 E 17p2] 9] ghe & qtso)ek. toTensor()Oﬂ <fef o] 7’% FE 171R] 9] ro = wrE A

Qlo a2 o]& Normalize()Z 0FRE] 17]%]9] ko2 FFE3IE e 7%
mean, std AHAFS 2|6t dataset load 4=

train_data_mean = trainset.data.mean(axis=(0,1,2))
train_data_std = trainset.data.std(axis=(0,1,2))

train_data_mean = train_data_mean / 255
train_data_std = train_data_std / 255

transform_train = transforms.Compose([
transforms.RandomCrop (32, padding=4),
transforms.ToTensor (),
transforms.Normalize(train_data_mean, train_data_std)

D

0|2 Y transform© = datasetS CIA| loaddt

1.2.2. MINIST

MNISTS 0FE] 97Fz]2] =2po] gt &34 HloJEjAle g2, QA=toA] &0 ol 2
ol pdll8 utEr] Qs =32

training set 2. 2 600007] 2] t]o]E] 7}, test set 2 2 100007] 9] tjjo]E] 7} ZgFE]o] QL. torchvisioin.datasq
ofJA] Eef& MINST tj] o] B[Al:& Dataset 2y 11, 5 A4 0] ZF H]o]El= @] €] tj] o] E] 2} label (Y H)

rﬂ

MoE

71

2 o] FolZ] tupleZ = 0] Q5. Y& Hlo]El= x28 x 289 o]n|X](gray scale)o]1l, B SpL} &
ofto] Z5 7HY. label:2 Z} 9] & Ho]E]of] g ol= R} 9] (one-hoto] ofd e =2).

olgflo] FEZ MNIST TJo]EJRE 7142 = QL. root= Ho]E|AIL] 9IR]E, traind training set<
ZFX- &2 & (trueo] H training set, falseO]H test set), transform- GJO|EJ Al WEl-S, download= HQ
Al 22 E o 1RE 2]gek B2 flo]Eli= F£&2 DataLoadero] 'do] AFE§%)

import torchvision.datasets as dsets
import torchvision.transforms as transforms
from torch.utils.data import Dataloader

MNIST £2{27|

mnist_train = dsets.MNIST(root="MNIST data/", train=True,
transform=transforms.ToTensor(), download=True)

mnist_train = Subset(mnist_train, list(range(60000))) # YO Al Jts

DataLoader ZHZ| A4M5|7|
dataloader = Dataloader (mnist_train, batch_size=4, shuffle=True,
drop_last=True)

learning
epochs = 1000
for epoch in range(1l, epochs + 1)
for data, label in dataloader :
for batch_index, batch_data in enumerate(dataloader) Z2& 7}s5.
data = data.view(-1, 28 * 28)

olglAl AL fo]EAlS A&l softmax classifications TP = = Hlo]E]E FCof Y7] M=
2z} o] o] R Z tensorof 4] sfLt] Yo &2 Sgsfo] zje]slr] L) ofefje} o] shapes G ok

X = X.view(X.size(0), -1)

Z32 matplotlib.pyplot WE-S AH&51 Ho]E1E A28} 2k 918

1.2.3. ImageFolder

ImageFolder= Zr F#29] o]u]zx] glo]EJAIES EE]E 5+ Q= class®. o= torchvisiono] ZE ko]
2.

ofefj et Zro] FZ e} transformsE X]go}o] o]u]z] HoJEJAES E2[¥ Dataset A= HrekE. o]
o] | gsF F2of] Exfol= ErjEo] JfHZ O &2 label%=]o] Dataset ZHA7F F4E. o]of ImageFolder
= Z|2& o2 gt F&2 YR spLf o] 4] EC7F EXol= AR JFYspE R, EO|7F EA|5F
2] grow o]zl Y. A Dataset 2| 9] HoJEl=, ¢/ Hjo]E el O &= label(ET)2 T§H
tuple®].

F312 ImageFolder2 E2]-2 fo]E]7} tensorZ 3 E]o] QITHH Hso] Al-golH H. BHH tensor
ZF otd uf o] & tensorZ g-§oF2 M transforms.toTensor() & AF&5f tensorz H2alsjoF gF.

72

import torchvision
import torchvision.transforms as transforms
from torch.utils.data import Dataloader

trans = transforms.Compose ([
transforms.Resize ((64, 128))
D
train_data = torchvision.datasets.ImageFolder(
root="./PyTorch/custom_data/origin_data", transform=trans)

for data_index, data_value in enumerate(train_data)
data, label = data_value

1.2.4. CIFAR10

CIFAR10L rgb o]n]Z] classificationS 9JoF fJo]EJ AT,

training set 2 2 600007] 2] t]o]E] 7}, test set 2 2 100007] 9] tjo]E] 7} ZgFE]o] QL. torchvisioin.datasq
o4 &2l CIFAR10 H]o]E] S Dataset ZJA|0] 12, s ZA| o] Z} djo]El=]2 H]o]E] 2} label(7d
)2 0] 20l] tupleZ 74Ho] 918 912 HJo]EI= 8 32 32¢] o] IR, label 2} ¢12] Flo]E]e]
ool A ¢l (one-hoto] ofd T L.).

olgflo] FEZ CIFARI(HJo]EJAE 7FX& 4= QL. root= GJo]EJA Q] YR E, train training set-=
ZFHX-& X E (trueo] H training set, falseO]H test set), transform:2 HOJEJAl H2lS, download= HQ
Al 22 E of R&5 X ok E22 HloJE & T2 DataLoaderol g o] Al-§g}.

import torchvision.datasets as dsets

import torchvision.transforms as transforms

from torch.utils.data import Dataloader

CIFAR10 dataset
transform = transforms.Compose ([
transforms.ToTensor ()

D

train_data = torchvision.datasets.CIFAR10(root=’./cifar10’, train=True,
download=True, transform=transform)

train_data = Subset(train_data, list(range(60000)))

trainloader = torch.utils.data.Dataloader (train_data,
batch_size=batch_size, shuffle=True)

learning
epochs = 1000
for epoch in range(l, epochs + 1)
for data, label in dataloader :
for batch_index, batch_data in enumerate(dataloader) Z& 7}5.
data = data.view(-1, 28 * 28)

1.3. visdom

1.3.1. Visdom

73

1. Visdom

Visdom-2 DL R o] 54 Al &5 A Z}5l6lE= E7 Y
visdom:> ZEFO|UE- AR E 725 7|¥Lo 2 F2Fof. TR XEof python -m visdom.servers] &/s}
o visdom AW 7} AeE 1, ALEL TEZ Mooty ATz Ze5 Xz}5) A2 stolsk &= 9L,

2. 718 A1gY

of7]o] Heler A& Lo tfFel A|ZF317F 7hs sl EE H Q51 H ZrofH]

1) visdom ZJ=] A4

visdom-= *fﬁo}ﬂi o ofefe} Zro] Visdom A Aol al, o 24| wAEE ARgel. ofuf vis-
dom AJH[ZF 7 Z] QIO o]z} .

import visdom

vis = visdom.Visom()

2) tjo]E o]mu]z] Zg

ofafio} ZFo] tensorQ] S ojn|x|2 &g el 4= QS image()ll= shape©] (channels, height, width)
ol tensorg gol &g o|nJz|& &8 = 1, images()of«= shape©] (batch_size, channels, height,
width)] tensorE §o] of2f o[BI]S BT 5 9. 1 HIF= visdom AHo] Helo] HIEF 4
o] o

AR

vis.image(t1)
vis.images (t2)

3) Az &g

oo} Zo] X9} YE Aahe] line() 02 HIHRE Y 5 L. ofuf X9} Y FUeh shape
ofojof s}, 1aF¢lo]|l sjite] £10] 1221 23] ¢lo] W X5t nhao] o] 12g. 232l H2
ZhHjoJej 7} & S22 AgE]o] o] Tej . Fok Y7L I2F1Q] F- X& X opx] gfew 03f 1 AFe]
xAlE A2 AL

line()2 ollg Z2e]Z 9] idE

=13
QAo wino2 Te L] idS W, update A (appendi= F7}, replace= HA)G Fepo 4712
g YrolEY + 9l

Felef.

olzfofl optsE title, label, legend 52| ML ek 5= ¢S, o]uj] dictonary FE|Z ZJ .
graph_id = vis.line(X=x, Y=y, env="main") # M2jZ ==
vis.line(X=x, Y=y, win=graph_id, update="append") # 41J2{I YUL||O|E

graph_id = vis.line(X=x, Y=y, env="main",
opts=dict (title="test", legend=["1%", "1)) # & X4

F A Visdom A = ZEok ZF yl-gof ofgfjel Zo] & (env)& AFT = 5. 22
=9 W&S 7Eols wald FUe s, BY g izt dEE ¢l A2t Tk

close()i= Ao 35 o]m] A 5-& A%
vis.image(tl, env="main")

vis.close(env="main")

3. 7t
MNISTA epochabe}e] cost ghg A L2 Felohe gol4 ZEL ofdo} o] e 5 J2.

74

H] Jajx g Aol 1 id

U
il

grg5fo] HRE 2] O 2 ypdateQF.

visdom

vis = visdom.Visdom()

graph_id = vis.line(Y=torch.zeros(1), opts=dict(title="train"))
vis.close(env="main")

def printVisdom(id, X, Y)
vis.line (X=X, Y=Y, win=id)

for epoch in range(1l, epochs + 1)

vis.line(X=torch.Tensor([epoch]), Y=torch.Tensor([cost.item()]),
win=graph_id, update="append")

1.4. Docker

1.4.1. Docker

Docker(E7])= Ago]] 7]8Fe] 7R SE A]AEQ].

virtual machine¥] @ os Ao tha] 7Sk Hl4l, gk dHEkS APHA FHYERe Aol Heo]
Y. dockerS HA]31 1 9ol AH|o] & o] HIAE 52 #A) +UT + IS

1.5. mold 4

1.5.1. AA| 9} class

sfol e AAAGFEE 1Y LT, T AL jaad] TAT G2A] GS. o PAF AL
AT 28 5.2 BAT uoic Fopra)

1. A4

mfo]HoA] BE ZL2 Ao (HE B4 AXE Je]4.), A= 27-¢F X (reference, id)E
71z 1, —'—/‘4(Attmbute javaollA]] &)7} oAl = (Method)E 7F2& 4 1S

A= mutable} immutableZ 2=, Immutable:2 gFS Y + H= A2, F, A, EAY,
tuple 50] Y-2. Mutable2 7S & 5 = A2, list 50] Y= zmmutable WAL 7FS HAE

7 871 g, immutable 2315 7f377l ol W=o] glo] uFH OH%’L e te 4AE 71
H. a1z o]& Tzl Mot fle 7#%7’] = garbage collectorej 2Jsff #| 3757'
zfol oAl of T& Alole ARz e Wl ool A 7F 2ol = o7 Oil ol ¢ ==,

aigh A 7L immutableo] 2FH ZF on x]o]] /(HE—‘?— HA7F AFLE] call by value X2 E2Fs1at, o
ot A7} mutalbeo]2FH ZHE AN E 7]E HA7} XEDZ call by referenceX]d F2FgF o]
EZE call by assignmentﬂ]—_;_ 23

2. class 39|
ofefje} Zro] classE o] ol. ZFolA & W @ ugfo] B of & Ql&. o]uff selfi= 7] A{1& 7]
S B, Fie H9E Yo A Gob A AG A FGo4ed AGE + 42

(0]

class MyParentClass:
name = "MyParentClass"

def printName(self):
print (self .name)

class MyChildClass(MyParentClass):
name = "MyChildClass"

def printName(self):
print (self .name)

3. 4 g

ofello} o] AAE A 2} WES} HAEE 02 F

ry
)
+
X9,
o

a = MyChildClass()
a.printName ()

ofelo} Ze B mAEE] 9]

1) it ()

ofeflst ol _init__ & A2 WA =g Yol5rE YY) HeH

o

class MyClass:
name = "MyClass"

def __init__(self):
print("class name is", self.name)

2) el ()
ofgfiel go] __call & AEAZ vMEE FoJopH HAFHS vME AJHXpA Y ARgel 228
AT, ol __call ()] S5-E= 2o] +F.

class MyPow:
def __call__(self, x):
return (x * x)

a = MyPow()
a(5) # 25
1.5.2. Tuple
1. Tuple

Tuple:& +A]7F EASF= immutable H]o]E FZX 9. liste} FAFSFX]2F immutable®] Z. ofgjo} Zro]
Zo2 Y. tuples oF Blof of2] Blgof gatsle = 2py ek 5~ Qli=5], o]F unpackingo]2f1l 3.

x = (1, 2, 3
x[2] # 3

a, b = (5, 6) # unpacking

76

2. "k8l A]9] Tuple
ofei} 2o BofA] return.© 2 oz Ao] FHE oY AELE tupleo] FHEO] .

def testTupleReturn()
return 1, 2

a, b = testTupleReturn() # (1, 2)

1.5.3. Dictionary

mfo]#oflA] Dictionary key-value 0 2 FEE[Z] kA gjo]ElE X ok= AFE7ZX Y. ofefof Lol
of 2] dFAl o g X oJolil e 4= Qs

{35 AT Y9
my_dict = {

"name": "John",

"age": 30,

"city": "New York"
X

dictOS AIBSH e
my_dict = dict(name="John", age=30, city="New York")

my_dict["name"] # "John"

for2S =220t A9

squares = {x: x**2 for x in range(l, 6)}

1.5.4. 7€} 445

AT ALEE]= 7B gFrE oFglel ES.
1) enumerate(z) : BFH2 7}-5SF(iterable) A E QIxf2 Brop ZF Qe Aol ZFS tuple 704l enu-
Fslst
-

merate A A BEF. enumerate A= ofef} o] forRo] Fgete] B 2mupk shfo]
tuple(TSI A0F gk A&F)o] ALEEE 2 G 5~ 2.

fruits = [’apple’, ’banana’, ’cherry’]

for index, value in enumerate(fruits):
print(index, value)

1.5.5. RE Ax] 912 <l5}7|

ofefef go] ufol] o] HAH SIAE ST + Y. FAHe F27} PHo] FFeciY ZEES
23] Eofw .

import torchvision.models.vgg as vgg

print(vgg.__file__)

7

1.5.6. El¢] oj-Ho]A

EFQ] o] i Eo]M (Type Annotation)S <=, gr~9] HF2]
ofafe} Zo] A7

BN,
oln
<
,
g,
o
of,

AlF ez 2goh= #H Y.

a : int =1
intnumbers : Set[int] = {1, 2, 3, 4, 5}

def sum_data(numbers : List[int]) -> int :
return sum(numbers)

2 dEFglo] glo] A4ek Bl o} YA QFOHE o7k LA 9FS. mypy 59 A EFS] FAIE
Apgatel A el Bl ofiEjoldef nhE AAFE +HE 7 o

o

1.6. 7]€} DL 33 Y| &

1.6.1. Transfer Learning

Transfer Learning=2 traint YEQZE CFE tasko] -Eol= A Y.

HA) YEIZE fine-tuningsA] E-88 12 YA, PEL freezes] 1 OpX]5} BI0] layerth 7}

SAE i 9. Ei WA BE0] FE luyerh 54D 4 9.

o]+= pre-train A]of 8§32t tjo]EjAlo] Hy Fof ghrlal g

1.6.2. Multitask Learning

Multitask LearningS SFLFO] modelo] of 2] 7]9] BE taskE TA]o) 2 2]sFZ o1& 7[5 ¢

og Sol, A4 B, A}, stop sign, A1 T5G oM UL A2 5 QL. o] F Fad]
2ol o HE2 mEol= S olE H. Lot 4ol WEE EEah, 217}o] taf BCEE 483

1.6.3. LLM

LLM(Large Language Model)2 Btlel Qo] fjo]E] 2 pre-train® ZJF language model ¥

o-@ Q5] =2 A& Ho]z]F Hallucination}F Outdated Information, Lack of in-depth Knowl-
edge 59 A E o] =A¢

RAG, prompt engineering 2.2 o]& JJHAe = =

1.6.4. Retrival Augmented Generation

Retrival Augmented Generation(RAG)~= LLM YR o %= glo]gjgro] ofi]a}]2 (DB &)of]
Gl Hlo]E & B8k 7l

=2 = O

LLMe] 2% dlo]e& Aget, o' dloJe = #X] Ee 4517/ o] &5

ofgflof Zro] AFERFR2EE] query’} E9]2H embedding model-S E-§3f HJO]E[E vectorS}olil, re-
triever2 queryo]] Ir= tjo]E[E AESH F] LLMoj dYEel ESl 712 rerankerS AFE5) query2lo]
FEge 2k =~ 9L,

TFAHC 2=, RAGOAIE A5 chunkingdfA] of 2] 7]9] chunkE Y-Sk, LI52] encoderz Z}
chunkE WEJa}3le] DB A ol query’} SoloW £UsHA MEaIe 5] DB HE Fo)A
TFAFEZ} & Z(dot product glo] & A)& HH/6l1, of'd WE o] fl&F= chunkE query2} g7
Z2ITEo] 9 Eg}

Langchain 529] toolS AF&3] RAGE &8¢ + <

To

In the stomach, gastric acid
What protects the : and proteases serve as s
digestive system against il Retriever Eo SolC i renical defenses fadl Reader B4 nﬂ::‘l::uc':;-;d
infection? against ingested pathogens. L

l - '
[1] Wikipedia - immune system
Text Collection
——— 5. Response

. Embedding
(o) model g
o
O e T
nguage
User 2. Encode Sty
1. Query
) 4. Score
@ 3. Search
Retrieval
i Reranker

1.6.5. Prompt Engineering

Prompt Engineering2 modelo] {lol=

T
Hadtls JEs PHFoR M=
o] o
AR -

Frs YHFEE promptE F AASE YEshe IH 4.
FH 2
H

=AY = al, EoF ofglel e VHES g8 &

1. Zero-shot Prompting
Zero-shot Prompting=2 ZF task B2 SFLLO] model-S 4 o) AFgsFE HHA]T} gra], sJLt9] foundation
modelz2 F7}2]¢1 of glo] o 2|7} taskE A eled o Q== oF 7] ¢

2. Few-shot Prompting

Few-shot Prompting:S F7F2]Q1 815 glo], ¥ 7}X] oA A&5lo] o]H A2 taskE A2 -

QUEE ol 7] Q). ol QJEE AJAIE9] ek context)E E-§5F 22 In-context Learning©o]2l11 %
o

few-shot prompting A= o}ie} 22 FEH wal2ot Yriw g,
1) classification]] that XIS AT Tz, 2} classol et AA|] Az7} A2 2 Ao] ETh

Sy

O]
Manl

2) text A & AEE whe, ZF dAIAL formats A= BFEE Zo] FHl ok
3. Chain-of-Thought
Chain-of- Thought== modelo] of2] FZF BAIE 713 Bor FE vYS fdd + A=H FlEohs

zldiel. 2, thinking processE = A .

o] Q802 'Let’s think step by step.'o]2l= E3-5 F7Fol7] e of = EZFel £A|7F zero-shot
o= S dE7]| = ehp ok

Standard Prompting Chain-of-Thought Prompting
Q: Roger has 5 tennis balls. He buys 2 more cans of Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now? tennis balls does he have now?

A: The answer is 11.
The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples Q: The cafeteria had 23 apples. If they used 20 to
do they have? make lunch and bought 6 more, how many apples

do they have?
A: The answer is 27. x

J

_

answeris 9. o

_/

1.7. Linear Algebra
1.7.1. g37

79

ofuf oj®l Y]
7 4 9L, 7]
Y3

CR decompositions A-gs] & o]H J&H O] 70 2 decompositiondA] rankE = S = EXoF

~

1.7.2. Projection

1. g o] jjor p'rojection
HE] a2} b7} EXEF o, bo]] - &&= pmjectzon matrivE ol bE a2 projectiond 5 U= projec-
tion matriz= ofgf o} 2. o]=p = xa,a’ (b—p) = 0L ‘7:3’,70]-037 FeF 4~ glo.

(l(lT aaT

p=20 =%,
aTa'? ™ dTq

oluf projection matriz Poj] s P2 = P,PT = P7} 4 &g}

ot projection

o
o thet projection= ZHe] @ projectiont} £AFSHA ARG 7 U2
v

of,

AR

RG]

of disf 7|7} {a1,azx} 0], Z7|X 2 IS Yot F&E AF 7‘:7'—_1—’ Sk} Xq/‘foj]?_] e p
g B o] 7]x 2 FEEHSHH, p = zia1 + xaax = Az} Zro] YEFE & Q5. o]mf al (b— Az) =

(b— Az) =00]22, FaJs}H AT(b— Az) =09. o]5 Fao}d proyectzo matriz= ofgfjoF Z+-<.

| =a=]

0
B

ogqmlm L2 o M
0

P=A(ATA) AT p= A(ATA)"1 AT,

of 7]of A= P2 = P, PT = p7} A g}

[
2.

SAFREE9] A= projection2 &-835) E243t tokene A A S 243t token?] H$ O 2 unsafe spaces

1=

=
Aolsf Mz JHH tokeno] sl 37 Aot ZR7E A (247 dubut 29tE o] 91=A]) projection© &2
SQIet. safe spaced 7435k £AI7F BT token i F3tol| projections] A2

1.8. Zix=
1.8.1. 1A=

pytorch, ML, DL, CNN, RNN
1. https://deeplearningzerotoall.github.io/season2/lec_pytorch.html

80

2. https://hunkim.github.io/ml/

transformer

1. https://www.youtube.com/watch?
v=03UEbQ24zhQ&1list=PLOE_1UgNACXA5u65LBjzFCAVSZ4xuBWqj&index=23
2. https://www.youtube.com/watch?v=AA621UofTUA

CNNE A ESh= H[0|E Q] 7+

10

https://seoilgun.medium.com/cnn’ECY9D%98-stationarity’ECY%99%80-1locality-610166700979

81

